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Many  advances  in  the  development  of  nano  and microchemical  systems  have  occurred  in the  last
decade.  These  systems  have  significant  associated  identification  and  control  challenges,  including  high
state dimensionality,  limitations  in  real-time  measurements  and  manipulated  variables,  and  significant
uncertainties  described  by  non-Gaussian  distributions.  Some  strategies  for  addressing  these  chal-
lenges  are  summarized,  which  include  exploiting  structure  within  the  stochastic  Master  equations  that
describe  molecular  interactions,  manipulating  molecular  bonds  at system  boundaries,  and  manipulating
molecules  and  nanoscale  objects  through  magnetic  and  electric  fields.  The  strategies  are  illustrated  in a
icrochemical systems
olecular nanotechnology

variety  of  applications  that  include  the  estimation  of  nucleation  kinetics  of protein  and  pharmaceutical
crystals  within  fluidic  devices,  the  estimation  of  concentration  fields  using  DNA-wrapped  single-walled
carbon  nanotube-based  sensor  arrays,  the  simultaneous  control  of  nanoscale  geometry  and  electrical
activation  during  thermal  annealing  in a semiconductor  material,  and  the  control  of  nanostructure  for-
mation on  surfaces.  Promising  directions  for  research  and  technology  development  are  identified  for  the
next decade.
. Introduction

Remarkable advances have been made in the last decade on
echnologies for nano and microchemical systems, which are sys-
ems in which chemistry is carried out at nano- to microliter
olumes (Marre & Jensen, 2010; Squires & Quake, 2005). The
bjective of using these technologies to manufacture high quality
roducts has motivated a growing literature on the identifica-
ion and control of these systems. The focus of this article is on
he control of chemical systems that have key components with
imensions at the nano or microscale. Atomic force microscopy,
hin film deposition, and multiscale systems are minimally cov-
red, as these topics are already described in past reviews (e.g.,
ee Braatz, Alkire, Seebauer, Drews, et al., 2006; Braatz, Alkire,
eebauer, Rusli, et al., 2006; Braatz, Alkire, & Seebauer, 2008;
hristofides & Armaou, 2006; Moheimani, 2008; Siettos, Rico-
artinez, & Kevrekidis, 2006; Vlachos, Mhadeshwar, & Kaisare,

006; and citations therein). Also, this paper is primarily focused on
spects of microscale systems beyond those covered in a previous
eview (Kothare, 2006). A summary of challenges that arise when
olving control systems tasks for nano and microchemical systems

s followed by a description of promising directions for addressing
hose challenges.

∗ Corresponding author. Tel.: +1 617 253 3112; fax: +1 617 258 0546.
E-mail address: braatz@mit.edu (R.D. Braatz).
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2. Challenges and requirements

In a macroscopic system, the measured outputs are stochastic
due to measurement noise and unknown disturbances arising from
fluctuations in the environment in variables such as temperature
and pressure. If the measurement noise and unknown distur-
bances for a macroscopic system could be completely removed, the
measured outputs would be deterministic. This underlying deter-
ministic character of the relationships between process inputs to
states and outputs enables macroscopic systems to be described
by deterministic models with isolated stochastic terms to account
for measurement noise and unknown disturbances (Beck & Arnold,
1977; Ljung, 1999). Much of the phenomena that occur at the nano
and microscale are stochastic in a way that is very different from the
fluctuations typically observed in a macroscopic system. In particu-
lar, phenomena at the molecular scale are inherently stochastic,  so that
a repeated experiment can produce vastly different outputs even
if the overall system has no measurement noise and no unknown
disturbances.

As an example of such a phenomenon, consider the nucleation
of crystals in droplets of solution, for which a large number of high-
throughput microfluidic platforms have been developed over the
past decade for the crystallization of organic compounds includ-
ing amino acids, proteins, and active pharmaceutical ingredients

(e.g., see Fig. 1 and Anderson, Hansen, & Quake, 2006; Hansen,
Skordalakes, Berger, & Quake, 2002; Li & Ismagilov, 2010; Squires
& Quake, 2005; Talreja, Kim, Mirarefi, Zukoski, & Kenis, 2005;
Zheng, Roach, & Ismagilov, 2003). These microseparation systems

dx.doi.org/10.1016/j.compchemeng.2012.07.004
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
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Fig. 1. A microfluidic platform that uses evaporation to induce nucleation in micro-
liter droplets (Kee et al., 2008a, 2008b). The evaporation rate in each droplet is
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Fig. 2. Cumulative induction time distributions for droplets containing lysozyme

with time, and on a vector of first-principles model parameters �
such as chemical kinetic, adsorption, or desorption rate constants;
surface diffusion coefficients; and equilibrium constants. As an

Fig. 3. The probabilities Pn(t) for n = 0, 1, 2, . . .,  12 and time t = 1, 5, 10, 20, 30, 40, and
pecified by the partial pressure of water at the droplet surface, the area and length
f  each channel that connects the droplet to external air, and the humidity of the
xternal air.

nable the efficient high-throughput search for solvents, molecu-
ar additives, and dynamic operating conditions that nucleate and
row high quality protein and pharmaceutical crystals for subse-
uent analysis via X-ray or neutron crystallography, and enable
he investigation of crystallization kinetics for a much wider range
f conditions than achievable at the macroscale (Goh et al., 2010;
en Wolde & Frenkel, 1997; Vekilov, 2004). Such applications have
he potential to impact structure–function analysis, pharmaceuti-
als design, bioseparations, controlled drug delivery, treatment of
rotein condensation diseases, and study of human degenerative
onditions (Bucciantini et al., 2002; Pan et al., 2005; Vekilov, 2004).
he measured output for a single droplet is the induction time,
hich is the time in which the first crystal nucleates. The measured

nduction time can vary by a factor of two or more, even when the
xperiment is designed to have negligible disturbances and mea-
urement biases and noise, due to the very small volume of each
roplet and that the very small number of crystals in a droplet (e.g.,

zmailov, Myerson, & Arnold, 1999; ten Wolde & Frenkel, 1997). In
uch a system, treating the measured output as “the induction time”
s not appropriate, and the true measured output is represented in
erms of an induction time distribution or a cumulative induction
ime distribution (see Fig. 2). Quantities derived from such distri-
utions, such as the measured mean induction time or the standard
eviation of the induction time, contain much less information than
he entire distribution. For nano and microscale systems, the dis-
ributions of process states and outputs are typically not Gaussian
e.g., see Fig. 3), so that the assumption of an underlying Gaussian
istribution parameterized by a mean and a variance is often not
ppropriate.

As phenomena at the molecular scale are inherently stochas-
ic, the measured outputs of nano and microscale systems that are

 direct consequence of those molecular scale dynamics are also
nherently stochastic. Stochastic dynamics with continuous states
re typically described by Langevin dynamics or the Fokker–Planck
quation (Fokker, 1914; Planck, 1917). However, when there are
nly a discrete number of states, stochastic dynamics are described
y Master equations (Fichthorn & Weinberg, 1991; Kendall, 1949):

dP(�, t)
dt

=
∑

�′
W(� ′, �)P(� ′, t) −

∑
�′

W(�, � ′)P(�, t) (1)

here P(�,t) is the probability that the system is in configuration �

t time t, and W(� ′,�) is the rate of transitions between configura-
ion � ′ and � (in units of inverse time). Each Master equation is the
onservation equation for the probability of a configuration (accu-
ulation = in–out), with the overall system described by writing
and sodium chloride in aqueous solution: experimental data (×), and model (line)
in  Eq. (3) fit to the data (Kee et al., 2008a, 2008b). The measured induction times
range from about 9 to 14 h for the same experimental conditions.

Eq. (1) for every possible configuration in the system. For example,
for the nucleation of crystals in droplets, one configuration is the
droplet containing no crystals, another configuration is the droplet
containing one crystal, etc. The structure of Eq. (1) is relatively sim-
ple, being linear in the probabilities P(�,t), each of which lie in the
interval between 0 and 1. The probabilities can be stacked into a sin-
gle state vector x(t) and the transition rates collected into a matrix
A(t;�) that enables Eq. (1) to be written in state-space form:

d

dt
x(t) = A(t; �)x(t) (2)

where A(t;�) depends on additional variables such as temperature
or concentrations of species external to the system that can vary
50 for � = 0.1 in the Master equations (3).  Many of the probability distributions are
highly non-Gaussian. For example, for t = 1 the mean number of crystals in droplets
is  only slightly greater than 0 with the probability of having 0 crystals much higher
than  1 crystal, indicating that the distribution is highly asymmetric about the mean
number of crystals in the droplets.
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computed from a rigorous parameter estimation procedure will
ig. 4. Schematic of adsorption and desorption on a DNA-wrapped single-walled
arbon nanotube (Ulissi et al., 2011). The arrow points to an open adsorption site.

xample, the nucleation of crystals in droplets for the microfluidic
latform in Fig. 1 can be modeled by the Master equations

dP0(t)
dt

= −�(t)P0(t),

dPn(t)
dt

= �(t)(Pn−1(t) − Pn(t)), n = 1, 2, . . . ,

(3)

here Pn(t) is the probability that the number of crystals is equal
o n at time t and �(t) > 0 is the transition probability of nucle-
tion in units of inverse time, which depends on the solubility,
rystallization kinetics, evaporation rate, and initial droplet volume
nd solution concentrations (Goh et al., 2010; Jiang et al., 2013). In
ost applications, the initial number of crystals in a droplet is equal

o zero, which is described by the initial conditions P0(0) = 1 and
n(0) = 0 for n > 0. The number of possible configurations in the
bove model, as well as the number of states in Eq. (2),  is infinite.

As another example, consider the Master equation for adsorp-
ion and desorption of molecules on a DNA-wrapped single-walled
arbon nanotube used for single-molecule sensing (see Fig. 4). A
tandard approach for reducing the number of configurations is by
efining equivalence classes (e.g., Oguz & Gallivan, 2008), which
or this application involves ignoring which sites on the nanotube
ontain the adsorbed molecules. This representation produces the
implified Master equations (Ulissi et al., 2011)
dP0(t)

dt
= −k′

ANT P0(t) + kDP1(t),

dPi(t)
dt

= k′
A(NT − (i − 1))Pi−1(t) − (kDi + k′

A(NT − i))Pi(t)

+ kD(i + 1)Pi+1(t), i = 1, . . . , NT − 1,

dPNT
(t)

dt
= k′

APNT −1(t) − kDNT PNT
(t),

(4)

here NT is the number of potential sites for adsorbed molecules on
he nanotube, Pi is the probability that the nanotube has i molecules
dsorbed somewhere on its surface, kD is the desorption rate con-
tant, and k′

A is the adsorption rate constant, which is proportional
o the concentration of the adsorbing species in the surrounding
olution. Both rate constants can vary with time, due to time-
arying temperature during sensing. The nanotube-based sensor
omputes the latter concentration by real-time estimation of the
dsorption rate constant k′

A from the measured adsorption and
esorption events (Boghossian et al., 2011). The matrix A in the
tate equation (Eq. (2))  has row and column dimensions equal to
he number of potential adsorption sites plus one, which is high
or long nanotubes (carbon nanotubes have been grown that are
onger than 10 cm,  Zhang et al., 2011). For a large enough number
f adsorption sites, the Master equations (3) can be approximated
y a Fokker–Planck equation, which is a partial differential equa-

ion defined over a continuous probability distribution function
a gentle introduction the derivation of such an approximation is
rovided by Gillespie, 1980).1

1 Later we discuss how the Master equations for many small-scale systems such
s  in (3) and (4) can be directly solved analytically or numerically, in which case
al Engineering 51 (2013) 149– 156 151

The main challenge with implementing control systems tasks for
process models described by Master equations is that the number of
states is usually very large, often higher than 1010. For this reason,
few chemists and chemical engineers have attempted to solve Eq.
(1) directly, but instead employ kinetic Monte Carlo (KMC) sim-
ulation, which follows a single realization of the Master equation
by calling a random number generator to select among the possi-
ble transitions with probabilities defined by the kinetic rate laws
for each allowed kinetic event. At most one kinetic step can be
taken during each time step of the KMC  algorithm, with the time
step (typically on the order of 1 ns) selected so that the time sim-
ulated in the KMC  algorithm corresponds to real time (Fichthorn
& Weinberg, 1991). Although a KMC  simulation is usually much
faster than exactly solving the Master equation (1) for each pos-
sible configuration, a KMC  simulation for a process of practical
importance is typically on the order of a day using a personal com-
puter of 2011. Further, if an entire state or output distribution is
of interest, a large number of KMC  simulations are needed to gen-
erate even an approximation for the distributions. If the control
objective only depends on some statistic of the output distribution,
then a feedback controller can be designed based on a low-order
“equation-free” model fit to the results of one or more KMC  simula-
tions (e.g., Kevrekidis, Gear, & Hummer, 2004; Siettos, Pantelides,
& Kevrekidis, 2003). Alternatively, black-box models can be used
to replace a full model with a simplified one. In both equation-free
and black-box models, the physicochemical relationships between
the states and controlled variables on the manipulated variables
are no longer transparent.

Another challenge is that many small-scale systems have few
variables available for real-time manipulation by a digital control
system. For example, multilayered polyelectrolyte nanofilms for
the spatially localized release of molecules to kill tumor or bac-
teria cells or promote tissue regeneration are surgically implanted
into the macroorganism so that no real-time variables are avail-
able for manipulation by a digital control system (e.g., Macdonald
et al., 2011; Poon, Chang, Zhao, & Hammond, 2011). The only
parameters available for optimization to produce a desired time
profile of molecular release are specified during the manufacture
of the polyelectrolyte nanofilm. A sparsity of variables for real-time
manipulation limits the degrees of freedom available for control.

Another control challenge is that limited real-time measurements
are available for most nanoscale systems. Sensors require a certain
quantity of material to be able to produce useful information. For
example, no real-time sensors are available for measuring the solu-
tion concentrations in nanoliter droplets. As another example, no
real-time sensors are available for measuring the interior pH or con-
centrations within multilayered polyelectrolyte nanofilms used for
the release of growth factors, hormones, or pharmaceutical com-
pounds (Macdonald et al., 2011; Poon et al., 2011). The limited
real-time sensors make both identification and control challenging.

Models for nano and microscale systems have significant uncertain-
ties. The distributions of measured outputs for nano and microscale
systems are often non-Gaussian, as will be seen in the next section,
which is incompatible with the most common parameter estima-
tion and stochastic control systems techniques (Beck & Arnold,
1977; Chen, Chen, & Hsu, 1995). The non-Gaussian distributions
of the measured outputs as well as nonlinearities in the models
imply that the probability distributions on the model parameters
typically be non-Gaussian.

there can be little motivation for carrying out the approximation needed to convert
a  Master equation into a Fokker–Planck equation. On the other hand, approximation
of  Master equations by a Fokker–Planck equation can be useful for some systems
(e.g., see Gillespie, 1980).
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. Promising research directions

This section describes some promising approaches for address-
ng the aforementioned challenges to the control of nano and

icroscale systems. While any sufficiently general set of systems
ngineering methods developed for multiscale systems automat-
cally applies to molecular, nanoscale, and microscale systems,

hich has been discussed in detail in past reviews (Braatz, Alkire,
eebauer, Drews, et al., 2006; Braatz, Alkire, Seebauer, Rusli, et al.,
006), general approaches for multiscale systems can fail to take
dvantage of the underlying structure of specific classes of nano-
nd microscale systems that can be exploited to greatly facilitate
ontrol systems tasks such as parameter estimation, experimental
esign, and feedback control.

A significant effort has been directed in the last decade on
xploiting time-scale separation inherent in many physicochemical
ystems to accelerate KMC  simulations (e.g., see Cao, Gillespie, &
etzold, 2005; Chatterjee & Vlachos, 2007; Rao & Arkin, 2003; Rico-
artinez, Gear, & Kevrekidis, 2004; Rishi, Haseltine, Mastny, &

awlings, 2011; Zheng, Stephens, Braatz, Alkire, & Petzold, 2008,
nd citations therein). Rather than basing the completion of con-
rol systems tasks on running large numbers of KMC  simulations
o approximate the dynamics of Master equations, some recent
fforts have been toward direct solution of the Master equations
hat explicitly exploit their sparse and highly structured character.
ne approach is the direct numerical solution of Eq. (1) using sparse
rdinary differential equation solvers (Lakerveld, Stephanopoulos,

 Barton, 2011), which is applicable for systems with up to tens
f millions of configurations. Further reductions in computational
ost can be obtained using methods that project the state vector in
he Master equation to a lower dimensional space or employ other

odel reduction algorithms design for direct application to the
aster equations (e.g., see Drawert, Lawson, Petzold, & Khammash,

010; Engblom, Ferm, Hellander, & Lotstedt, 2009; Engblom, 2009;
eles, Munsky, & Khammash, 2006; and citations therein). Although
here is a limit to the complexity of the Master equations that can
e solved using these numerical methods, this approach is feasible
or many nanoscale systems of practical importance, and numeri-
al algorithms are expected to continue to improve over the next
ecade.

Another approach for addressing specific classes of systems
escribed by Master equations is by the derivation of analytical
r semi-analytical solutions of Eq. (1) by exploiting the struc-
ure of the equations. While this approach is not applicable to all
ano/microsystems, analytical solutions can be derived for many
pplications. For example, while the number of states for the nucle-
tion in droplets is infinite, with the matrix A in Eq. (2) having
nfinite row and column dimensions, the matrix A is highly struc-
ured, being both bidiagonal and Toeplitz. For this microfluidic
ystem, a probability-generating function (Kendall, 1949) can be
sed to derive a semi-analytical solution to Eq. (3) that describes
he dynamics of crystal nucleation in droplets as

n(t) = 1
n!

[∫ t

0

�(s)ds

]n

e
−
∫ t

0
�(s)ds

, (5)

or all n > 0 (Goh et al., 2010). Numerical evaluation of Eq. (5) only
equires a small number of algebraic operations and the compu-
ation of an integral whose computational cost at time t can be
educed by incorporating the integral computed at the last previous
ime instance for which the integral was computed:

t ∫ t−�t ∫ t
0

�(s)ds =
0

�(s)ds +
t−�t

�(s)ds. (6)

The function �(t) and its derivative vary by more than six orders-
f-magnitude in a typical induction time experiment, whose
al Engineering 51 (2013) 149– 156

dynamics can be efficiently handled by employing an ordinary dif-
ferential equation solver with adaptive time-stepping

I(t):=
∫ t

0

�(s)ds ⇒ dI

dt
= �(t) (7)

The above analytical solutions have been applied to the solu-
tion of systems engineering problems, such as the identification of
parameters in nucleation rate expressions (Goh et al., 2010) and
the determination of upper and lower bounds on nucleation rates
(basically, a state estimation problem, Chen et al., 2011a).

As an example of a different approach in exploiting structure,
the state matrix A in Eq. (2) corresponding to Eq. (4) for modeling
the adsorption of molecules on a nanotube is tridiagonal and highly
structured. Eq. (4) can be equivalently formulated in terms of two
discrete population balances, with one population associated with
the adsorbed molecules and the other population associated with
the open sites (Jahnke & Huisinga, 2007). This reformulation facili-
tates the derivation of an analytical solution that is the convolution
of binomial distributions with parameters NT and N̄A� , the latter of
which is described by

dN̄A�

dt
= k′

A(NT − N̄A�) − kDN̄A� (8)

for suitably defined initial conditions (Ulissi et al., 2011). As in
Eq. (5),  the computational cost of computing the semi-analytical
solution of Eq. (8) only requires a small number of algebraic opera-
tions and the numerical determination of an integral. This approach
has been applied to the (i) maximum likelihood estimation of
adsorption rates, which have been used to estimate nitric oxide
concentration near the carbon nanotube, (ii) the quantification of
uncertainties in these estimates, and (iii) the reconstruction of
nitric oxide concentration from arrays of carbon nanotubes (Ulissi
et al., 2011).

Many methods are available for exploiting the structure of lin-
ear ordinary differential equations to derive numerical, analytical,
or semi-analytical solutions that can be applied to the Master equa-
tions that arise in nano- and microscale systems. For example, the
Master equations for some nanoscale systems have an A matrix
that is symmetric circulant, in which case the real Fourier matrix
can be used to diagonalize the equations, which can be exploited for
carrying out systems tasks including robust optimal control design
(e.g., see VanAntwerp, Featherstone, & Braatz, 2001, and citations
therein). Research is expected to continue on fast methods for the
analysis of Master equations, both in terms of general methodology
and in addressing specific classes of applications, as these methods
enable facile application of systems engineering.

Many methods have been developed in recent years for address-
ing the sparsity of real-time manipulating variables available in
most small-scale systems. One approach is to modify the system
boundaries at the molecular scale to create desirable feedback interac-
tions during manufacturing (Seebauer et al., 2006; Seebauer, Braatz,
Jung, & Gunawan, 2010). This approach of embedded feedback is
the application at the molecular scale of the autoregulatory feed-
back paradigm developed for macroscale processes many decades
ago and investigated more recently in tissue engineering and other
biomedical systems (e.g., see Braatz, Ogunnaike, Schwaber, & Rose,
1994; Kishida, Pack, & Braatz, 2010; and citations therein). Another
interesting recent approach is to employ action-at-a-distance mag-
netic or electric fields for real-time manipulation of molecular motion
or nanoparticles (Lakerveld et al., 2011; Nacev et al., 2012; Probst
& Shapiro, 2011; Solis, Barton, & Stephanopoulos, 2010a; Solis,
Barton, & Stephanopoulos, 2010b).  This approach provides many

more degrees of freedom than relying solely on the selection of ini-
tial conditions and self-assembly to attempt to produce a desired
positioning or structural arrangement of molecules (e.g., such as in
Drews et al., 2006; Drews, Braatz, & Alkire, 2007; Liu, Liu, & Conway,
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009; and citations therein). One of the applications of localized
eedback or action-at-a-distance fields of high interest has been
n combining drug targeting with surface-modified nanoparticles

ith light to cause the nanoparticles to release their payloads or
reatly increase their temperature, often for the purpose of detect-
ng or killing tumor cells (Ghosh, Han, De, Kim, & Rotello, 2008;
iong et al., 2008; Otsuka, Nagasaki, & Kataoka, 2003; Paciotti et al.,
004; Pissuwan, Valenzuela, & Cortie, 2006; Qian et al., 2008).
ethods have been developed for the robust optimal control of

patial fields (Kishida & Braatz, 2009a, 2009b, 2010a, 2010b), for
hich the manipulated variable is a spatial field, that may  have
otential for the real-time manipulation of molecular motion or
anoparticles, either by action at a distance (Lakerveld et al., 2011;
robst & Shapiro, 2011; Solis, Barton, & Stephanopoulos, 2010a;
olis, Barton, & Stephanopoulos, 2010b)  or by fluid flow fields (e.g.,
athai et al., 2011; Probst, Cummins, Ropp, Waks, & Shapiro, 2012;

anyeri et al., 2010). While passive control of microscale systems
an be achieved by appropriate design of the active volume (Marre

 Jensen, 2010), there have been major advances in technologies
or active control. One of these actuation techniques, laser tweezers,
eflects high intensity laser light to position particles with spatial
esolution as fine as 40 nm,  depending on the electrical properties
f the particles, and can control both rotation and position in three
imensions. Active control is provided by moving the position and
rientation of the laser relative to the system being manipulated.
ptoelectronic and dielectrophoretic methods, the latter of which
mploys spatially nonuniform electric fields to trap dielectric par-
icles to sub-micron spatial resolution, can also have sub-micron
patial resolution. These methods, as well as others, are expected
o continue to move to finer spatial resolutions and faster time
esponses, as well as to move to having lower equipment costs (see
robst et al., 2012, for a state-of-the-art review).

Sensor technologies are being developed that greatly expand
he number and quality of real-time measurements in nanoscale
nd microscale systems. For example, DNA-wrapped single-walled
arbon nanotube-based sensors have been developed that are able
o measure the adsorption and desorption of single molecules
Boghossian et al., 2011). These sensors can be arranged into a two-
imensional (2D) array, to enable the real-time measurement of
he spatial variation of molecules in nano- and microscale systems.
he nanotubes can be chemically modified or coupled with strong-
inding enzymes or fluorescent dyes to measure in real-time the
patial concentration fields of different molecules (e.g., see Ahn
t al., 2011; Heller et al., 2011; Ulissi et al., 2011; and citations
herein).

A strategy for improved estimation of model parameters from
imited sensors in nanoscale systems is to abstract additional infor-

ation from the noise statistics. For example, the estimation of
wo model parameters from repeating the exact same experiment
ith only one datum per experiment has been demonstrated for

he high-throughput device in Fig. 1 (Goh et al., 2010). The two
odel parameters were associated with a nucleation rate described

y classical nucleation theory and the single datum per experi-
ent was the measured induction time. In a macroscale system,

t is usually impossible to estimate two model parameters from
epeated experiments in which only one datum is measured dur-
ng each experiment, as the measurement noise and unmeasured
isturbances characterize the differences in the measured value

n each experiment, and their effects on the measured value are
tochastically different in each experiment. In such systems, extra
xperiments improve the accuracy of the stochastic model for the
easurement noise and disturbances but do not provide informa-
ion on the nominal model.
The situation is very different at the molecular scale, in which

henomena are inherently stochastic. For these systems, stochas-
ic variations in experimental measurements can be separated into
al Engineering 51 (2013) 149– 156 153

two types of sources: (1) intrinsic variability, which arises simply
as a consequence of the stochastic nature of molecular events, and
(2) extrinsic variability, which is a consequence of variability in
the external environment. Characterization of the intrinsic variabil-
ity through numerical or analytical solutions of the Master Eqs. (1)
makes it is possible to distinguish between the two  types of sources of
variability. Our group has applied such an approach to separate the
variability due to imperfections in our experimental set-ups from
variability associated with molecular events for the detection of
single-molecule adsorption and desorption of nitric oxide on DNA-
wrapped carbon nanotubes (Ulissi et al., 2011). Such an approach
is expected to be useful in many systems in nanoscale science and
technology.

For these systems, the intrinsic stochastic variations in the
measured values are direct functions of the physicochemical
parameters, and hence contain information on the parameters. In the
crystallization experiments, the analytical solution for the stochas-
tic variation as a function of the nucleation model parameters can
be derived from the Master Eq. (3), so that the model param-
eters can be estimated accurately by fitting the distribution of
induction times obtained by repeating the exact same experiment
multiple times (Fig. 2). In principle this approach of improving
the estimation of physicochemical parameters from the stochastic
fluctuations in the measurements can be applied to any molecu-
lar system described by Master equations, regardless of whether
the Master equations are solved analytically, such as for the micro-
crystallization process and the single-molecule sensing system in
Fig. 3 described by Eq. (4), or solved numerically either by direct
solution of the Master equations or by indirect solution via kinetic
Monte Carlo simulation. Parameter estimates in the process model
are estimated from the distribution of measurements rather than
mean values. In some sense, instead of trying to filter away the noise
as in a macroscale system, the model parameters in many nanoscale
systems can be estimated from the noise. The potential improvement
in the accuracy of the parameter estimates obtained by exploiting
the additional information in the “noise” will depend on the details
of the particular system.

Many high-value applications of carbon nanotubes such as in
nanoelectronics require the separation of nanotubes in terms of
their chirality, as this molecular structure is directly related to their
electronic structure, adsorption kinetics, and chemical reactivity
(e.g., see Chen, Nair, Strano, & Braatz, 2010; Chen, Kishida, Nair,
Strano, & Braatz, 2011b; Doyle, Rocha, Weisman, & Tour, 2008;
Liu & Zhang, 2010; Nair, Usrey, Kim, Braatz, & Strano, 2006; Nair,
Kim, Usrey, & Strano, 2007; Sgobba & Guldi, 2009; Sumpter, Jiang,
& Meunier, 2008; and citations therein). Typically the nanotubes
are separated by the addition of surfactants followed by centrifu-
gation, which produces a gel with each position along the gel
corresponding to a different mixture of chiralities. Various spec-
troscopic methods are applied to each position, with the objective
of estimating the concentrations of nanotubes with each chirality.
The amount of peak overlap in the spectra is very high and while
advances have been made in the deconvolution of the spectra (e.g.,
see Nair, Kim, Braatz, & Strano, 2008, and citations therein), more
advances are needed to reduce the large uncertainty in some of
the estimated concentrations. Advanced control of many nanosys-
tems will require significant advances in sensor calibration that
exploit all aspects of the sensor physics, such as the effect of defects
in carbon nanotubes on their spectra, while carefully quantifying
uncertainties in the estimates.

Polynomial chaos expansions (PCEs) is an approach for uncer-
tainty analysis that is applicable to dynamical systems described

by continuum models with model parameters that belong to non-
Gaussian distributions (Phenix et al., 1998; Wiener, 1938). In recent
years PCE-based systems and control methods have been devel-
oped (see Fisher & Bhattacharya, 2009; Kim & Braatz, 2012; Nagy &
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raatz, 2007, 2010; Templeton et al., 2010; and citations therein),
hat extend techniques such as robust nonlinear control and

odel predictive control to handling non-Gaussian distributions.
lternative approaches for addressing systems with non-Gaussian
istributions such as particle filters (e.g., Lang, Chen, Bakshi, Goel,

 Ungarala, 2007 and citations therein) have also become popular.
s such distributions also appear in nano and microscale chemi-
al systems, it seems likely that some of the PCE-based methods
ill be useful for addressing their associated systems and control
roblems.

. Conclusions

Challenges in the control of nano and microchemical systems
re high model state dimensionality, limitations in real-time mea-
urements and manipulated variables, and significant uncertainties
escribed by non-Gaussian distributions. Promising directions for
ealing with these challenges include exploiting model structure
f the stochastic model equations, employing molecular modifica-
ion at system boundaries to create desirable feedback interactions
ithin the material, and manipulation via magnetic and electric
elds. These approaches included the numerical or analytical solu-
ion of Master Eq. (1) for

(i) distinguishing between fundamental intrinsic variability and
extrinsic variability, and

ii) abstracting information on fundamental model parameters
from the intrinsic variability or “noise.”

Methods were reviewed for the numerical and analytical solu-
ion of the Master Equation that commonly arises when modeling
ano- and microscale chemical systems, with the analytical meth-
ds being (i) matrix exponentials, (ii) probability generating
unctions, (iii) reformulation as discrete population balance equa-
ions, and (iv) exploiting symmetries. While these approaches will
ot apply to all nano- and microscale systems, our experience is
hat the methods apply to a surprisingly large number of chemical
ystems, with some examples of such systems given in this paper.
ll of the approaches used for directly solving Master equations
an be directly applied to any systems problem, such as parame-
er estimation, quantification of uncertainties in model parameters,
tate and output estimation, optimal design, and optimal feed-
ack control. This paper described some of these applications of
ystems engineering to nano- and microscale chemical systems,
ncluding to carbon nanotube-based devices and microfluidic sys-
ems. Many more applications of systems engineering to nano- and

icroscale chemical systems by direct solution of Master equations
re expected in the near future.

One of the messages of this paper is to embrace the
on-Gaussian stochastic phenomena that occur in nano- and
icrochemical systems; that stochasticity if understood funda-
entally can be more an asset than a hindrance. A way to develop

his fundamental understanding of intrinsic variability is to direct
umerical or analytical solution of the stochastic equations (Eq.
1)) that describe the kinetic phenomena at these length scales. For
roblems in which such direct methods are not applicable, poly-
omial chaos expansions was suggested as a potential approach

or addressing non-Gaussian distributions during state and output
stimation and optimal feedback control design.
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