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1. Introduction

The development of predictive mathematical models of reg-
ulatory networks in living cells could revolutionize the study of
complex diseases. Progress in the development of such mathe-
matical models has been limited by both the incompleteness of
the experimental data and the high complexity of the networks,
which has motivated many researchers to take a ‘coarse-grained’
approach, in which the mathematical models are developed to
describe the dynamical systems behavior without attempting to
describe all of the molecular details [1,2]. This approach has been
applied to gain insights into regulatory and signaling behavior for
a wide variety of biological regulatory networks including those
associated with mammalian circadian rhythm [3], the yeast cell-
cycle network [4], folding pathways in yeast [5], macrophages [G],
neutrophils [ 7], and somitogenesis oscillation in zebrafish [8,9].

Much of the research efforts have been in the identification
of functional motifs that are connected to form larger regulatory
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networks [2,7,10-15]. These motifs include switches, oscillators,
biphasic amplitude filters, bandpass frequency filters, memory,
noise filters, and noise amplifiers [ 16]. Motifs are especially rele-
vant in synthetic biology, as well-characterized motifs can serve as
a basis for the design of a synthetic genetic network to produce a
desired dynamic behavior [17]. Successful implementations of this
motif-based approach is the design and construction of synthetic
gene regulatory networks for toggle switches [18-20], and oscil-
lators with tunable parameters [21-23]. By coupling to cell-cell
communication, such motifs have been used to implement built-in
regulation of the cell population density in response to changes in
the environment [24].

Several researchers have characterized the dynamics of certain
classes of these motifs[25], to assist synthetic biologists in their
selection and the design of regulatory pathways. Quantitative rela-
tionships between the model parameters within a mathematical
model of a motif and the dynamics can facilitate both the selection
of parameters to obtain a desired regulatory network behavior, as
well as the identification of parameters from experimental data
where the mathematical model of a motifis used a coarse-grained
model of a more complex regulatory network.

This paper characterizes the dynamics of a motif consisting of
interlinked fast and slow positive feedback loops, which regulate
polarization of budding yeast, calcium signaling, Xenopus oocyte
maturation, and other processes |2 |. Interest in this motif as a com-
ponent in synthetic genetic networks is that it provides a dual-time
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Fig. 1. Structures of feedforward and feedback activations of dual and single loop
motifs [2]. The solid lines show feedback relationships between components within
the system and the dashed lines show feedforward relationships between the stim-
ulus and the components.

switch that can be rapidly and reliably induced while being rela-
tively insensitive to noise in the stimulus [2 |. The control-theoretic
point of view on the gene switching model provides information
that can be used to design robust biological circuit design of gene
switches that perform programmed desired behaviors in the pres-
ence of intrinsic and extrinsic perturbations.!

1.1. Notation

R denotes the field of real numbers and R is the set of nonnega-
tive real numbers; R" defines a topology on the product of n copies
of R; Pr is the symbol of the probability; E or () is the symbol of
the mathematical expectation or mean; Var or ¥, is the symbol
of the mathematical variance or covariance; Ma, b) is the Gauss-
ian distribution with the mean a and the variance b; the symbol ~
means “distributed as”; 0px;m € R"*™ denotes the null matrix whose
elements are all zeros; I, € R™*" denotes the identity matrix. For a
square matrix A € C"™", g(A) denotes the set of its eigenvalues.

2. Motif characterization

This section characterizes the dynamics of the motif, including
the relationship between the system model parameters and the
output. The goal is to understand the general parameter-dependent
characteristics of the dynamics of the motif (Fig. 1).

2.1. Mathematical models

Consider the mathematical model for the dual-positive feedback
loops motif”

dA on

a =Tq (kmin -A+ m(1 —A)S)

dB 1

= P— — (1 — 1
o =T (kmm B+ & +EC50(1 B)S) (1)
do

T K3SHA + B)(1 — 0) — k3H'0 + kout |
which has been normalized and nondimensionalized. The variables
0, A, and B are concentrations between 0 and 1. O is activated by A
and B, and a nonlinear Hill function h(0) £ 0"/(0" + ecsq ) character-
izes the relationship between the concentration of O and the rate of
production of A and B. The Hill coefficient is n and the concentration
for half-maximum response for the feedback is ecsg. The mutual

1 In this paper, the term “robustness” is used to refer to any type of resistance
or insensitivity against perturbations and unknowns, while performing desired or
programmed functions.

2 See [2] for details in the use of the system model (1) to represent interlinked
positive feedback loops in biological regulation.

activations O linked together with A and B form the dual positive
feedback loops. A and B are also activated by an external stimulus
S. The motif dynamics when one of the inner loops is suppressed is
also of interest:

dA o"

E =Tq (kmin —-A+ m(l —A)S)

o (2)
r = Ken'A(1 - 0) — kg0 + kil

where A represents either the fast or the slow loop.

3. System stability analysis

First consider the deterministic stability of the gene switching
model(1) for which any intrinsic or extrinsic biochemical noise is
ignored so that there is no source of stochasticity. Suppose that all
the system parameters are positive. For the switch-off case (S=0),
its stability is straightforward. The inner-loop dynamics for A and B
are linear and globally exponentially stable, and there is no positive
feedback from the output O to the inner-loop states A and B. We also
have dO/dt < — cO +d for some constants c, d> 0 satisfying d/c = Ogs,
provided that the initial values of A and B are nonnegative. There-
fore, the overall system is semi-global exponentially stable when
the initial condition satisfies (A(0). B(0), 0(0)) € 3, which follows
from the comparison lemma ([26], Lem. 3.4). For the switch-on
case (S=1), the inner-loop dynamics for A and B have nonlinear
terms, h(0)(1 —A) and h(0)(1 — B). The property of the Hill function
that 0 < h(0) < 1 for all 0= 0 implies that dA/dt < Ta(— A +Kkmpin +Ca)
and dB/dt < t,(— B+ ki, +cg) where the constants ¢4 and cp satisfy
the relations Ky, +ca=Ass and kpin +Cp =Bss, respectively. Simi-
lar to the switch-off case, there exist constants ¢, d>0 such that
dojdt < —cO +dand d/c=0ss, provided (A(0), B(0)) € R2. Combining
those upper bounds and applying the comparison lemma implies
that the overall system is semi-global exponentially stable for the
initial condition (A(0), B(0), 0(0)) € B2. It is easy to show that, for
any positive system parameters, the nonnegative quadrant is a
region of attraction to a unique equilibrium point for each case
S=0o0rS=1, and is a positively invariant set, i.e., once the solution
trajectory enters the nonnegative quadrant, then it will stay inside
the nonnegative quadrant for the entire future time and converge
to a unique equilibrium point.

Now consider intrinsic and extrinsic biochemical noise in the
gene switching model (1). To study the stochastic stability proper-
ties of the system model, consider extrinsic noise in the stimulus S
and in propagation of inner loop states A and B to the output. More
precisely, the system dynamics change according to the stochastic
differential equation (SDE):

dA o

A, (kmin A e —A)(S+wa))

dB on

&y (kmin Bt e (1-BS +wb)) 3)
dO _ I out A B 1 0 I DUKO I[)ut

dac kon (A+va+ B +vp)(1—0) — kg O+ ko

where [Wg, Wp, Vg, ub]T are jointly Gaussian random processes. This
ordinary differential equation can be written as X £ dX /dt = F(X) +
G(X)W, where X2 [A, B, 0]T, W 2 [wg, Wy, ¥, v,]T, and the nonlinear
functions F : ¥ — R and G: ¥ — R3*4 are appropriately defined
with the support X Ri of the state X. Previously we showed that
the system X = F(X) is deterministically semi-globally exponen-
tially stable for all X Ri. From a converse Lyapunov theorem
(see[26], Thm. 4.17, for example), there exists a smooth positive
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definite function V(X) defined for all X that satisfies the inequalities

v
%z %)

i1u"(§)(’) < —aV(8X),

dt X 0

< 3
X =¥

'BV

< BIdXl,

where «, £, ¥ >0 are some constants and §X £ X — X, refers to the
deviation from the unique equilibrium point X. This result follows
from the fact that the Jacobian g—f( is bounded for all X e X ¢ R3.
The results in ([27], Lem.9), taking into account the fact that the
nonlinear functions F and G satisfy the regularity conditions for
the Cauchy problem (see [28], for details), imply that there exists
a unique probability density function (pdf) p* such that the pdf of
the solution for the SDE (3) converges to p". This implies stochastic
asymptotic stability of the solution for the SDE(3) in the presence
of non-vanishing stochastic noise W;.?

4. System behavior
4.1. Convergence rate

For a uniform time-scale dynamical system, the convergence
rate (or response time) to a stable equilibrium point or an attracting
limit cycle is governed by the eigenvalues of the eigenmodes corre-
sponding to the slow dynamics. The case of dual-positive feedback
loops motif (1), however, corresponds to a two time-scale dynami-
cal system in which the fast inner-loop dynamics has much smaller
time constant, compared to time constant of the slow inner-loop
dynamics. There are two distinct stages of system behavior and
response to the input. For the switch-on (S=1) case, behavior of the
first stage is governed by the fast inner-loop dynamics and the solu-
tion trajectory reaches near the stable equilibrium point quickly
during this stage, and the last of the dynamic behavior is governed
by the slow inner-loop dynamics for which the differential equa-
tion corresponding to the fast inner-loop dynamics can be replaced
by an algebraic equation and the linearized system provides nec-
essary information about the system during this stage of response.
For the switch-off (5=0) case, similarly, behavior of the first stage
is governed by the fast inner-loop dynamics, but the solution tra-
jectory is far away from the new stable equilibrium point and the
lastdynamic behavior is governed by the slow inner-loop dynamics
for which the differential equation corresponding to the fast inner-
loop dynamics can be also replaced by an algebraic equation. These
phenomena are observed in a simulation in Fig. 2 in which hystere-
sis curves with different values of time constants are provided and
an appropriately scaled ramp input instead of the jump stimulus is
applied to give clear comparisons between curves.

4.2. Hysteresis

The lag in the responses in Fig. 2 to stimulus (or input) is related
to robustness against noise perturbation. As stated in the previ-
ous section, most of the time history of the solution trajectory is
governed by a slow inner-loop dynamics, and the fast inner-loop
dynamics has effects on the system behavior during the first short
time period. Qualitatively, the overall system would be expected
to be robust against additive noise perturbation in stimulus to the
network motif for long time, when the system acts as a low-pass
filter, while being sensitive to noise perturbation in short time.

An example hysteresis curve for the dual-positive feedback
loops motif is shown in Fig. 3, for the time constants (7,=0.5,
7, =0.008). The shape of the hysteresis curves is related to the Hill

3 In this system, the noise perturbation is persistent due to G(Xs) # 0, which
implies that the noise perturbation does not vanish even when X = Xs.
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Fig. 2. Hysteresis curves of different time constants.
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Fig. 3. A hysteresis curve.

coefficient. The duration for which the system is governed by the
fast inner-loop dynamics is proportional to the Hill coefficient n
and the shape of a hysteresis curve is closer to a rectangular box
as n increases, when the Hill function becomes steeper (figure not
shown due to space constraints).

4.3. Noise sensitivity

Consider noise perturbation w; in the stimulus § and assume
that the random process w; is a Wiener process. Consider the case
where S= 1, since S =0 would imply no signal exchange for which no
perturbation will propagate. To investigate the effect of this noise
perturbation on the solution trajectory or the system output, first
define a probability space. Let £2 be a sample space equipped with
a o-algebra F. Consider a probability measure p that is defined on
(€2, ) and the corresponding probability (measure) space defined
by (€2, F, ). The underlying probability space and measure are
determined by the primitive random variables or processes.

Setting S=1, consider an autonomous stochastic differential
equation (SDE)

dx = f(x)drt + g(x)dw, (4)
where x=[A, B]T,

Ta (Kmin — (1 +h(0))A + 1(0))

Tp (kmin — (1 + h(0))B + h(0))

fx) =
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and
tch(0)(1 - A)
7,h(0)(1 - B)

The goal is to study the probability density function of the solu-
tion x;, denoted by p(x, t; xg, to) with the initial condition xy =x(tg),
and its sensitivity with respect to the system parameters. The
Fokker-Planck equation (aka the Kolmogorov forward equation)
can be used for computing the probability density for this stochas-
tic process. The associated problem is called the Cauchy problem in
the partial differential equation literature, which usually does not
have a closed-form solution and can be hard to solve numerically
for general systems. To study the parameter sensitivity, instead of
solving the Fokker-Planck equation to compute the evolution of the
probability distribution of x, this paper uses the linearized model
of the motif dynamics(1):

dX

a= AX + Bw;
where X 2 [8A, 8B, 50]T denotes the deviation of the steady-state
and the system matrices are

7o (1 + h(y)u) 0
0 =75 (1 + h(y)u)

Y =¢X (5)

Ta(1 =X ' (y)u
(1 —x1 ' (y)u

—kgnt(xq +x2)

kRt (1 — x3) kSat(1 —x3)

out
—ks

B=[(1-x)h(y) (1-x)h(y) 0]',c=[0 0 1];

i—1acn
h(_}’) £ _Lﬁ—n B h’(y)é dhy) _ —"J" ECSDZ , X1 =X =Ass =BSS| y=X3= 0551

yirecs, dy — O +ect )
and u =Sgs. For a Gaussian white noise w; with the statistics E[w;] =
0and E[w;w]] = §(t — 5)Z, the solution trajectory of (5)is a Gauss-
ian random process and its mean X; and covariance X solve the
linear system equations

X <o

= AX: Xo = E[Xo]

dZx (6)
W =Xx A+ ATEX + ZBEWBT', EX,U = E[ngg]

and the system output is also a Gaussian random process,
YeMYe, Xy.t), where Y: = CX; and Ty = CZx,tCT. The analysis
goal is to quantify the sensitivity of Xy ; € R, with respect to the
system parameters. In particular, consider the system parameters
{Ta. Ty, kon'. k3Ht}, the steady-state solution X for the second
dynamic system in (G), i.e., Exgs satisfying the linear (Lyapunov)
equation

TxssA+ ATy o +28ZwBT =0 (7)

and the corresponding steady-state of the output covariance
Zyss = CZX,SSCT. A solution for the Lyapunov equation (7) exists if
and only if the matrix A is Hurwitz stable, i.e., o(.A) c C_, and is
unique if and only if the pair (A, B)Z}\l,v/z) is controllable.

To analyze the sensitivity of the Lyapunov solution Xy s with
respect to the variation of the system parameters {74, Tp, kK94, kg};}}‘
consider a variation in the matrix .4, denoted by 8.4, such that the
perturbed system matrix is A = A + 3.A. This notation of variation
can be used to represent the parametric perturbation in the lin-
earized motif dynamics (5) due to the linear dependence of .4 on the

system parameters {Ta, Tp, koi', k34'}. With this perturbed matrix A,

the steady-state covariance )ix,ss satisfies a new Lyapunov equa-
tion

i:X,ss-r4 + ATiX,ss + i:)(,ss'SA + BATi:X,ss + 2BEWBT =0.

Suppose that A is Hurwitz stable and (.4, B) is controllable. If the
perturbation §.4 is Hurwitz stable then ix! ss= Zix ss, and if the per-
turbation 5.4 is anti-Hurwitz stable (i.e., —8.4 is Hurwitz stable)
then )A:X!SS < less.“ More specifically, consider a parametric per-

turbation & = 6 + 86 for 0 < (Ta, T, k3L, ko) in the matrix A. The

positive perturbation §¢ > 0 gives )ix,ssz 2, ss and the negative per-

turbation 86<0 gives 2)(,55 < Xy for any 0 e (g, 7y, k3, kS,

provided 6, 6 > 0. In conclusion, the variation of the system out-
put (or state) is a nondecreasing function of the system parameters
{Ta, Tp, kgﬁ‘, kg}}t}. This result is consistent with an intuition from
the system dynamics, since, roughly speaking, those system param-

eters are linearly proportional to the inverse of the time constants.

5. System performance and sensitivity analysis using
linearization

This section considers the analysis of the sensitivity of certain
parameters to functionalities of the biological system. Similar to
Section 4, the linearized model (5) of the motif dynamics (1) is used
to facilitate sensitivity analysis.

5.1. Hoo performance and sensitivity analysis

Observe that the system realization (A, B,C) is a positive sys-
tem in which A is a Metzler matrix, and B and € are nonnegative
matrices, provided that all of the system parameters are posi-
tive. Computation of the #,, performance for this type of system
can be performed without any frequency-dependent computa-
tion or solving a linear matrix inequality corresponding to the
Kalman-Yakubovich-Popov Lemma. In particular, [ 30| shows that,
for any scalar transfer function G(s) = D + (sl — A)~' B with a pos-
itive realization (A, B, C, D),

IGleo =D —CA'B,

which is the steady-state gain of the system transfer function
G(s). More generally, for any square transfer function G(s)= D +
C(sl - Ay 'Bwitha positive realization (A, B, C, D),

IGlloc = 3(D —CA™'B),

which is the steady-state gain of the system transfer function G(s),
computed in terms of the induced 2-norm or the Euclidean norm
for R". For the linearized system (5), an analytical expression can
be derived for the H.,-norm of the system:

(1t + /)1 —y)X1-x)
21 - Y1 —x)u— (2x+ g ) (1 +hw)

Gl = (8)

This closed-form expression can be used to study the sensitivity of
the system performance with respect to the system parameters. For
example, consider the case when Sss=1 and a (deterministic) per-
turbation 4S. A biased step perturbation S = « € R in the stimulus
will change the steady-state of the output by §0ss=k || G|| S0 that
the resultant output in the steady-state becomes Ogs +8§0ss. Thus,
the closed-form expression (8) can be used to quantify the sensi-
tivity of the output in the steady-state with respect to the system
parameters of interest, as well as to study qualitative behavior of
the system performance in terms of the £;-gain (or H.-norm).

4 This is a property of Lyapunov equation; see ([29], Prop. 4.4) for details.
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5.2. 'Hy performance and sensitivity analysis

Another commonly used system performance criterion is the
Ho-norm of a system transfer function. Computation of the 75 per-
formance of a linear time-invariant system is relatively easy in the
sense that only a linear programming problem needs to be solved.
For a strictly proper transfer function G(s) = C(sl — A)7lB,

IGll2 = Tr(B"YoB),

where Y, is the observability Gramian
=1}
Yo = / eATteTee At
0

This observability Gramian is a unique solution for the Lyapunov
equation Y,.A + ATY, +¢'c =0, provided that .4 is Hurwitz sta-
ble and the pair (A, C) is observable. Similar to the H.-norm
computation, a closed-form analytical expression for |G| 2 with
a realization (5) can be derived (not shown here due to space
constraints). However, the closed-form solution has a somewhat
complex dependence on the system parameters and it is hard to
gain much intuition from the expression. This observation moti-
vates a different approach that is similar to the noise sensitivity
analysis in Section4.3, in which a Lyapunov equation is used to
study how the Lyapunov solution changes as a system parameter
changes. Suppose that .4 is Hurwitz stable and (.4, C) is observable.
Consider a parametric perturbation §.4 with which the new system
matrixis givenby A := A + §.4and the corresponding system trans-

ferfunction is defined by &(s) := C(sl — 21)71 B.If the perturbation §.4
is Hurwitz stable then Y, >Y,, which implies |G|»>|/G|2, and if the
perturbation 8.4 is anti-Hurwitz stable (i.e., —3.4 is Hurwitz stable)
then ¥, < Yo, which implies |G||; < |G|, More specifically, con-

sider a parametric perturbation & = 6 + 86 for 0 € {zq, Ty, kSUE, kg‘flft}

in the matrix A. The positive perturbation 60 > 0 gives HfIszHGHZ
and the negative perturbation 5950 gives \\f}\|2 < |G|z for any
6 € {Ta, Tp, k", KO}, provided 6, 6 > 0. The Hz-norm can be used
for a measure of performance when information is available on
the spectral content of the input source and can be interpreted as
(a) the output variance for a stationary stochastic noise applied at
the input, (b) the system output energy variance for the impulse
input, and (c) the output variance in the £, norm over time for
an arbitrary input in the £; space (see([29], Sec. 6) for details
on Hy control). Therefore, the result in this section tells us that
those measures of output variation incurred by an input of known
spectrum are monotonically nondecreasing functions in the system
parameters 6 € {74, Tp, k34T, kggt} and can be used to tune such sys-
tem parameters to achieve a desired H, performance of the system

in a straightforward way.
6. Discussion
6.1. Response time and noise sensitivity

Output responses to a noise-free and noisy stimulus signal are
shown in Figs.4 and 5. All three components O, A, and B approach
stable steady states both when the stimulus is on and when the
stimulus is off. When the stimulus is turned on, the initial activation
is slow as the output O is low and the value of the Hill term is close
to zero, which is apparent from the plot for the “Two Slow Loop”
case. It is harder to observe from the “Two Fast Loop” case because
the total transition time from one state to another is very short. The
dynamics of the output O follows more closely the dynamics of the
faster loop when the stimulus § is switched from off to on because
the value of 1 — O decreases with time. On the other hand, when the
stimulus is switched from on to off, the dynamics of the output O
follows more closely the dynamics of the slow loop as the value of

1 : : : : :
o8} .
@n
— DE - -
=]
2,04t .
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Fig.5. Output trajectories for a pulse input for models with different time constants
in the presence of additive noise in the stimulus.

1 — Odecreases with time. When the fast and the slow loop are cou-
pled together, Fig. 4 shows that the system has fast response when
turning on and slow response when turning off. A closer look in
Fig. 6 shows the output response trajectories during the activation
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Fig. 6. A comparison of the response time (f;) for models with different time
constants.
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by the step stimulus without noise. The response time denoted by t;
that is time when the output reaches half of the steady-state is com-
pared for the models with different time constants. The response
time of the dual-positive feedback loop case is twice as much as the
one of the “Two Fast Loop” case, but almost nine times faster than
the one of the “Slow Fast Loop” case. According to Fig. 5, where a
pulse noise is applied during the transition from the on state to the
off state, the output O is resistant to noise in the on state in the
transition to the off state, compared to the “Two Fast Loop” case.

6.2. Approximate upper bounds on the loop states and output
response: a Lyapunov method

Here a Lyapunov method is shown to provide a way to compute
approximate upper bounds (or envelopes) on the loop states and
output response when constant step inputs are applied. For nota-
tional convenience, the mathematical model for the dual-positive
feedback loops motif can be written as

k1 =01(x2 +x3)(1 —X1) — Oaxy + 03
3
Xy =t (Uﬁ(l XZ)X2+95)
X]+6;

X3
X3 =07 (H—l(l —X3)— X3 +95>
X3 +03 (10)

y =X,

(9)

where u is the stimulus, y is the output response of the motif, and
the states x; and x; correspond to the fast and slow loop, respec-
tively.

Define an auxiliary input signal as

. X
va 1 g (11)
3. 8
x40,

and assume that the stimulus is bounded:
0 <U < Umax. (12)

Since all system parameters in (9) are assumed to be positive, all the
states are positive for all time and the auxiliary input v is bounded
as

0 <V < Umax. (13)
Now consider the Lyapunov function
Vas(Xa, X3) = max {xg, x%} . (14)

Its upper right Dini derivative [31] at t in the direction v, defined as

D Vys(t, x; v) 2 lim sup Vas(t +h, x +hhv) —Vas(t.X) )
h—s0+

is less than or equal to zero for any v € {X3, X3} whenever

y>95i}, (15)

95+U
(x2.x3) € {(X, y) e B2 x> —=— Y

“14v

which follows from resultsin[32,33]. Thisimplies that the solutions
of (9) are ultimately bounded and the output (10) is also bounded:

9_3 93 + 291&23,max =y
62" 02 + 261523 max

Xk < €23 max =: x;(""t';%x fork=2,3 (17)

Umax (1 6)

y=x1<max{ bd

with

5 + Umax
A 2] , , 18
523,max = max { 5 1 - ( )

provided that the initial states xig, xa9, and x3g of the solution
in (9)start from the inside of the above bounds. It is not diffi-
cult to see that, if the stimulus presented in the motif is a step
function, then the above upper bounds give proper approxima-
tions of the steady-state values. In other words, y2P = y{umax=0) and
yiP = ylumax=1)_This analysis of Lyapunov method provides ana-
lytical relations between the parameters {64, #,, 83, 5} and the
steady-states (or the maximum values of states). Such relations
can be also used for manipulating system parameters to achieve
desired system behaviors.

7. Conclusion

This paper details the analysis of model equations describing
the dual-positive feedback loops that regulate the gene switches
in many biological systems. It is described how model parame-
ters can be estimated from experimental data, for different choices
of measured variables. Relating the kinetic parameters with the
dynamic behaviors, system performance, and sensitivity of the
binary switches can enable the prediction of the behavior of regu-
latory networks that could be used to facilitate the design of gene
switches to achieve desired behaviors.
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