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The forward problems of pattern formation have been greatly empowered by extensive 
theoretical studies and simulations, however, the inverse problem is less well understood. 
It remains unclear how accurately one can use images of pattern formation to learn the 
functional forms of the nonlinear and nonlocal constitutive relations in the governing 
equation. We use PDE-constrained optimization to infer the governing dynamics and 
constitutive relations and use Bayesian inference and linearization to quantify their 
uncertainties in different systems, operating conditions, and imaging conditions. We 
discuss the conditions to reduce the uncertainty of the inferred functions and the 
correlation between them, such as state-dependent free energy and reaction kinetics 
(or diffusivity). We present the inversion algorithm and illustrate its robustness and 
uncertainties under limited spatiotemporal resolution, unknown boundary conditions, 
blurry initial conditions, and other non-ideal situations. Under certain situations, prior 
physical knowledge can be included to constrain the result. Phase-field, reaction-diffusion, 
and phase-field-crystal models are used as model systems. The approach developed here 
can find applications in inferring unknown physical properties of complex pattern-forming 
systems and in guiding their experimental design.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Beyond the aesthetic value of pattern formation widely observed in many systems [1], their images can be harnessed to 
distill useful physical properties and test theoretical models quantitatively. In contrast to natural images and neural network 
models, images of pattern formation often lie on a manifold that can be described by relatively simple partial differential 
equations (PDE), despite the high degrees of freedom at the microscopic scale [2] and the richness of the pattern itself [3]. 
Identifying the PDEs that govern an evolving pattern helps to uncover its mechanism and the constitutive relations with a 
small number of experiments [4]. Physically, the solution to the inverse problems reveals nonequilibrium behaviors that are 
difficult to compute from first principles, providing a data-driven approach to modeling complex behavior. However, due to 
the nonlinearity of the PDEs, it remains unclear to what extent the constitutive laws of pattern formation, especially the 
uncertainty in the functional form of the nonlinear and nonlocal dependence, can be reliably and robustly identified from 
images.
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Analytical approaches have yielded valuable insights into the scaling laws of pattern formation [5,6] and hence how the 
dynamics depend on key parameters. For spinodal decompositions, it is well known that the characteristic wavenumber 
of the initial spinodal pattern is related to the second derivative of the free energy [7], and when the coarsening is gov-
erned by diffusion, the domain size grows as t1/3 in time [8–10]. The growth law is found to vary with different models 
of concentration-dependent diffusivity [11]. For nonconserved fields, Ginzburg-Landau theory predicts a well-known t1/2

growth law [10,9]. The structure factor of the pattern at different stages of the coarsening in both simulations and experi-
ments has been found to collapse with the appropriate scaling [8,12].

However, scaling analysis does not describe the morphology in real space. The growth law only applies when the domain 
is sufficiently large and no boundary effects are present [9,10]. In addition, for systems with competing dynamics such 
as reaction and diffusion, the pattern depends sensitively on both reaction kinetics and diffusivity [13,3], and does not 
necessarily follow a simple growth law. Hence, in this work, we identify the governing equation from images through PDE-
constrained optimization and use uncertainty quantification to assess the accuracy of the constitutive relations.

Previous studies have demonstrated the possibility of inferring constitutive relations or governing equations from images 
[4,14–21]. Parameter identification (including the nonlocal interaction kernel) and model selection in phase-separating sys-
tems has also been studied in detail [22–24,4]. With images, we have the opportunity to refine simplified models and allow 
unknown closures in the governing equation to be informed by data. However, for pattern-forming systems, the uncertainty 
in the functional form of the nonlinear or nonlocal constitutive relations remains largely unknown. Similarly, the sensitivity 
of the pattern morphology to the functional form is unclear, and cannot be easily elucidated by the scaling analysis men-
tioned above. In addition, while the patterns can be strongly influenced by specific conditions such as the average volume 
fraction and reaction rate, a systematic analysis of inversion based on images obtained under different conditions is lacking. 
We discuss solutions to these issues above in this work.

Recently, it is found that the low-dimensional manifold learned from images of spinodal decomposition is well correlated 
with the free energy barrier and average concentration [25,26]. Here, we take the inverse problem approach; instead of 
creating a forward mapping from physical properties to patterns, we ask what physical properties can be accurately inferred 
from full images. In contrast with learning from the low-dimensional representation of the images (which more broadly 
can be obtained from feature engineering [27] and dimensionality reduction techniques [28]), we utilize the full dataset in 
defining the objective function and in constructing the likelihood model to maximize the retrieval of useful information.

As with any regression problem, care must be taken with regards to generalization and extrapolation. Regularization 
is needed for the inversion of functions (infinite-dimensional inverse problems) to ensure the problem is well-posed. For 
example, neural networks have been used to discover or represent physical laws and constitutive relations by incorporating 
physical constraints [29–38]. Sparse or symbolic regression is also commonly used to achieve parsimony and better physical 
interpretability [39–44]. Physical constraints such as force equilibrium have been integrated with material properties to 
enable data-driven solutions to problems in mechanics either by using data directly without a model or inverting the 
constitutive model from data [45,46]. Our approach enforces the general form of the governing equation while allowing the 
unknown dynamics (such as reaction and diffusion) to be identified. We also allow the unknown constitutive relations to be 
nonlinearly or nonlocally dependent on the order parameters. Additionally, imposing symmetry in the constitutive relations 
and other prior knowledge such as the miscibility gap can narrow down the uncertainty and prevent overfitting.

Recently, surrogate models such as Gaussian processes [47], polynomial chaos expansion [48,49], deep neural networks 
[50,51], generative adversarial networks [52], and physics-informed neural networks [53] have been used in inverse un-
certainty quantification and they are particularly useful when the model evaluation is expensive. Here, we choose the full 
Bayesian approach [54,55,17] based on the full PDE model and given snapshots to infer the posterior distribution of the 
constitutive relations. To address the curse of dimensionality that is associated with the large number of parameters used 
to represent functions, we use a dimension-independent Markov Chain Monte Carlo [56] to ensure efficient sampling.

Our method offers a top-down approach to the construction of constitutive relations of complex systems directly from 
macroscopically observed fields. It is complementary to the bottom-up multiscale simulation approaches of scale bridging 
and learning closure models [57–60]. With advanced imaging capabilities and the availability of more image data, the top-
down data-driven approach to modeling pattern formation becomes increasingly relevant and hence calls for a detailed 
analysis of how well constitutive laws can be extracted from data [61,62].

We formulate the methods for solving PDE-constrained optimization and uncertainty quantification in Section 2 and 
apply the methods to various examples in Section 3 to study the inversion result, uncertainty and correlation in the 
inferred quantities, and whether models can be distinguished. In Section 3.1, the convergence of the optimization is demon-
strated; the uncertainty quantification is applied to phase field and phase field crystal models to illustrate the quality of 
the sampling. We study phase-separating systems driven by diffusion and/or reaction as they relax toward equilibrium un-
der different average concentration (Section 3.2), identify the contribution of reaction and/or diffusion (Section 3.3), and 
when system is chemically driven out of equilibrium (Section 3.4). We also study the effect of imaging conditions includ-
ing temporal resolution (Section 3.5), spatial resolution (Section 3.6), image domain size (Section 3.7), as well as blurring 
(Section 3.8) on the inversion results and corresponding uncertainties.
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2. Method

We study a class of pattern-forming systems that has a non-convex free energy F [c] as a functional of the order pa-
rameter field c(x). Phase separation occurs due to instability, that is, there exists δc such that δ2 F < 0. When the order 
parameter is a conserved parameter such as concentration, the dynamics can be driven toward equilibrium by diffusion,

∂c

∂t
= ∇ · (D(c)c∇μ) , (1)

where the functional derivative μ = δF/δc is the chemical potential. In chemically driven systems where the interior of the 
system is in direct contact with the chemical reservoir, as found in surface adsorption and surface-reaction-limited nanopar-
ticles, and when the driving is small enough to use linear irreversible thermodynamics [63,64], the governing equation is

∂c

∂t
= −R0(c)μ. (2)

Being in contact with a chemical reservoir, the free energy is now F [c] − μres
∫

cdx with the addition of a Lagrange multi-
plier. μres is the chemical potential of the chemical reservoir.

Thermodynamically, the region of instability δ2 F < 0 is prohibited unless the system is out of equilibrium. Therefore, the 
temporal evolution of the patterns gives us access to constitutive relations in the unstable region. In the case of a phase-
separating system, the free energy is typically described by a regular-solution (or Ginzburg-Landau) type double-well energy 
with a gradient penalty term,

F [c(r)] =
∫ (

gh(c(r)) + κ |∇c|2
)

dr, (3)

where r is the position in space, gh(c) is the volumetric free energy when the concentration field c(r) is homogeneous, 
κ is the coefficient for penalizing concentration gradient, which leads to a diffuse interface when the system phase sepa-
rates [7]. When coupled with diffusion as in Eq. (1), this expression becomes the well-known Cahn-Hilliard equation used 
extensively in phase field models [65]. When coupled with Eq. (2), it is known as the Allen-Cahn equation. In this case, we 
attempt to learn the double-well free energy gh(c) as well as the dynamics (diffusivity, and reaction kinetics). We define 
the homogeneous chemical potential to be μh(c) = dgh(c)/dc. Hence the chemical potential is

μ = μh(c) − κ∇2c. (4)

Another type of pattern-forming system has a more generic nonlocal form,

F [c(r)] =
∫

gh(c(r))dr +
∫

c(r′)C2(|r′ − r|)c(r)drdr′. (5)

The conserved diffusion equation (1) combined with Eq. (5) is also known as the phase field crystal equation (or dynamic 
density functional theory) [66]. A particular case of a non-conserved Eq. (2) combined with Eq. (5) is known as the Swift-
Hohenberg equation [66,67]. Different direct correlation functions C2 can give rise to spatial patterns such as lamellar and 
lattice structures. In this case, we are interested in the sensitivity of the pattern with respect to the direct correlation 
function.

Multiple snapshots taken in time are used as training data, while the first image is used as the initial condition. Suppose 
the measurement noise of the images is an additive Gaussian white noise, cdata(t j, r′) − c(ti, r; p) ∼N (0, σ 2δ(ti − t j, r − r′)), 
where c is the model prediction and cdata is the observed concentration field, ti is time, and p are the parameters for the 
unknown constitutive relations. The conditional probability of the observed data, aka the likelihood, is

P (cdata|p) ∝ exp− 1

2σ 2

[
M∑

i=1

∫
dr (c(ti, r;p) − cdata(ti, r))2

]
, (6)

where M is the total number of images in time. Similarly, we can also define the likelihood when the observed data is 
discrete in space and the noise is spatially and temporally uncorrelated, where the integral becomes a summation over 
discrete points in space. From a Bayesian perspective, the posterior distribution of the unknown parameters p satisfies

P (p|cdata) ∝ P (cdata|p)P (p), (7)

where P (p) is the prior probability, which depends on the prior knowledge of the constitutive relations discussed in detail 
below.

For binary mixtures, we express the free energy as a sum of the ideal entropy of mixing (id) to limit the concentration 
within [0, 1] and a non-ideal excess part (ex). The corresponding chemical potential is
3
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μh(c) = μid(c) + μex(c) = ln
c

1 − c
+

N∑
n=1

an Pn(c), (8)

where the Pn are normalized Legendre polynomials defined on the interval [0,1], and an are the coefficients to be de-
termined. Similarly, the diffusivity (or reaction kinetic prefactor) can be parameterized as ln D(c) = ∑

n bn Pn(c) to ensure 
positivity. Assuming the prior for the non-ideal part of the (excess) chemical potential follows a Gaussian distribution 
μex(c) ∼ N (0, δ(c − c′)), or similarly if the prior for diffusivity is ln D(c) ∼ N (0, δ(c − c′)), then due to the orthonormality 
of Pn ,

P (p) ∝ exp−1

2
‖p‖2

2, (9)

where p are the coefficients an . The covariance for the priors may be defined by differential operators to penal-
ize high-frequency components in the constitutive relations. For example, ln D(c) ∼ N (0, −L−1), where Lψ(c) =
d
dc

[
c(1 − c) d

dc ψ(c)
]

. In other words, P (ψ(c)) ∝ exp
[
−0.5

∫ 1
0 ψ(c)Lψ(c)dc

]
. Legendre polynomials (defined on [0,1]) are 

eigenfunctions of the differential operator, LPn(c) = −n(n + 1)Pn(c). Hence, in this set of orthonormal functions ψ(c) =∑∞
i=0 pi P i(c),

P (ψ(c)) ∝ exp−1

2

∞∑
i=0

n(n + 1)p2
i . (10)

Note that the coefficient for the constant term P0(c) is 0 (degenerate in p0).
The direct correlation function in Eq. (5) is represented in Fourier space in the form

Ĉ2(k) =
N∑

n=0

dn(2nn!√π)−1/2e−|k|2/2 Hn(|k|), (11)

where Ĉ2(k) = ∫
C2(r)e−ik·rdr, Hn is the physicists’ Hermite polynomial and the basis functions are orthonormal, and dn is 

the corresponding coefficient. Similarly, if we assume that function r 
→ Ĉ2(re) where e is a unit vector follows a Gaussian 
distribution with delta variance, the prior probability distribution can be written as Eq. (9), where p are the coefficients dn .

For a general prior p ∼N (0, �Pr), it is convenient to transform z = �
−1/2
Pr a so that z ∼N (0, I), which is shown below to 

be useful for the Markov chain Monte Carlo (MCMC) sampling and linear constraints.
In addition to a prior that promotes smoothness and penalizes high-order basis functions, priors can be modified to 

satisfy certain constraints. For example, in addition to the images that capture the transient behavior, the compositions of 
equilibrium phases (c1, c2) – also known as the miscibility gap – can be easily accessible; hence the chemical potential is 
subject to the thermodynamic constraint,

c2∫
c1

μh(c)dc = μh(c1)(c2 − c1) (12)

μh(c1) = μh(c2). (13)

For the Cahn-Hilliard equation, an arbitrary constant term can be added to μh(c), so we can set μh(c1) = μh(c2) = 0. 
These three equations are a set of linear constraints on the coefficients Bz = d. For a general prior on the coefficients, it is 
convenient to decompose z into two orthonormal spaces, A and A⊥ , where A is the null space of B, BA = 0. Then we have 
z = Aξ + A⊥ξ⊥ . Thus the constraint is BA⊥ξ⊥ = d. It can be shown that the conditional prior is

p(z|Bz = d) ∝ exp −1

2
‖ξ‖2

2. (14)

According to Bayes theorem, the posterior of the unknown parameters is P (p|cdata) ∝ P (cdata|p)P (p). The maximum a 
posteriori estimate (MAP) is defined by minimizing the objective function

S(p) = 1

2σ 2

[
M∑

i=1

∫
dr (c(ti, r;p) − cdata(ti, r))2

]
+ 1

2
p∗	−1

Pr p (15)

Without loss of generality, 10 parameters are used for all functions studied here, that is, Legendre polynomials of order 1 
to 10 are used for the chemical potential, and of order 0 to 9 are used for the diffusivity and reaction kinetics. When the 
thermodynamic constraint (Eq. (12)) is applied, Legendre polynomials of order 0 to 12 are used.
4
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The objective function is optimized using a gradient-based optimizer. The gradient of the objective function is

∂ S

∂ p
= 1

σ 2

M∑
i=1

∫
dr (c(ti, r;p) − cdata(ti, r))

∂c

∂p
+ �−1

Pr p. (16)

The model sensitivity ∂c/∂p for each parameter can be computed while solving the forward problem. For a general PDE 
∂c
∂t = g(t, c; p)

∂

∂t

(
∂c

∂p

)
= ∂ g

∂c
· ∂c

∂p
+ ∂ g

∂ p
, (17)

which is known as forward sensitivity analysis (FSA). From the FSA, we estimate the Hessian of the objective function using 
Gauss-Newton approximation [68],

H[S] ≈ 1

σ 2

M∑
i=1

∫
dr

(
∂c

∂p

)∗
∂c

∂p
+ �−1

Pr . (18)

The approximation becomes increasingly accurate as the difference between the model and data is decreased. An alternative 
to FSA is adjoint sensitivity analysis (ASA), which involves solving the adjoint linear sensitivity equation backward in time 
once to obtain the sensitivity of the objective function with respect to all parameters [69–71] (equivalent to backpropagation 
for neural networks). When ASA is used, only the gradient is computed and the optimizer can use a gradient descent 
algorithm. This approach is useful for a large number of parameters, such as a 2D field or weights in neural nets. When the 
number of parameters is small, such as in the case of parametrizing concentration-dependent functions, the benefit of using 
FSA to obtain an estimate of the Hessian outweighs its computational cost, as the convergence is much faster. We use the 
trust-region algorithm [68] for the optimization when the Hessian is available.

Given the posterior distribution P (p|cdata), we quantify the uncertainty by sampling the parameter space using Markov 
Chain Monte Carlo (MCMC). A popular adaptive Metropolis algorithm updates the covariance of the proposal distribution 
adaptively from the chain samples [72], that is, the covariance at step n is Cn = sdCov(X0, . . . Xn−1) + sdε I , where Cov
is the sample covariance from the previous n samples and sd = 2.42/d, where d is the dimensionality of the parameter 
space. This method does not compute the gradient or Hessian. In our case, we need an MCMC sampler for functions, which 
are parameterized in a finite-dimensional space by truncating the polynomials. With an increasingly fine representation of 
the function (higher dimension), the adaptive MCMC method becomes slow and the mixing quality of the Markov chain 
deteriorates rapidly with finer representations of the functions [55]. The sensitivity with respect to high-order basis func-
tions leads to poorer sampling, and the sampler stagnates for a prolonged period of time, which is especially problematic 
for computationally expensive model evaluations of PDEs that we study here. Here we use a dimension-independent and 
likelihood-informed (DILI) MCMC [56] that takes the local Hessian information and adopts an operator-weighted proposal 
distribution to achieve better sampling efficiency that is independent of the dimensionality of the parameter space. We 
start the algorithm from the optimal solution (MAP). The Hessian is computed periodically using Eq. (18) to determine 
the parameter subspace that are most informed by the model (likelihood-informed subspace). The posterior covariance �
is more accurately estimated by combining the covariance of projecting the chain samples onto the likelihood-informed 
subspace and the prior covariance in the complement prior-informed subspace. The proposal distribution comes from the 
discretization of the Langevin equation,

dp = −�
∂ S

∂p
dτ + √

2�dW, (19)

whose stationary distribution is the posterior distribution (Eq. (7)), and W is random noise 〈W(τ )∗W(τ ′)〉 = δ(τ − τ ′)I. As 
an alternative, we adopt the proposal distribution,

dp = −��−1
Pr pdτ + √

2�dW (20)

based on gradient descent from the prior distribution only to avoid computing the model sensitivity at every step. This 
expression requires �Pr to be nonsingular. In practice, for a degenerate distribution such as Eq. (10), we set the variance of 
the degenerate component (the coefficient of the constant basis function P0(c)) to be sufficiently large. We set a maximum 
number of Hessian evaluations that can be performed. Therefore, the extra computational time needed for this method 
compared to the adaptive MCMC with the same number of samples Ns becomes vanishingly small as Ns increases.

3. Applications

3.1. Optimization and uncertainty quantification

We generate simulated data for the evolution of the Cahn-Hilliard equation. The boundary conditions are n · ∇c = 0, 
which corresponds to no surface wetting, and n · ∇μ = 0, which corresponds to no flux [63,73]. Fig. 1 shows the evolution 
5



H. Zhao, R.D. Braatz and M.Z. Bazant Journal of Computational Physics 436 (2021) 110279
Fig. 1. Training on 11 realizations of spinodal decomposition snapshots. Insets show the initial guess for μh(c) and D(c), a typical state during the training, 
and its final convergence to the truth. Blue and orange curves in the main plot correspond to taking 5 and 2 snapshots as the training datasets, respectively, 
as highlighted by the outline of an example set of images on the right. The images are concentration fields c(x) with black and white corresponding to 
c = 1 and c = 0, respectively. The same colormap is used throughout this paper. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

of the objective function during the optimization using different realizations of spinodal decomposition snapshots as training 
data, which are generated with the same image resolution and physical parameters and different random initial conditions. 
These results demonstrate the robustness of the optimization algorithm. Using FSA, the Gauss-Newton approximation, and 
the trust-region algorithm, the optimizer converges to the truth within tens of iterations robustly with 5, or as few as 2 
snapshots.

10 parameters are used for both μex and ln D(c). The initial guess for μex and ln D(c) is chosen such that it is far 
from the truth and generates a non-pattern-forming evolution (μh(c) = ln c

1−c + (1 − 2c) and D(c)/L2 = 0.1, where L is 
the domain size (see the inset at iteration 1 in Fig. 1; these initial guesses are used throughout the text unless otherwise 
noted). We recommend choosing a small D(c) as the initial guess to “freeze” the pattern. If the pattern relaxes too fast and 
becomes uniform beyond the first frame, the sensitivity of the pattern with respect to all model parameters approaches 
zero, which is known as the vanishing gradient problem in machine learning. The initial guess for the gradient penalty is 
κ/κtruth = 0.05. The length scale of the diffuse interface is 

√
κtruth = 0.045L.

To find the MAP, squared L2 norm is used as the regularizer for μex(c) and L norm is used for ln D(c), and regularization 
parameters for both are 10−5 (this set of parameters is used throughout unless otherwise noted). Due to the structure of Eq. 
(1), μh(c) and D(c) can only be determined up to a constant scale; therefore, throughout the text, we report μh(c)κtruth/κ
and D(c)κ/κtruth. In fact, the optimizer often converges to a different κ , while the scaled quantities above are accurately 
recovered. Allowing κ to vary in the optimization generally speeds up the convergence.

In the appendix A, we compare the performance of optimization using FSA (trust-region algorithm) versus ASA (gradient 
descent) and found that FSA leads to a much faster convergence, lower computational cost, and higher success rate of 
convergence to the global minimum (as opposed to a local minimum).

The optimization allows us to quickly find the MAP, which serves as the starting point for MCMC. For the uncertainty 
analysis, we assume the measurement is a continuous field. κ is fixed (since μh(c) and D(c) can always be rescaled, as 
explained above), and μh(c) is subject to the constraint Eq. (12). The prior for μh(c) and ln D(c) are described by Eqs. 
(14) and (10), respectively, here and for the rest of the paper. The Markov chain is converted to μh(c) and D(c) and the 
uncertainty at each c is plotted at 95% confidence level throughout the paper. Fig. 2a shows the uncertainty quantification 
result and the performance of the DILI MCMC algorithm. The shaded area corresponds to the confidence interval, while the 
solid line is the marginal mean at each c. The measurement noise σ may be obtained from the knowledge of the instrument 
or inferred together with other parameters. From here on, unless otherwise noted, we assume σ 2 = 10−4 to illustrate the 
sensitivity more clearly. The Markov chain achieves good mixing within less than 100 steps for all parameters (20 in total) 
as shown by the autocorrelation of the chain in Fig. 2a. Fig. 2 also shows the trajectory of one of the parameters, which is 
indicative of good sampling. 2 × 104 samples are used unless otherwise noted.

In comparison, the adaptive MCMC (Fig. A.11) has a much longer autocorrelation and hence poorer mixing. The burn-in 
time is also much longer. Therefore, we use DILI MCMC to perform uncertainty quantification in the following examples.

If the system is non-phase-separating, κ = 0, Eq. (1) becomes

∂c = ∇ · (D(c)c · μ′
h(c)∇c

)
. (21)
∂t

6
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Fig. 2. (a) Uncertainty quantification of the chemical potential and diffusivity from 5 snapshots of spinodal decomposition as shown in Fig. 1. The mea-
surement noise σ 2 is varied. The shaded regions are the 95% confidence interval of the functions at each c. The solid lines are the marginal mean of the 
functions at each c. The dashed lines are truth. This plotting convention is used throughout the paper unless otherwise noted. The two panels on the right 
are the Markov chain trajectory of a1 and the autocorrelation of all 20 parameters, respectively. (b) Uncertainty quantification of the direct correlation from 
phase-field-crystal model. Images on the right are the training data.

Therefore, only the chemical diffusivity Dchem = cDμ′
h(c) can be inferred and no thermodynamic information can be ob-

tained from only the concentration field. However, the extraction of μh(c) and D(c) is possible in phase-separating systems, 
and is largely uncorrelated, as shown by the correlation coefficients between the parameters a1, a2, . . . , a10 and b0, b1, . . . , b9
in Fig. B.12. The correlation among odd/even polynomials of low order (of the same function) is strong, while the correlation 
between μh(c) and D(c) is weak. The correlation between the thermodynamic and transport properties can also be quanti-
fied through certain scalars of interest. At σ 2 = 10−5, −μ′

h(c0) and D(c0) are weakly and negatively correlated (Fig. B.13). 
As explained in further in detail in Section 3.3, D(c0) 

[
μ′

h(c0)
]2 determines the initial rate of spinodal decomposition, but 

information from the entire field decouples μ′
h(c) and D(c).

Another quantity of interest is the interfacial tension, which is defined as the energy of a flat interface at equilibrium 
γ = ∫ ∞

−∞
[

gh(c) + 1
2 κ

(
∂c
∂x

)2
]

. Using the equilibrium condition μ(x) = μ0 where μ0 is the chemical potential of the two 
equilibrium phases, we have

γ =
c2∫

c1

√
2κ
gh(c)dc (22)

where 
gh(c) = gh(c) − gh(c1) − (c − c1)μ0. At the late stage of coarsening, the domain growth rate is proportional to 
γ D(c) [9]. However, we find that γ and D(c0) (or D(c1)) are almost uncorrelated (Fig. B.13), due to information at the 
diffuse interface and early-stage patterns.

For the phase field crystal models (Eq. (5)), previous studies have found correlation functions that generate certain crys-
tal structures and elastic constants [74,75]. In Fig. 2, we use MCMC to determine the uncertainty in the direct correlation 
function inferred from a set of images of nucleation that forms hexagonal crystal structure (σ 2 = 10−4). Using the parame-
terization given by Eq. (11) and the squared L2 norm, we find the extent that the function is allowed to vary while keeping 
7
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Fig. 3. Training on spinodal decomposition snapshots of mixtures from 30% to 70%. Different composition ratios are colored consistently for all figures. (a) 
Relative residuals for all ratios. (b) The training datasets and their composition histograms, where the average composition is highlighted by dashed lines. 
(c) The uncertainty in the learned chemical potential μh(c) and diffusivity D(c).

the same pattern is very small around wavenumbers that correspond to the spatial wavelength k0 observed in the image. 
Uncertainty increases for wavenumbers as moving away from k0 due to the insensitivity of the model to these components 
and the lack of Fourier components at high wavenumbers in the images provided.

3.2. Starting composition

Images taken at different operating conditions can reveal information with different levels of confidence. Patterns of 
spinodal decomposition at different average concentration range from an interconnected structure near c0 = 0.5 to dispersed 
droplets near c0 = 0.3 and c0 = 0.7 (see Fig. 3). First, an optimization is performed to find the MAP, starting from the same 
initial guesses as Fig. 1, convergence to the truth is achieved within 20 iterations. Then MCMC is performed to study the 
uncertainty in the μh(c) and D(c). Histograms of the images show a peak near the average concentration (also the initial 
condition) as strong as the peak at the miscibility gap near 0 and 1. With sufficient pixel values around c0 and their 
dynamics driven by μ′

h(c0) and D(c0) at the average concentration (μh(c1) is fixed to be 0), the uncertainty consistently 
reaches a minimum at c0 for both constitutive relations and all average concentrations studied. Overall, images of c = 0.5
reduce the maximum uncertainty, while away from c = 0.5, multiple experiments may be necessary to accurately determine 
the functions on a larger range of c.

3.3. Model selection: diffusion and reaction

When the governing dynamics of the system is unknown, or it is unknown whether the order parameter is locally 
conserved, we consider the possibility of both conserved and nonconserved dynamics, by generalizing Eqs. (1) and (2), and 
allow the magnitude of both dynamics to be inferred from the patterns,

∂c

∂t
= ∇ · D(c)c∇μ + R0(c) (μres − μ) . (23)

When solving the inverse problem, the reservoir chemical potential μres is unknown. We allow it to vary in time such 
that the average concentration 

∫
cdV / 

∫
dV is equal to that of the images, which is constant in this case. This becomes an 

algebraic constraint on the model. Reaction-diffusion models have been studied extensively in literature [13,76,77]. Here we 
focus on a one-component system where the reaction takes place between the system and reservoir. Lithium in lithium iron 
phosphate (LFP) platelet particles is known to undergo diffusion in the lateral direction via a surface layer while the platelet 
also exchanges lithium with the electrolyte reservoir [78]. The dynamics of a thin platelet particle may be modeled with Eq. 
(23) on a 2D plane [63].
8
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The time scale of relaxation can be understood from the dispersion relation of Eq. (23) linearized around a homogeneous 
state c(r) = c0, obtained by substituting a perturbation eωt+ikr into the linearized equation [79,63,80], and together with 
the chemical potential defined by Eq. (3),

ω(k) = −
(

c0 D(c0)k
2 + R0(c0)

)(
μ′

h(c0) − κk2
)

, (24)

where k = |k|. When diffusion dominates, −c0 D(c0)μ
′
h(c0) > R0(c0)κ , the maximum instability growth rate is

ωmax = max
k

ω(k) =
(
c0 D(c0)μ

′
h(c0) − R0(c0)κ

)2

4c0 D(c0)κ
, (25)

when there is no reaction, ωmax = c0 D(c0) 
[
μ′

h(c0)
]2

/4κ . Otherwise, reaction dominates and

ωmax = −R0(c0)μ
′
h(c0). (26)

When diffusion dominates, the maximum growth rate of instability is obtained at a nonzero wavenumber, while when 
reaction dominates, the maximum growth rate corresponds to k = 0. Therefore, the patterns are visually different. How-
ever, when both effects are important, the relative strength of reaction and diffusion cannot be easily distinguished, which 
motivates a systematic approach of identifying the underlying dynamics via model selection.

We generate the images by varying the magnitude of the diffusivity while keeping the characteristic time scale ωmax
constant. The iso-ωmax curve is shown in Fig. 4b. The images used as the training data for each diffusivity value, ranging 
from diffusion only to reaction only, are taken at the same time and shown in Fig. 4a. The chemical potential of the external 
reservoir adjusts passively while the total concentration is conserved. Training data and results are colored consistently 
based on its diffusivity in Fig. 4. The initial guess for μh(c) and κ are the same as section 3.1. The initial guesses for R0(c)
and D(c) are 0.1 and 0.01 respectively for all cases. 10 parameters are used to represent each function. The residual plot 
Fig. 4c confirms that the truth model is found for all cases and that the images are sufficient for identifying the underlying 
dynamics. When the true D(c) or R0(c) is zero, the solver converges to a vanishingly small value for D(c) and R0(c).

Fig. 4d shows the uncertainty in the inferred functions. The uncertainty in the chemical potential, or free energy, inferred 
from reaction-controlled patterns is higher than diffusion-controlled patterns, which is also reflected in the uncertainty of 
the interfacial tension. For the five cases studied D(c0) 

[
μ′

h(c0)
]2

/4κ = 0, 5, 10, 15, 20, the mean and 2 standard deviations 
of γ /γtruth is 0.99 ± 0.12, 1.01 ± 0.079, 1.01 ± 0.066, 1.00 ± 0.057, 1.01 ± 0.059, respectively. The interfacial tension is 
γtruth = 0.2

√
2κ . At the late stage of coarsening for Allen-Cahn equation, the interface growth rate is proportional to the local 

curvature and independent of the interfacial tension (see Section 2.3 in Ref. [9]), which explains the increasing uncertainty 
in the free energy when reaction dominates. Early-stage snapshots within the miscibility gap are essential for inferring the 
free energy of an Allen-Cahn system.

When reaction dominates, the diffusivity becomes increasingly uncertain, and when the true diffusivity is zero, the 
inferred diffusivity can be anything below a threshold. Recall that the constant term in ln D(c) has a degenerate prior; 
therefore the upper bound of D(c) is determined by the likelihood only. The same is true for reaction kinetics – when 
diffusion dominates, the inferred reaction kinetics becomes uncertain. While the patterns are not sensitive to the exact 
form of D(c) and R0(c) when either reaction or diffusion dominates, their magnitudes can be identified relatively accurately. 
Regardless of the magnitude of diffusivity, the uncertainty in R0(c) becomes increasingly large when c approaches 0 or 1. 
This effect can be understood from an analysis of the sensitivity of c(x) with respect to R0(c). In the sensitivity equation
(17), when close to the miscibility gap, ∂

∂c

(
∂c
∂t

)
< 0 due to thermodynamic stability, the sensitivity of the reaction rate 

δR0(c) · (μres − μ(c)) and hence the sensitivity of c(x) becomes increasingly small as μ → μres. Similar to Section 3.1, we 
observe a weakly negative correlation between −μ′

h(c0) and D(c0) (or R0(c0)), which can be understood from their negative 
correlation when ωmax is constant. The correlation between D(c0) and R0(c0) is weak (see Fig. B.14). The correlation among 
the three is at its maximum when −c0 D(c0)μ

′
h(c0) = R0(c0)κ , which is the critical point where the system transitions from 

being reaction-dominated to diffusion-dominated.

3.4. Chemically driven system: the effect of autocatalysis

We study a system that is chemically driven by an external chemical reservoir at a constant average reaction rate, the 
concentration evolution follows [63]

∂c

∂t
= R0(c) f (μres − μ). (27)

When driven far from equilibrium, f is no longer necessarily a linear function. Here we use f (x) = 2 sinh(x/2), which is 
known as symmetric Butler-Volmer kinetics in electrochemistry [81]. The external chemical potential μres varies in time, 
subject to the constraint of the average reaction rate R ,∫

∂c
dV = R

∫
dV . (28)
∂t

9
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Fig. 4. Dynamics of spinodal decomposition driven by varying degrees of reaction and diffusivity. The five cases studied are colored consistently in all plots. 
(a) The training datasets and their corresponding physical time, scaled reaction kinetic prefactor and diffusivity. (b) The relationship between scaled reaction 
kinetic prefactor and diffusivity with constant instability growth rate. (c) The residual plot during the training process for all cases. (d) The uncertainty in 
chemical potential, free energy, scaled diffusivity and reaction kinetic prefactor for all cases. The scaling constants μ′

h(c0) and κ are the known truth.

The linear stability and pattern formation of such a chemically driven system have been studied extensively [63,80,82–84]. 
The dispersion relation of Eq. (27) is ω = R ′

0 f − R0 f ′ · (μ′
h −κk2). Depending on the magnitude and direction of the reaction 

rate R , the state-dependent R0(c) can alter the linear stability (and hence the pattern) to deviate from its thermodynamic 
stability as determined by μ′

h(c).
In Fig. 5, we present an example where R0(c) is asymmetric about c = 0.5. In the range of c where R ′

0(c) < 0, the pattern 
is stabilized (destabilized) when f > 0 ( f < 0). With R0(c) skewed to the left, the pattern under a positive reaction rate R
is more homogeneous than a negative one of the same magnitude. We start from a random initial condition and consider 
two sets of snapshots where R = 0.08 and −1, respectively.
10
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Fig. 5. Learning reaction kinetics and free energy from the spatial patterns of a system chemically driven at a constant average reaction rate. (a,b) Training 
data where R = 0.08 and R = −1, respectively. (c,d) Training result based on datasets (a) and (b), respectively. A comparison between the known truth 
and MAP, the uncertainty of μh(c) and R0(c), and the histogram of datasets (a) and (b). (e) Training result and uncertainty based on both (a) and (b) and 
histogram of the both datasets combined. (f) The scatter plots of [ln R0(c0)]′ and −μ′

h(c0) from the MCMC sample based on datasets (a), (b) and both 
combined, c0 = 0.5.

In Fig. 5, we compare the inversion results based on image data from a single or both directions. The reservoir chemical 
potential μres(t) is unknown. We find that the systematic error between MAP and the truth is large when only images 
reacting in a single direction are used as the training data, even though the objective function S is sufficiently small (root-
mean-squared error of frames 2–5 is less than 0.5%). MAP becomes almost identical to the truth when both directions 
are used, and the strongly concentration-dependent reaction kinetics R0(c) can be captured. This effect is also reflected in 
the marginal mean of μh(c) and R0(c) from the MCMC result. The uncertainty of both functions is significantly reduced 
when both datasets are used, highlighting the necessity of datasets at different operating conditions in order to infer both 
thermodynamic and kinetic properties for a chemically driven system whose only observed information is the concentration 
field (assuming μres is unknown).

Fig. 5f shows the scatter plots of [ln R0(c0)]′ and −μ′
h(c0) (c0 = 0.5) from the MCMC sample. Using the dataset with 

R > 0 (R < 0), the two quantities are negatively (positively) correlated. When both datasets are used, their correlation is 
reduced. The correlation can be understood from the dispersion relation mentioned above. Linearizing (27) around a uniform 
field c(x) = c0, we obtain [80,83]

ω(k) =
[

R ′
0 f − R0 f ′ ·

(
μ′

h + κk2
)]∣∣∣

c=c0

= R

(
d ln R0

dc
− d ln f

dc
·
(
μ′

h + κk2
))∣∣∣∣

c=c0

(29)

That is, if c(x, t = 0) = c0 + νeikx , where ν � 1 is a small perturbation, then c(x, t) = c0 + Rt + νeω(k)t+ikx . Note that 
R → R0(c) f (μres − μh(c0)) as ν → 0. Therefore, in the limit of t → 0 and ν → 0, when multiple or a range of wavenumber 
k exists, only ω/R = (ln R0)

′ − (ln f )′ μ′
h and (ln f )′ at c0 can be inferred from the pattern. Note that ω, also known as the 

autocatalytic rate [80], is the key to determining the heterogeneity of the pattern: when ω > 0, the pattern becomes linearly 
unstable and vice versa. Using Butler-Volmer kinetics,
11
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Fig. 6. The scatter plots of [ln R0(c0)]′ and −μ′
h(c0) from the MCMC sample (c and d, where σ 2 = 10−8 and 10−10, respectively) based on datasets (a), (b) 

and both combined, c0 = 0.7. The autocatalytic rate ω is constant on the solid lines (at c0 and the reaction rate R that corresponds to the dataset used), 
which analytically predict the correlation observed between [ln R0(c0)]′ and −μ′

h(c0).

d ln f

dc
= 1

f

√(
f

2

)2

+ 1

= 1

R

√(
R

2

)2

+ R2
0.

(30)

Therefore, when R > 0 (R < 0), (ln R0)
′ and −μ′

h are negatively (positively) correlated. To further demonstrate the correla-
tion between the two important quantities, we perform MCMC using two datasets, each of which contains two snapshots 
with an average concentration of 0.6 and 0.8, with R = 0.2 and R = −0.2. In Fig. 6 with very small observation noise 
σ 2 = 10−8 and 10−10, we show that [ln R0(c0)]′ and −μ′

h(c0) (c0 = 0.7) are strongly correlated with only one dataset used 
and much weaker correlation is observed when both are used. The solid lines are (ln R0)

′ − (ln f )′ μ′
h = const, where the 

constant and (ln f )′ are determined by the known truth. The agreement of the uncertainty quantification with the analytical 
analysis demonstrates that when only one dataset obtained under a given reaction rate is available, reaction kinetics and 
thermodynamics are strongly coupled and only autocatalytic rate ω can be determined. To infer both quantities separately 
(to reduce the correlation of their posterior distribution), datasets under different reaction rates, preferably in different di-
rections, are necessary. Fig. B.15 confirms that R0 has a small posterior variance and is not correlated with μ′

h , since (ln f )′
can be determined independently.

3.5. Temporal resolution

The availability of snapshots over the course of spinodal decomposition and coarsening determines the uncertainty in 
the inferred parameters. Fig. 7 shows that with increasing number of snapshots (2, 3, and 5), the uncertainty decreases. 
These snapshots are evenly spaced in terms of the squared L2 norm of the difference from the first snapshot. In Fig. 7 we 
define the distance between patterns to be |
| = ∫

(c(t, r) − c(t = 0, r))2 dr.
At the late stage of coarsening, most pixels in the image are found to be near the miscibility gap c = c1 and c2 (see 

histograms in Fig. 7), and the coarsening rate is mostly determined by diffusivity near c1 and c2. Whenever a late-stage 
snapshot is provided, we observe a local minimum in the uncertainty of D(c) at c1 and c2, as highlighted by the vertical 
dashed lines. If only the early spinodal stage images are provided, the uncertainty for both μh(c) and D(c) away from the 
initial concentration c0 = 0.5 increases. Without the early-stage snapshots, the uncertainty of the chemical potential within 
the miscibility gap is high. While the value of μh(c) at each c may be uncertain, the mean plus and minus 2 standard 
deviation of γ /γtruth is 1.02 ± 0.11, 1.01 ± 0.065, 1.00 ± 0.056, 1.02 ± 0.09, 1.03 ± 0.10, respectively, which indicates that 
two late-stage snapshots are as useful as two early-stage snapshots in providing information about the interfacial tension.

In fact, it is known in phase field theory that the chemical potential of a sphere of radius R is γ /R (plus some constant), 
its growth rate is proportional to its difference with the exterior chemical potential and the detailed functional form of 
μh(c) is not important. Therefore, images of the dynamics within the miscibility gap are critical in measuring the free 
energy of a phase-separating system.
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Fig. 7. The uncertainty in the chemical potential and diffusivity given snapshots taken at different time over the course of spinodal decomposition. The 
left columns show the squared L2 norm of the difference between a pattern at time t and that at t = 0 (|
|). The snapshots included in each row are 
highlighted as dots in the |
| − t plots whose color corresponds to that of the image outline in the far right column. From the top row to the bottom, 2, 3, 
and 5 snapshots equally spaced in |
|, 2 early-stage snapshots, and 2 late-stage snapshots are taken as the training data, respectively. The insets show the 
histograms of combined training data of each case.

3.6. Spatial resolution

To study the effect of spatial resolution, images are taken from a subset of the field and down-sampled on a rectangular 
grid. The PDE is numerically solved on a finer grid to resolve the fine details. The first snapshot is linearly interpolated onto 
the finer simulation grid to be the initial condition. Since the boundary condition for the subset is unknown, all images are 
also interpolated in space to yield the concentration and its normal gradient at the boundaries, which are then interpolated 
in time and used as the boundary condition. Assuming that the noise at each pixel and snapshots are independent, the 
objective function is defined as

S(p) = 1

2σ 2
p

⎡
⎣∑

i, j

(
c(ti, r j;p) − cdata(ti, r j)

)2

⎤
⎦ + ‖p‖L (31)

where the pixel-wise variance is σ 2
p = 10−2. The likelihood function is defined similarly. Fig. 8a shows the MAP as well as 

the uncertainty from MCMC with different resolutions. Note that we place no constraint on μh(c) for finding the MAP but 
we fix the miscibility gap for MCMC.

Since the initial condition and boundary conditions are inaccurate at low temporal and spatial resolutions, MCMC predicts 
a systematic error compared to the truth. We also compare the MAP result when we enforce the known boundary condition 
(zero flux and no surface wetting) in Fig. 8b. In this case, the optimizer fails to get even close to the truth at low resolution. 
Therefore, when the spatial resolution is low, it is preferable to initialize from the first snapshot and impose boundary 
conditions from the data itself, despite the fact they are not accurately known. The inaccuracy in the initial condition can be 
partially compensated by the boundary condition. In fact, comparing the model prediction from the MAP results at different 
resolutions, the patterns are largely preserved. The optimizer fails to find a reasonable solution at a resolution of 8 × 8. 
Therefore, as a rule of thumb, at least 3 pixels per wavelength of spinodal pattern are needed.

Without constraining the miscibility gap, the optimizer converges to a μh(c) with smaller miscibility gap with decreasing 
spatial resolution. This occurs because the low sampling rate effectively filters out the high-frequency components, blurring 
the high contrast between the two phases.

3.7. Image domain size

In cases where the field of view is limited to a subset of the entire domain, the boundary condition is unknown. Similar 
to Section 3.6, the concentration and its normal gradient from each snapshots are interpolated in time and used as the 
boundary conditions. Fig. 9 shows the training result for images of different domain sizes. The discrepancy between the truth 
13
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Fig. 8. The effect of image resolution on inversion and uncertainty. (a) Using images of different resolutions shown on the right and their interpolated 
values as the initial and boundary conditions, inversion is performed using boundary condition from the data. The MAP is shown as solid curves in the 
corresponding right panels. The uncertainty is shown in the same set of plots as the shaded regions. (b) Results of inversion performed on images of the 
same resolutions (colored consistently) using the known boundary conditions. (c) The residual during training with known boundary conditions (known 
BC) and boundary condition from the data (data BC).

and the MAP increases with decreasing domain size, suggesting that with the parameters become less identifiable with less 
information and local minima of the objective function is likely to be encountered. Only lower order polynomials of D(c)
can be inferred when the domain size is too small to contain large concentration variations. However, the computational 
cost for solving the PDE is greatly reduced if only a smaller subdomain in the training data is used. The regularization 
parameter is 10−5 times the domain size.

3.8. Blurring filter

Imaging systems have a certain point source function (PSF) that may spread over more than a single pixel. The images are 
a convolution of the object and the PSF. Therefore studying the inversion of these blurred images is important for practical 
imaging devices. In the example of spinodal decomposition used above, we show that using blurred images directly will 
result in systematic error in the inferred chemical potential and diffusivity. However, it is possible to invert the characteristic 
length scale of the PSF and more accurate physical properties simultaneously, effectively leading to a physics-constrained 
deconvolution.

In Fig. 10, we generate a sequence of images in (a) and convolve them with Gaussian (b and d) and box-averaging PSF 
(c). The PSF is indicated by the red region in the upper right corner of the last image in the sequence. The Gaussian PSF is 
common and can be used to approximate an Airy disk, which is the PSF of a circular aperture. Box-averaging PSF is constant 
within a compact support. We adopt four inversion strategies, denoted in Fig. 10 as A) assume the images are not blurred; 
B) assume the images are blurred by a Gaussian PSF and invert its standard deviation d together with μh(c) and D(c); C) 
the same as B, except that μh(c) is constrained to a fixed miscibility gap, which may be measured more accurately after a 
14
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Fig. 9. Inversion performed on images of different physical sizes. Initial and boundary conditions are imposed from data interpolated in time. The chemical 
potential and diffusivity are the MAP results based on training data outlined by the same color. The residual plot of all cases is shown on the right.

Fig. 10. Inversion performed on blurred images. (a) original images; (b,c,d) Inversion of μh(c) and D(c) based on blurred images whose PSFs are shown in 
red; (e) Uncertainty quantification based on images in (c). Letters A–D correspond to inversion strategies described in the main text. μh(c) are plotted in 
blue and D(c) are plotted in orange. Solid lines are the MAP solutions in (b)–(d) and marginal mean in (e). Dashed lines are the known truth. “Rel. res.” 
stands for relative residual. The scatter plot shows the MCMC sample of the Gaussian filter length d and the miscibility gap c1 and c2.

long relaxation into two well-separated phases; D) the same as B, except that the first image is deconvolved and then used 
as the initial condition. In strategies A–C, the first given image (blurred) is used as the initial condition. In all strategies, 
the regularization parameter is 10−2, the objective function is a discrete summation of the squared error on five 50 × 50
images. The initial guess is d/L = 0.1, α = 0.1 (noise-to-signal ratio for deconvolution, see below), D(c) = 0.1.

Strategy A (treating blurred images as the truth) underestimates the interfacial tension and the miscibility gap in all 
cases. The objective function value that the optimizer converged to is also significantly higher than other strategies. This 
effect becomes more severe when the length scale of the PSF increases and becomes comparable to the spinodal length 
scale, l =

√
2κ/μ′

h(c0). The standard deviation of the Gaussian PSF is d = 0.03L = 0.67l and d = 0.06L = 1.34l respectively 
for Figs. 10b and d, where L is the image size. For the latter case, [−3d, 3d] extends to about one wavelength of the spinodal 
pattern 2π l. The side length of the averaging box in Fig. 10c is 0.1L.
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When the PDE solution is convolved with a Gaussian PSF and d is also optimized (strategy B), the inferred μh(c) and 
D(c) are closer to the truth. For the sets of images blurred by a Gaussian PSF, the correct d is found, while for Fig. 10c the 
solver converges to d/L = 0.03. For images whose unknown PSF is bounded and decays to zero, the Gaussian PSF is often 
a good estimate. Here, nonzero Fourier components of the images are concentrated in a narrow band around l−1; blurring 
is only sensitive to the characteristic length scale of the PSF and not its details. Fig. 10c shows that an approximation with 
a Gaussian PSF is sufficient. In addition, Gaussian PSF is differentiable with respect to its parameter d, hence useful for 
gradient-based optimizers. Given the physical constraint of miscibility gap, strategy C shows that the objective function is 
further decreased.

Strategy D deconvolves the first image to use as the initial condition. To reduce the ringing effect of deconvolution due to 
discontinuity at the boundary, we perform a linear interpolation between the given image and the blurred image convolved 
with the PSF, weighing the given image more in the interior and the blurred image more at the boundary (to reduce 
the high frequency components near the boundary). We use 

(
1 − e−x2/4d2

)(
1 − e−y2/4d2

)
, shifted so that [x, y] = [0, 0]

corresponds to the corner. We use Wiener deconvolution which in the Fourier space is K ∗ (K ∗K + α)−1, where K is the PSF 
in Fourier space, α is the noise-to-signal ratio and included as a variable to be optimized. The residual plots and plots of 
μh(c) and D(c) show that this strategy is close to or sometimes worse than strategies B and C which do not deconvolve 
the first image, which shows that, while the initial condition can be polluted by noise and blurring, preprocessing may 
be unnecessary. In fact, the unknown boundary condition may introduce additional error in the process of deconvolution. 
Inversion of a PDE whose solution diverges when the initial condition is slightly perturbed [85] is beyond the scope of this 
work.

The uncertainty using strategies B and C based on images in Fig. 10c and σ 2
p = 0.01 is summarized in Fig. 10e. The 

scatter plot shows a strong and negative correlation between the inferred Gaussian filter length d and the width of the 
miscibility gap when μh(c) does not have any constraint, further demonstrating the importance of imposing the physical 
constraint. When such a constraint is imposed, the standard deviation of d/d0 is reduced from 0.07 to 0.035, where d0 is 
the truth. The miscibility gap [c1, c2] is defined by Eq. (12) together with μ′

h(c1) > 0, μ′
h(c2) > 0 and c1 �= c2.

4. Conclusion and outlook

In summary, using the approach of PDE-constrained optimization and Bayesian inference, we performed a systematic 
analysis of the inversion and the uncertainty quantification of the constitutive relations based on images of pattern forma-
tion. We showed that the optimization is robust with the use of estimated Hessian, and that the MCMC sampling is efficient 
in a high dimensional parameter space. For a phase-separating system, the posterior distributions of free energy (or the 
corresponding interfacial energy) and diffusivity based on the image data are uncorrelated, which is also corroborated by 
scaling analysis. The uncertainty in the inferred quantities depends strongly on the average composition and the relative 
contribution of reaction and diffusion. For a chemically reactive system that is driven out of equilibrium, a linear stability 
analysis confirms the MCMC result that the reaction kinetics and free energy can be inferred separately only when images 
generated at multiple reaction rates or directions are available. We show that images taken at earlier stages of spinodal 
decomposition can be used to infer the functional form of nonlinear free energy and diffusivity more accurately than those 
from the coarsening process, while the latter can also inform the interfacial tension sufficiently accurately. When the spatial 
resolution of the images is low, the image domain is smaller than the physical domain, or when the boundary condition is 
unknown, the inversion remains robust by imposing the data at the image boundary as the boundary condition in the sim-
ulation, while the uncertainty increases with decreasing spatial resolution and domain size. When the images are blurred, 
the inversion algorithm can extract the constitutive relation as well as the characteristic size of the blurring kernel using the 
first frame as the initial condition without deblurring, yet there exists a correlation between the inferred miscibility gap and 
the kernel size. Including the prior knowledge of the miscibility gap as a constraint further reduces the uncertainty of the 
inferred quantities. The examples show that when the imaging quality is limited by the instrument, such a PDE-constrained 
inversion effectively becomes a physics-informed superresolution imaging technique.

The methods and applications discussed here serve as a first step toward quantitative frame-by-frame and pixel-by-
pixel matching between experiments and theoretical models, as excellent agreement has already been observed in many 
complex systems [86–89]. Despite the lack of microscopic information, the macroscopic pattern-formation dynamics can be 
described parsimoniously by PDEs with relatively few parameters. The inversion of the PDE means that, from the images, 
these macroscopic physical properties can be measured that would otherwise be inaccessible especially for systems far 
from equilibrium such as active matter and biology, where free energy is ill-defined, and nonequilibrium thermodynamics 
is poorly understood. The uncertainty quantification can be applied to optimal design of experiments to carefully probe 
regions of higher uncertainty as informed by prior experimental data.

The inversion also enables a physically interpretable parametrization of complex systems, which may help in establishing 
a mapping between the macroscopic and microscopic parameters, and eventually engineering or controlling patterns by 
tuning physical properties of the constituents, as reported recently in the biological engineering of Turing patterns [90] and 
the design of PDEs to create desired patterns [91]. Our computational approach can be integrated into the loop to accelerate 
the search in a high dimensional parameter space by identifying the most important engineering handles.

While phase field (Cahn-Hilliard and Allen-Cahn models) and phase field crystal models were selected as the model sys-
tems in this article, the approach can be readily extended to other systems, such as for fluid dynamics and multi-component 
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Table A.1
A comparison of the performance of FSA and ASA. # of snapshots: number of snapshots used as the training data. Success 
ratio: for 100 different datasets, the percentage of optimizations that converge to the global minimum. Iterations to success: 
the number of iterations (10% - median - 90% percentile) taken by the optimizer to converge to the global minimum (cases 
that converge to a local minima are not considered). Relative time to success: the median computational time relative to the 
first row for cases that converge to the global minimum.

Method and # of snapshots Success ratio Iterations to success Relative time to success

FSA, 5 75% 21-31-43 1
FSA, 2 81% 19-25-34 0.7
ASA, 5 5% 33-65-93 4.6
ASA, 2 47% 66-80-100 13.0

reaction-diffusion equations, where more complicated patterns may arise [1,92,3], and the sensitivity of patterns and bi-
furcation dynamics with respect to constitutive relations in a high-dimensional parameter space awaits exploration. For 
complex systems, further study is needed to quantify the range of phenomenon that a model can describe. Techniques in 
inverse problems, dynamical systems, and identifiability analysis should be employed when discrepancy between experi-
ments and models arises due to nonidealities such as spatial heterogeneity as well as unknown hidden variables.
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Appendix A. Comparison of optimization and uncertainty quantification algorithms

Similar to the generation of Fig. 1, we generate 100 realizations of spinodal decomposition snapshots and perform the 
optimization using either all five snapshots or the first and last snapshots, starting from the same initial guess as described 
in the main text. The termination criterion is 10−6 for optimality, function, and step tolerance. The objective function values 
that the optimizer converges to for different realizations, if at the global minimum, are very close and much smaller than 
values at local and suboptimal minima, hence can be easily classified. Table A.1 lists the percentage of successful conver-
gence to the global minimum, the number of iterations, and computational time for successful cases using FSA (trust-region 
algorithm) and ASA (gradient descent with BFGS). We can see the ASA performs poorly on every metric considered, although 
it improves when initial guess is brought closer to the truth. Note that, using the ASA method, each iteration involves a line 
search, which usually involves multiple function and gradient evaluation, as shown by its longer average computational time 
per iteration than that of FSA. In FSA, each iteration requires one function, gradient and Hessian evaluation.

Fig. A.11 shows the results of an adaptive MCMC applied to the same problem in Fig. 2. The covariance of the proposal 
distribution at step n is Cn = sdCov(X0, . . . Xn−1) + sdε I . We choose ε = 0.001. Both Fig. A.11 and Fig. 2 generate 20,000 
samples. The uncertainty computed in Fig. A.11 discards the first 5000 samples as the burn-in and is sufficiently close to 
Fig. 2. The autocorrelation of the MCMC chain using this adaptive algorithm is stronger than the DILI algorithm described 
in the main text.

Appendix B. Correlation between thermodynamic and kinetic properties

Fig. B.12 shows the matrix of correlation coefficients between parameters for μh(c) (a1, a2, . . . , a10) and D(c)
(b0, b1, . . . , b9) inferred from spinodal decomposition snapshots (same as used by Fig. 2) and σ 2 = 10−4. The correla-
tion coefficient between ai and a j is Cov(ai, a j)/

√
Var(ai)Var(a j), where Cov and Var stand for the covariance and variance, 

respectively.
Using the same set of images, Fig. B.13 shows the scatter plot of −μ′

h(c0) versus D(c0) from the MCMC chain, as well 
as γ /

√
2κ versus D(c0), where c0 = 0.5 is the average fraction. ρ is the correlation coefficient between the two parameters 
H. Zhao, R.D. Braatz and M.Z. Bazant Journal of Computational Physics 436 (2021) 110279
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Fig. A.11. Uncertainty quantification of the chemical potential and diffusivity from 5 snapshots of spinodal decomposition as shown in Fig. 1. The mea-
surement noise is σ 2 = 10−4. The shaded regions are the 95% confidence interval of the functions at each c. The solid lines are the marginal mean of 
the functions at each c. The dashed lines are truth. The two panels on the right are the Markov chain trajectory of a1 and the autocorrelation of all 20 
parameters, respectively.

Fig. B.12. Correlation coefficients between parameters for μh(c) and D(c).

Fig. B.13. Scatter plots and 90% confidence region of −μ′
h(c0) versus D(c0) and γ /

√
2κ versus D(c0) (20,000 samples). The colors of the contours match 

those of the scatter plots.
18
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Fig. B.14. Scatter plots of −μ′
h(c0), D(c0), and R0(c0) (20,000 samples). Each row has a color that corresponds to the set of images having the same color 

in Fig. 4a.

Fig. B.15. Scatter plots of R0(c0) versus μ′
h(c0) using datasets in Fig. 6 (20,000 samples), c0 = 0.7.

as defined above. The initial rate of decomposition is c0 D(c0) 
[
μ′

h(c0)
]2

/4κ , which explains the weakly negative correlation 
between −μ′

h(c0) and D(c0). The contours are the 90% confidence region.
In a system where both reaction and diffusion are present, we study the pairwise correlation among thermodynamics, 

reaction kinetics, and diffusivity by showing the scatter plots of −μ′
h(c0), D(c0), and R0(c0) in Fig. B.14. The samples are 

drawn based on images in Fig. 4.
Using the chemically driven concentration fields studied in Fig. 6a and b, Fig. B.15 shows the scatter plots of R0(c0) and 

μ′
h(c0) where c0 = 0.7 and confirms that they are uncorrelated and R0(c0) can be determined with high accuracy.
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