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a b s t r a c t

An input design method is presented for guaranteeing the diagnosability of faults from the outputs of a
system. Faults are modeled by discrete switches between linear models with bounded disturbances and
measurement errors. Zonotopes are used to efficiently characterize the set of inputs that are guaranteed to
lead to outputs that are consistent with at most one fault scenario. Provided that this set is nonempty, an
element is then chosen that is minimally harmful with respect to other control objectives. This approach
leads to a nonconvex optimization problem, but is shown to be equivalent to a mixed-integer quadratic
program that can be solved efficiently. Methods are given for reducing the complexity of this program,
including an observer-based method that drastically reduces the number of binary variables when many
sampling times are required for diagnosis.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In many industries (chemical (Venkatasubramanian, Ren-
gaswamy, Yin, & Kavuri, 2003), aerospace (Zolghadri, 2010), etc.),
the trend toward increasing complexity and automation has made
component malfunctions and other abnormal events (i.e., faults)
increasingly frequent. At the same time, economic considerations
have led to the use of inexpensive and unreliable components in
many mass market applications. Accordingly, achieving safe and
reliable operation formany systems now requires fast and accurate
methods for detecting and diagnosing faults on the basis of pro-
cess measurements. These tasks are rendered difficult by the con-
founding effects of disturbances, measurement uncertainty, and
the compensatory actions of the control system.

Fault detection and diagnosis methods can be categorized as
either passive or active. Passive approaches attempt to diagnose
faults by comparing the available input–output data for the pro-
cess to models or historical data (Chiang, Russell, & Braatz, 2001;
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Venkatasubramanian et al., 2003). Often, however, faults may not
be detectable in the available measurements, or cannot be diag-
nosed without exciting the system. Accordingly, the active ap-
proach involves injecting a signal into the system to improve
detectability of the fault (Blackmore, Rajamanoharan, & Williams,
2008; Campbell & Nikoukhah, 2004; Esna Ashari, Nikoukhah, &
Campbell, 2012; Niemann, 2006; Nikoukhah, 1998; Simandl &
Puncochar, 2009).

This article presents a set-based approach for active fault diag-
nosis. The process of interest, under nominal and various faulty
conditions, is described by a set of linear discrete-time mod-
els subject to bounded disturbances and measurement errors.
Faults are modeled by discrete switches between these models.
The proposed framework permits multiple faults occurring ei-
ther sequentially or simultaneously, although computational com-
plexity ultimately limits the number of scenarios considered (see
Section 2). Given a set of scenarios, the objective is to compute
an input that is guaranteed to generate outputs consistent with at
most one scenario, thereby providing a complete fault diagnosis.
Such inputs are referred to as separating inputs. In addition to this
diagnosis condition, the computed input is further required to be
minimally harmful with respect to other control objectives.

This problem was first considered in Nikoukhah (1998). In
the case of two models (one nominal and one faulty), the set
of separating inputs was shown to be the complement of a pro-
jection of a high-dimensional polytope. Unfortunately, polytope
projection is computationally intensive and numerically unstable
in the required dimensions. The book (Campbell & Nikoukhah,
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2004) proposes an active input design method for the case where
the disturbances and measurement errors are energy bounded
rather than pointwise bounded. The input is chosen as the solution
of a bilevel optimization problem in which the outer program
searches for a minimum two-norm input and the inner program
restricts the feasible set to separating inputs. This optimization
problem is nonconvex and is solved in the two-model case by a
specialized algorithm. Various extensions of this approach have
been investigated, including methods for continuous-time and
nonlinear systems (Andjelkovic, Sweetingham, & Campbell, 2008;
Campbell & Nikoukhah, 2004), asymptotically optimal implemen-
tations (Nikoukhah & Campbell, 2006; Nikoukhah, Campbell, &
Delebecque, 2000), and methods for systems under linear feed-
back control (Ashari, Nikoukhah, & Campbell, 2009, 2012; Esna
Ashari et al., 2012). A more general optimization formulation has
also been proposed that permits multiple fault models and arbi-
trary objectives and constraints (Campbell, Horton, & Nikoukhah,
2002; Campbell & Nikoukhah, 2004). However, the structure of the
two-model formulation is lost and the method instead relies on
general-purpose software to solve difficult optimal control prob-
lems constrained by two-point boundary-value problems.

This article treats the casewhere thedisturbances andmeasure-
ment errors are pointwise bounded rather than energy bounded,
and uses zonotopes rather than polytopes or ellipsoids. After a for-
mal problem statement and some preliminary developments in
Sections 2 and 3, the set of separating inputs is characterized us-
ing efficient zonotope computations in Section 4, effectively elimi-
nating the polytope projection problem in Nikoukhah (1998). This
result is then used to pose a bilevel optimization problem for
choosing an optimal separating input in Section 5, similar to the
approach in Nikoukhah and Campbell (2006). The use of zonotopes
here permits a reformulation as a mixed-integer quadratic pro-
gram (MIQP) for which the number of integer variables can be con-
trolled using zonotope order reduction techniques. The resulting
optimization problem is simple to implement and practically solv-
able, while being flexible with respect to the choice of objective,
the presence of state and control constraints, the possibility ofmul-
tiple fault models, and the possibility of multiple faults occurring
simultaneously or sequentially in the time interval of interest.
Techniques for reducing the computational complexity of the ap-
proach are discussed in Section 6, and an approximate implemen-
tation of the approach using set-valued observers is proposed in
Section 7 to reduce the complexity when many sampling times
are required for diagnosis. Numerical examples are presented in
Section 8, and Section 9 contains concluding remarks. This arti-
cle extends the preliminary results in Scott, Findeisen, Braatz, and
Raimondo (2013) by providing a more general theoretical devel-
opment, an improved optimization formulation, a treatment of
state constraints, several newmethods for reducing computational
complexity, and extended numerical results.

2. Problem formulation

Consider a discrete-time system with time k, state xk ∈ Rnx ,
output yk ∈ Rny , input uk ∈ Rnu , disturbance wk ∈ Rnw , and mea-
surement error vk ∈ Rnv . In each interval [k, k + 1], k = 0, 1, . . . ,
the system evolves according to one of nm possible linear models.
The matrices of these models are distinguished by the argument
i ∈ I ≡ {1, . . . , nm}:

xk+1 = A(ik)xk + B(ik)uk + r(ik)+ Bw(ik)wk, (1)

yk = C(ik)xk + s(ik)+ Dv(ik)vk. (2)

The model i = 1 is nominal, and the rest are faulty. Models repre-
sentingmultiple, simultaneous faults canbe included in I if desired.
The constant vectors r(i) and s(i) are used to model additive faults
such as sensor and actuator bias. It is assumed that x0 ∈ X0, and
(wk, vk) ∈ W ×V , ∀k ∈ N, where X0,W and V are zonotopes (see
Section 3.1).

A fault at time k is modeled by a transition from one model
in I to another; i.e., ik ≠ ik−1. Given a time interval [0,N], a
fault scenario on [0,N] is defined as a sequence (i0, . . . , iN) ∈

IN . Let Ĩ ⊂ IN denote a set of permissible fault scenarios on
[0,N]. Given Ĩ, the goal is to compute an open-loop input sequence
ũ = (u0, . . . ,uN−1) such that any observed sequence of outputs
ỹ = (y0, . . . , yN) is consistent with at most one fault scenario in Ĩ,
regardless of the exact values of the initial condition, disturbances,
and measurement errors in the sets X0,W , and V . Such input
sequences are referred to as separating inputs (see Section 4).
Ideally, ũ should be minimal in some sense (e.g., length, norm).
We assume that N is specified and focus on the computation of
a separating input sequence that minimizes a quadratic objective
subject to input and state constraints. This computation can be
iterated with N increasing from 1 until the problem becomes
feasible.

Requiring that ũ is a separating input is equivalent to requiring
that every distinct pair of scenarios ĩ, j̃ ∈ Ĩ can be distinguished.
Thus, ũmust satisfy Q =

 s
2


conditions, where s is the number of

scenarios in Ĩ (see (19) in Section 5). Despite the computational ad-
vantages of the proposedmethods, this combinatorial dependence
demands a parsimonious selection of permissible scenarios. If ev-
ery scenario is permissible, then s = (nm)

N . However, many sce-
narios will be nonsensical (e.g., spontaneously corrected faults) or
very unlikely (e.g., multiple unrelated faults). Further reductions
can be achieved by limiting the frequency of faults (i.e., imposing
a minimum number of repeats ik = ik+1 = · · · = ik+d after a tran-
sition). Effectively choosing scenarios for a given application is not
considered here; Ĩ is assumed given.

3. Preliminaries

3.1. Zonotopes and set operations

The methods in this article involve computations with zono-
topes, which are centrally symmetric convex polytopes that can
be described as Minkowski sums of line segments (Kuhn, 1998).
In generator representation, a zonotope Z is prescribed by its center
c ∈ Rn and generators g1, . . . , gng ∈ Rn as Z = {Gξ + c : ξ ∈

Rng , ∥ξ∥∞ ≤ 1}, where G ≡ [g1 . . . gng ]. We use the notation
Z = {G, c}. The order of a zonotope is ng/n. A first-order zonotope
with linearly independent generators is a parallelotope.

Let Z, Y ⊂ Rn, R ∈ Rm×n, and define the operations

RZ ≡ {Rz : z ∈ Z}, (3)
Z ⊕ Y ≡ {z + y : z ∈ Z, y ∈ Y }, (4)

Z ⊖ Y ≡ {x ∈ Rn
: x + Y ⊂ Z}. (5)

When Z = {Gz, cz} and Y = {Gy, cy} are zonotopes, (3)–(4) are also
zonotopes and can be computed efficiently (Kuhn, 1998):

RZ = {RGz,Rcz}, Z ⊕ Y = {[Gz Gy], cz + cy}. (6)

In contrast, when Z and Y are general convex polytopes, the
Minkowski sum (4) and the linear mapping (3) with singular R
(e.g., polytope projection) both become extremely computation-
ally demanding and numerically unstable in dimensions greater
than about 10 (Althoff & Krogh, 2011; Fukuda, 2004). However, the
results of the operations in (6) can be higher order than Z and Y . To
avoid increasing orders, techniques for enclosing a given zonotope
within a zonotope of lower order must be used. For the computa-
tions presented in Section 8, Method C in Althoff, Stursberg, and
Buss (2010) is used.
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When Y is a zonotope and Z is a polytope in the standard half-
space representation, the Pontryagin difference (5) can be com-
puted easily as follows (see Theorem 2.3 in Kolmanovsky & Gilbert,
1998).

Lemma 1. Let Y = {G, c} and Z ≡ {z ∈ Rn
: Hz ≤ k}, where

k ∈ Rm and H ∈ Rm×n has rows hT
i ≠ 0. Then Z ⊖ Y = {z ∈ Rn

:

Hz ≤ k′
}, where k′

i ≡ ki − hT
i c − ∥hT

i G∥1, i = 1, . . . ,m.

Note that every zonotope satisfies {G, c} = {−G, c} and
{G, c} = c ⊕ {G, 0}. Moreover, the following result holds (see
Lemma 2.1 in Dobkin, Hershberger, Kirkpatrick, & Suri, 1993).

Lemma 2. Let Z = {Gz, az + bz} and Y = {Gy, ay + by}. Then
Z ∩ Y = ∅ if and only if ay − az ∉ {Gz, bz} ⊕ {Gy,−by}.

3.2. Reachable set notation and computations

Reachable sets for (1)–(2) will be used to characterize the set of
separating inputs in Section 4. Below, a tilde designates a sequence
associated with (1)–(2), e.g., ũ = (u0, . . . ,uN−1) ∈ RNnu . For
0 ≤ ℓ ≤ k < N , we further denote ũℓ:k = (uℓ, . . . ,uk). Similarly,
ĩ = (i0, . . . , iN) ∈ Ĩ denotes an arbitrary fault scenario.

For k ∈ N, define the solution mappings

(φk, ψk) : Rknu × Ik+1
× Rnx × Rknw × Rnv → Rnx × Rny

so that φk(ũ, ĩ, x0, w̃, v) and ψk(ũ, ĩ, x0, w̃, v) are the state and
output of (1)–(2) at k, respectively, given the specified inputs.
Strictly, φk does not depend on ik and v (see (1)–(2)), but they
are included for notational convenience. Let φ̃ℓ:k(ũ, ĩ, x0, w̃, ṽ) =

(φℓ, . . . , φk) and ψ̃ℓ:k(ũ, w̃, ĩ, x0, ṽ) = (ψℓ, . . . , ψk), where we
have abbreviated (φj, ψj) = (φj, ψj)(ũ0:j−1, ĩ0:j, x0, w̃0:j−1, vj), ℓ ≤

j ≤ k.
For each ĩ ∈ Ik and ũ ∈ Rknu , define the reachable state and

output sets on [ℓ, k] by

Φ̃ℓ:k(ũ, ĩ) ≡ {φ̃ℓ:k(ũ, ĩ, x0, w̃, ṽ) : (x0, w̃, ṽ) ∈ X0 × W̃ × Ṽ },

Ψ̃ℓ:k(ũ, ĩ) ≡ {ψ̃ℓ:k(ũ, ĩ, x0, w̃, ṽ) : (x0, w̃, ṽ) ∈ X0 × W̃ × Ṽ },

where W̃ = W×· · ·×W and Ṽ = V×· · ·×V with k−ℓ and k−ℓ+1
Cartesian products, respectively. Explicit dependence on X0, W̃ ,
and Ṽ is omitted for brevity. The reachable state and output sets
at k are defined asΦk(ũ, ĩ) ≡ Φ̃k:k(ũ, ĩ) and Ψk(ũ, ĩ) ≡ Ψ̃k:k(ũ, ĩ).

Note that (1)–(2) recursively define matrices Ã(ĩ), B̃(ĩ), etc.,
which depend on ℓ and k, such that

φ̃ℓ:k(ũ, ĩ, x0, w̃, ṽ) = Ã(ĩ)x0 + B̃(ĩ)ũ + r̃(ĩ)+ B̃w(ĩ)w̃,
ψ̃ℓ:k(ũ, ĩ, x0, w̃, ṽ) = C̃(ĩ)φ̃ℓ:k(ũ, ĩ, x0, w̃, ṽ)+ s̃(ĩ)+ D̃v(ĩ)ṽ.

Using (3)–(4), it follows that

Φ̃ℓ:k(ũ, ĩ) = Ã(ĩ)X0 ⊕ B̃(ĩ)ũ ⊕ r̃(ĩ)⊕ B̃w(ĩ)W̃ , (7)

Ψ̃ℓ:k(ũ, ĩ) = C̃(ĩ)Φ̃ℓ:k(ũ, ĩ)⊕ s̃(ĩ)⊕ D̃v(ĩ)Ṽ . (8)

Denote X0 = {G0, c0},W = {GW , cW }, and V = {GV , cV }. It is
simple to see that W̃ is a zonotopewith center cW̃ = (cW , . . . , cW )
and block-diagonal generator matrix GW̃ = diag(GW , . . . ,GW ),
and Ṽ is analogous. Thus, the above reachable sets can be computed
efficiently using (6). Moreover, these sets take the form

Φ̃ℓ:k(ũ, ĩ) = {GΦℓ:k(ĩ), φℓ:k(ũ, ĩ)}, (9)

Ψ̃ℓ:k(ũ, ĩ) = {GΨℓ:k(ĩ), ψℓ:k(ũ, ĩ)}, (10)

with the generator matrices GΦℓ:k(ĩ) = [Ã(ĩ)G0 B̃w(ĩ)GW̃ ] and
GΨℓ:k(ĩ) = [C̃(ĩ)GΦℓ:k(ĩ) D̃v(ĩ)GṼ ], and the centers φℓ:k(ũ, ĩ) =

φ̃ℓ:k(ũ, ĩ, c0, cW̃ , cṼ ) and ψℓ:k(ũ, ĩ) = ψ̃ℓ:k(ũ, ĩ, c0, cW̃ , cṼ ).
When ℓ = k = N in (7)–(8), the sets ΦN(ũ, ĩ) and ΨN(ũ, ĩ)
can also be computed recursively as the state and output at N ,
respectively, of the iteration

Xk+1 = A(ik)Xk ⊕ B(ik)uk ⊕ r(ik)⊕ Bw(ik)W , (11)

Yk = C(ik)Xk ⊕ s(ik)⊕ Dv(ik)V . (12)

Moreover, the explicit dependence of the results on ũ can be
computed by noting that φN(ũ, ĩ) = φN(0, ĩ) + B

Φ

N (ĩ)ũ and
ψN(ũ, ĩ) = ψN(0, ĩ) + B

Ψ

N (ĩ)ũ, where B
Φ

N (ĩ) and B
Ψ

N (ĩ) are the N th

elements of the recursion

B
Φ

k+1 = [A(ik)B
Φ

k B(ik)], B
Ψ

k = C(ik)B
Φ

k . (13)

In contrast, the sets Φ̃0:N(ũ, ĩ) and Ψ̃0:N(ũ, ĩ), given by choosing ℓ =

0 and k = N in (7)–(8), cannot be computed recursively. Instead,
the set operations in (7)–(8)must be carried out exactly as written,
which requires that the high-dimensional matrices Ã(ĩ), B̃(ĩ), etc.,
are explicitly constructed and stored. These calculations may
be prohibitive when Nnx is very large (see Section 7). On the
other hand, the calculations maintain the coupling between all
states (respectively, outputs) through the initial condition and past
disturbances, i.e.,

Ψ̃0:N(ũ, ĩ) ⊂ Ψ0(i0)× · · · × ΨN(ũ, ĩ). (14)

4. Separating inputs

Suppose the input ũ = (u0, . . . ,uN−1) is injected and the
output ỹ = (y0, . . . , yN) is observed. From the preceding section,
it is clear that ỹ is consistent with scenario ĩ ∈ Ĩ iff

ỹ ∈ Ψ̃0:N(ũ, ĩ). (15)

Thus, we are interested in inputs that ensure that (15) holds for at
most one ĩ ∈ Ĩ. For any such input, checking (15) for each ĩ ∈ Ĩ
online either provides the desired fault diagnosis (including the
nominal case), or concludes that no scenario in Ĩ is correct.

Definition 1. An input ũ ∈ RNnu separates ĩ, j̃ ∈ Ĩ on [0,N] if

Ψ̃0:N(ũ, ĩ) ∩ Ψ̃0:N(ũ, j̃) = ∅. (16)

Similarly, ũ separates Ĩ on [0,N], or is a separating input, if it
separates every ĩ, j̃ ∈ Ĩ with ĩ ≠ j̃. The set of all separating inputs
is denoted by S (Ĩ).

If (16) fails, wemay still observe ỹ ∈ Ψ̃0:N(ũ, ĩ)\Ψ̃0:N(ũ, j̃). Thus,
an input that is not separating can lead to a diagnosis if particular
values of the outputs are observed. Similarly, a separating input
on [0,N] can potentially return a guaranteed diagnosis after only
M < N steps (Campbell, Drake, & Nikoukhah, 2002).

In the interest of satisfying (16), a critical observation is that
ũ only translates Ψ̃0:N(ũ, j̃) with respect to Ψ̃0:N(ũ, ĩ), and does
not change the shape or relative orientation of these sets, which
follows directly from (10) and leads to a simple characterization of
S (Ĩ):

Theorem 3. An input ũ belongs to S (Ĩ) if and only if

Ñ(ĩ, j̃)ũ ∉ Z̃(ĩ, j̃), (17)

for all ĩ, j̃ ∈ Ĩ, ĩ ≠ j̃, where Ñ(ĩ, j̃) ≡ (C̃(j̃)B̃(j̃) − C̃(ĩ)B̃(ĩ)) and
Z̃(ĩ, j̃) ≡ {[GΨ0:N(ĩ) G

Ψ
0:N(j̃)], ψ0:N(0, ĩ)− ψ0:N(0, j̃)}.

Proof. Apply Lemma2 to (16) using (10) andnote thatψ0:N(ũ, ĩ) =

C̃(ĩ)B̃(ĩ)ũ + ψ0:N(0, ĩ).
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Eq. (17) and the compactness of each Z̃(ĩ, j̃) implies that the set of
inputs separating ĩ, j̃ ∈ Ĩ is nonempty and unbounded whenever
Ñ(ĩ, j̃) ≠ 0. If Ñ(ĩ, j̃) = 0, then ĩ and j̃ are separated by every input
if 0 ∉ Z̃(ĩ, j̃), and are not separated by any input otherwise.

When X0,W , and V are general convex polytopes, the results
in Nikoukhah (1998) show that the set of inputs separating ĩ
and j̃ is the complement of a convex polytope P . When X0,W ,
and V are zonotopes, Theorem 3 shows that these inputs can be
alternatively characterized by the requirement that Ñ(ĩ, j̃)ũ lies
in the complement of a zonotope. In the context of optimization
over S (Ĩ), the latter characterization has several advantages. Most
importantly, the data required by (17) (i.e. Ñ(ĩ, j̃) and Z̃(ĩ, j̃)) can
be efficiently computed using the developments of Section 3.2.
In contrast, the polytope P in Nikoukhah (1998) is an Nnu-
dimensional projection of a N(ny + nu)-dimensional polytope,
and its computation becomes intractable for N(ny + nu) greater
than about 10. Additionally, the set of inputs separating ĩ and j̃
is nonconvex, since both characterizations ultimately require ũ to
lie in the complement of a convex set. However, it is shown in
Section 5 that (17) can be reformulated as a mixed-integer linear
constraint inwhich thenumber of binary variables canbe favorably
controlled using the zonotopic structure.

5. Optimal separating inputs

This section considers the problem of selecting a particular
element of S (Ĩ) by minimizing a given quadratic objective
function, subject to given input constraints. To this end, let R ∈

Rnu×nu be positive semidefinite, let U ⊂ Rnu be a convex polytope,
and define J(ũ) ≡

N−1
k=0 (uk)

TRuk and Ũ ≡ U×· · ·×U . An optimal
separating input is chosen by solving

inf{J(ũ) : ũ ∈ Ũ ∩ S (Ĩ)}. (18)
The purpose of this optimization is to minimize any harmful
effects of the separating input with respect to other control
objectives. One simple formulation is to find the minimum two-
norm separating input. More generally, using the separation
condition as a constraint in a predictive control formulation also
results in an optimization of the form (18).

The optimization (18) is difficult owing to nonconvexity of
S (Ĩ). To arrive at an efficient solution method, we invoke
Theorem 3 and carry out a series of reformulations leading to a
mixed-integer quadratic program (MIQP). Let q ∈ {1, . . . ,Q } index
the combinations ĩ, j̃ ∈ Ĩ with ĩ ≠ j̃, and denote Ñ[q]

≡ Ñ(ĩ, j̃) and
Z̃ [q]

≡ Z̃(ĩ, j̃). According to Theorem 3, (18) is equivalent to

inf{J(ũ) : ũ ∈ Ũ, Ñ[q]ũ ∉ Z̃ [q], q = 1, . . . ,Q }. (19)
The following lemma shows that the separation constraints in (19)
can be formulated as linear programs. Denote Z̃ [q]

= {G[q], c[q]
},

where G[q] has n[q]
g columns. It is assumed for simplicity that each

G[q] has full row rank, which implies that each Z̃ [q] has a nonempty
interior and holds if, for example, Dv(i)GV has full row rank for all
i ∈ I (see Remark 1).

Lemma 4. For each ũ ∈ Ũ and q ∈ {1, . . . ,Q }, defineδ[q](ũ) ≡ min
δ[q],ξ[q]

δ[q] (20)

s.t. Ñ[q]ũ = G[q]ξ[q]
+ c[q], ∥ξ[q]

∥∞ ≤ 1 + δ[q].

Then Ñ[q]ũ ∉ Z̃ [q] iff δ[q](ũ) > 0.

Proof. Since G[q] is full row rank, (20) is feasible. If Ñ[q]ũ ∉ Z̃ [q],
then @ξ such that ∥ξ∥∞ ≤ 1 and Ñ[q]ũ = G[q]ξ[q]

+ c[q]. Thus, (20)
has no feasible point with δ[q]

≤ 0. Conversely, ifδ[q](ũ) > 0, then
there cannot exist a feasible point of (20) with δ[q]

≤ 0, and hence
@ξ such that ∥ξ∥∞ ≤ 1 and Ñ[q]ũ = G[q]ξ[q]

+ c[q].
From the conditionδ[q](ũ) > 0 in Lemma 4, it is evident that
the feasible set in (19) is not closed, and there may not exist ũ∗

attaining the infimum. For this reason, the constraintsδ[q](ũ) ≥ ε
will be enforced instead, where ε > 0 is a minimum separation
threshold (see (21)). Although this introduces a small amount of
conservatism, any ũ satisfying these constraints is still a separating
input. For the remaining reformulations, it is assumed that an
upper boundδ[q]

m is available such thatδ[q](ũ) ≤ δ[q]
m , ∀ũ ∈ Ũ

(see Section 5.1). Then (19) can be written as the bilevel program

min{J(ũ) : ũ ∈ Ũ, ε ≤δ[q](ũ) ≤δ[q]
m , q = 1, . . . ,Q }. (21)

A single level program is obtained by replacing the linear inner
programs (20) with their necessary and sufficient conditions of
optimality (see Proposition 3.4.1 in Bertsekas, 1999):

Ñ[q]ũ = G[q]ξ[q]
+ c[q], (22)

∥ξ[q]
∥∞ ≤ 1 + δ[q], (23)

(G[q])Tλ[q]
= (µ

[q]
1 − µ

[q]
2 ), (24)

1 = (µ
[q]
1 + µ

[q]
2 )

T1, (25)

0 ≤ µ
[q]
1 ,µ

[q]
2 , (26)

0 = µ
[q]
1,k(ξ

[q]
k − 1 − δ[q]), ∀k = 1, . . . , n[q]

g , (27)

0 = µ
[q]
2,k(ξ

[q]
k + 1 + δ[q]), ∀k = 1, . . . , n[q]

g . (28)
In (25), 1 is a vector of ones. For each q, the constraint ε ≤δ[q](ũ) ≤ δ[q]

m in (21) can now be replaced by the condition:
∃(δ[q], ξ[q],λ[q],µ

[q]
1 ,µ

[q]
2 ) such that ε ≤ δ[q]

≤ δ[q]
m and (22)–

(28) hold. However, the complementarity constraints (27)–(28)
are nonconvex. Thus, we introduce binary variables p[q]

1 , p
[q]
2 ∈

{0, 1}n
[q]
g and replace (27)–(28) with the implications (Fortuny-

Amat & McCarl, 1981):

p[q]
1,k = 1 H⇒ µ

[q]
1,kfree, (ξ

[q]
k − 1 − δ[q]) = 0, (29)

p[q]
1,k = 0 H⇒ µ

[q]
1,k = 0, (ξ

[q]
k − 1 − δ[q])free,

p[q]
2,k = 1 H⇒ µ

[q]
2,kfree, (ξ

[q]
k + 1 + δ[q]) = 0,

p[q]
2,k = 0 H⇒ µ

[q]
2,k = 0, (ξ

[q]
k + 1 + δ[q])free.

These implications can be enforced through the linear constraints:

µ
[q]
1,k ≤ p[q]

1,k, µ
[q]
2,k ≤ p[q]

2,k, (30)

(ξ
[q]
k − 1 − δ[q]) ∈ [−2(1 +δ[q]

m )(1 − p[q]
1,k), 0], (31)

(ξ
[q]
k + 1 + δ[q]) ∈ [0, 2(1 +δ[q]

m )(1 − p[q]
2,k)]. (32)

In particular, the bounds imposed by (30) when p[q]
1,k = 1 or p[q]

2,k =

1 are consequences of (26) and (25), and hence are not restrictive.
Similarly, the bounds imposed by (31) (respectively, (32)) when
p[q]
1,k = 0 (resp. p[q]

2,k = 0) are consequences of (23) and δ[q]
≤ δ

[q]
m .

Thus, (21) is equivalent to

min
ũ,δ[q],ξ[q],λ[q],µ

[q]
1 ,µ

[q]
2 ,p[q]

1 ,p[q]
2

J(ũ) (33)

s.t. ũ ∈ Ũ,
ε ≤ δ[q]

≤ δ[q]
m , (22)–(26),

p[q]
1 , p

[q]
2 ∈ {0, 1}n

[q]
g , (30)–(32)


∀q ∈ {1, . . . ,Q }.

This is a MIQP and can be solved efficiently using, for example,
CPLEX (IBM, 2012).

Remark 1. If G[q] is not full row rank for some q, then the con-
clusion of Lemma 4 holds upon replacing the constraints in (20)
by Ñ[q]ũ = G[q]ξ[q]

+ H[q]γ [q]
+ c[q], ∥ξ[q]

∥∞ ≤ 1 + δ[q], and
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∥γ [q]
∥∞ ≤ δ[q], where H[q] is a matrix with minimal number of

columns such that [G[q] H[q]
] has full row rank. A modified set of

optimality conditions (22)–(28) can then be derived, and the sub-
sequent reformulations can be repeated to yield an analog of (33).

Remark 2. In Nikoukhah and Campbell (2006), a method is given
for computing separating inputs when (x0, w̃, ṽ) ∈ E for an ellip-
soid E. However, the related problemwith independent, pointwise
ellipsoidal bounds x0 ∈ X0,wk ∈ W , and vk ∈ V , ∀k ∈ N, has not
been addressed. Since zonotopes can outer-approximate ellipsoids
with arbitrary precision, separating inputs for this case can be com-
puted using the methods above, with some conservatism. Under
these assumptions, the reachable sets Ψ̃0:N(ũ, ĩ), andmoreover the
sets Z̃ [q], are not ellipsoids. However, they are zonoids (i.e., limits of
zonotopes) (Bolker, 1969), and can therefore be approximated as
zonotopes.

5.1. Computingδ[q]
m

The above reformulations leading to (30)–(32) required a boundδ[q]
m such thatδ[q]

m ≥ δ[q]
m,∗ ≡ max{δ[q](ũ) : ũ ∈ Ũ}. Sinceδ[q] is

defined by (20) as the parametric solution of a LP, Theorem 5.1 in
Bertsimas and Tsitsiklis (1997) ensures that it is convex on Ũ . Thus,δ[q]
m,∗ can be computed as themaximumvalue ofδ[q] over all vertices
ũv of Ũ . If the number of vertices is prohibitive, an alternative
approach is to considerδ[q]
m,g+ ≡ sup{δ[q](ũ) : ũ ∈ Ũ, δ[q](ũ) ≤δ[q]

m,g}, (34)

whereδ[q]
m,g is a guess forδ[q]

m,∗. This is a bilevel program with (20)
embedded, but is easier to solve thanmax{δ[q](ũ) : ũ ∈ Ũ} becauseδ[q]
m,g provides the upper bound necessary to reformulate it as an
MILP using the techniques of the previous section. Rather than
providingδ[q]

m,∗ directly, the solution of (34) determines if the guessδ[q]
m,g is valid, and returns the optimal boundδ[q]

m,g+ =δ[q]
m,∗ whenever

it is:

Lemma 5. δ[q]
m,g+ < δ[q]

m,g iff δ[q]
m,∗ < δ[q]

m,g , and in this caseδ[q]
m,g+ =δ[q]

m,∗.

Proof. Ifδ[q]
m,∗ <δ[q]

m,g , then (34) is equivalent to max{δ[q](ũ) : ũ ∈

Ũ}, and henceδ[q]
m,g+ =δ[q]

m,∗ <δ[q]
m,g . Conversely, ifδ[q]

m,∗ ≥δ[q]
m,g , then

(34) is a true restriction of max{δ[q](ũ) : ũ ∈ Ũ}, and it is clear thatδ[q]
m,g+ =δ[q]

m,g .

Although computing δ[q]
m,∗ through (34) requires solving at least

one MILP, it avoids explicit enumeration of the vertices of Ũ .
Also, solving (34) is much cheaper than solving (33) because each
instance of (34) has only one embedded LP, and hence many fewer
binary variables.

5.2. State constraints

In many cases, it may be desirable to restrict (18) by requiring
that the system states remain robustly within a given polytope
X ⊂ Rnx , regardless of the correct scenario:

Φk(ũ0:k−1, ĩ0:k) ⊂ X , ∀k ∈ {0, . . . ,N}, ∀ĩ ∈ Ĩ. (35)
The zonotopic structure of Φk allows this restriction to be easily
expressed by a systemof linear constraints on ũ as follows. For each
k and ĩ, (35) can be expressed using (5) and (9) as φk(ũ0:k−1, ĩ0:k) ∈

X ⊖ {GΦk (ĩ0:k), 0}. Given X = {z : Hz ≤ k}, Lemma 1 can be used
to compute k′ such that {z : Hz ≤ k′

} = X ⊖ {GΦk (ĩ0:k), 0}. Thus,
(35) is equivalent to Hφk(ũ0:k−1, ĩ0:k) ≤ k′, which is a polyhedral
constraint on ũ0:k−1 after recursively computing the nominal state
φk(ũ0:k−1, ĩ0:k) as an affine function of ũ0:k−1.
6. Computational complexity and approximations

The complexity of (33) is governed by the number of binary
variables, which is B =

Q
q=1(2n

[q]
g ). Assuming that n[q]

g = ng

for all q and letting ℓ = ng/((N + 1)ny) be the order of the
zonotopes Z̃ [q], B = Q (2(N + 1)nyℓ). This section and the next
consider methods for reducing complexity by reducing either Q
or (2(N + 1)nyℓ). In all of these methods, the requirements on ũ
are tightened. Thus, a more conservative input may result, but the
guarantee of diagnosis is maintained.

6.1. Pair elimination

To each distinct pair of scenarios in Ĩ, there corresponds a con-
straint Ñ[q]ũ ∉ Z̃ [q]

≡ {G[q], c[q]
}, leading to (2(N + 1)nyℓ) binary

variables in (33). In this section, a preprocessing step is developed
that, for each pair, attempts to eliminate this constraint or replace
it by a single linear constraint on ũ, thus eliminating (2(N +1)nyℓ)
binary variables.

For each pair ĩ, j̃ ∈ Ĩ, indexed by q, we solve the QP

min{J(ũ) : ũ ∈ Ũ, Ñ[q]ũ = G[q]ξ + c[q], ∥ξ∥∞ ≤ 1}. (36)

If (36) is infeasible, then @ũ ∈ Ũ such that N[q]ũ ∈ Z [q], and hence
the separation constraint for this pair can be eliminated from (19).
Otherwise, let ũ[q]

∗ and J [q]∗ be optimal solution and objective values
and consider the constraint

(λ[q])Tũ ≤ (1 − γ )J [q]
∗
, (λ[q])T ≡ (ũ[q]

∗
)TR̃, (37)

where γ > 0 is a specified threshold and R̃ is the matrix such that
J(ũ) = ũTR̃ũ.

Lemma 6. If ũ ∈ Ũ does not separate ĩ and j̃ on [0,N], then it
violates (37). Moreover, every ũ violating (37)has J(ũ) ≥ (1−γ )2J [q]∗ .

Proof. Choose ũ in the set {ũ ∈ Ũ : N[q]ũ ∈ Z [q]
}. Since this set is

convex, it contains all convex combinations of ũ and ũ[q]
∗ . Thus, by

optimality of ũ[q]
∗ ,

(ũ[q]
∗

+ σ(ũ − ũ[q]
∗
))TR̃(ũ[q]

∗
+ σ(ũ − ũ[q]

∗
)) ≥ J [q]

∗
, (38)

for all σ ∈ [0, 1]. Some rearrangement gives that

2σ(λ[q])T(ũ − ũ[q]
∗
)+ σ 2J(ũ − ũ[q]

∗
) ≥ 0. (39)

The first termdominates as σ → 0, so that (λ[q])Tũ ≥ (λ[q])Tũ[q]
∗ =

J [q]∗ > (1 − γ )J [q]∗ .
Since J is convex, it is supported by its linearization about ũ[q]

γ ≡

(1 − γ )ũ[q]
∗ , and hence

J(ũ[q]
γ )+ 2(1 − γ )(λ[q])T(ũ − ũ[q]

γ ) ≤ J(ũ), (40)

for all ũ. If ũ violates (37), then the second term is positive, so that
J(ũ) ≥ J(ũ[q]

γ ) = (1 − γ )2J [q]∗ .

Beginning with q = 1, the constraint Ñ[q]ũ ∉ Z̃ [q] in (19) is
replaced with (37) if J [q]∗ > 0 (i.e., 0 ∉ Z [q]). If (37) is applied
for q, it is added to the definition of Ũ before (36) is solved for
q + 1, and this process is repeated until q = Q . By the first
conclusion of Lemma 6, the end result is a restriction of (19).
However, if the resulting program has an optimal objective value
less than (1 − γ )2J [q]∗ for all q, then the second conclusion of
Lemma 6 guarantees that the reformulated program is equivalent
to the original. In general, this procedure is very useful whenmany
scenarios are considered, since it is likely there are few, key pairs
that are difficult to distinguish (i.e., those with 0 ∈ Z [q]), with the
rest being relatively easy (i.e., those with 0 ∉ Z [q]). This procedure
is applied in Section 8 with γ = 10−6.
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6.2. Zonotope order reduction

Each constraint Ñ[q]ũ ∉ Z̃ [q] that is not eliminated through
the methods of the previous section will contribute (2(N +

1)nyℓ) binary variables to (33), where ℓ is the order of the
zonotope Z̃ [q]. As discussed in Section 3.1, a given zonotope can
be overapproximated by a zonotope of lower order (i.e., fewer
generators) using standard techniques (Althoff et al., 2010). Thus,
ℓ can be reduced by replacing Z̃ [q] by such an overapproximation.
Clearly, this approximation introduces some conservatism in
(19). In particular, the optimal objective value may increase.
Nonetheless, the optimal solution is guaranteed to be a separating
input by Theorem 3. Moreover, reducing the order by one reduces
the number of binary variables by a factor of Q (2(N + 1)ny). In
Section 8, it is shown that this approach can greatly simplify (33)
with only a small impact on the optimal solution due to the added
conservatism.

7. An observer-based diagnosis method

The previous section considered reductions in the number of
binary variables B = Q (2(N + 1)nyℓ) in (33) by reducing Q
and ℓ. However, B still has an undesirable dependence on N ,
which may be large for some problems. This section presents
a more conservative definition of a separating input in which
the intersection condition (16) is replaced by the condition that
the outputs of set-based observers (Combastel, 2003; Shamma,
1999) are disjoint at time N . Since this condition involves sets of
dimension ny rather than (N + 1)ny, such inputs can be computed
through an analog of (33) with only B = Q (2nyℓ) binary variables.
Furthermore, all of the data required to formulate this optimization
are computed recursively (i.e., the high-dimensional sets in (16)
need not be constructed), making this method tractable for large
systems or large N .

For each i ∈ I, choose L(i) ∈ Rnx×ny and define AL(i) ≡

A(i) − L(i)C(i). For each scenario ĩ ∈ Ĩ, we employ an observer
of the form

x̂k+1 = A(ik)x̂k + B(ik)uk + r(ik)+ L(ik)(yk − ŷk), (41)

ŷk = C(ik)x̂k + s(ik), (42)

with x̂0 = c0 (recall the notation X0 = {G0, c0}). Denote the
state and output at k by φ̂k(ũ, ĩ, ỹ) and ψ̂k(ũ, ĩ, ỹ), respectively.
Regardless of ũ, the errors êk ≡ xk − x̂k and f̂k ≡ yk − ŷk satisfy

êk+1 = AL(ik)êk + Bw(ik)wk − L(ik)Dv(ik)vk, (43)

f̂k = C(ik)êk + Dv(ik)vk. (44)

Define E0 ≡ X0 − c0 = {G0, 0}. Since ê0 ∈ Ê0, bounds on the errors
(êk, f̂k) can be computed recursively by

Êk+1 = AL(ik)Êk ⊕ Bw(ik)W ⊕ (−L(ik)Dv(ik)) V , (45)

F̂k = C(ik)Êk ⊕ Dv(ik)V . (46)

For any ũ ∈ RNnu , ĩ ∈ Ĩ, and ỹ0:N−1 ∈ RNny , (41)–(42) and (45)–(46)
together define a set-valued observerwith state Φ̂N(ũ, ĩ, ỹ0:N−1) ≡

φ̂N(ũ, ĩ, ỹ0:N−1) ⊕ ÊN(ĩ) and output Ψ̂N(ũ, ĩ, ỹ0:N−1) ≡ ψ̂N(ũ, ĩ,
ỹ0:N−1) ⊕ F̂N(ĩ). These sets can be computed recursively online.
From the error bounds computed above, it is clear that the observer
satisfies

ỹ ∈ Ψ̃0:N(ũ, ĩ) H⇒ yN ∈ Ψ̂N(ũ, ĩ, ỹ0:N−1). (47)

Note, however, that the observer is not exact in the sense that the
converse of (47) does not hold.
Now, consider a fault diagnosis scheme based on checking

yN ∈ Ψ̂N(ũ, ĩ, ỹ0:N−1) (48)

online, for each ĩ ∈ Ĩ. If (48) fails for ĩ ∈ Ĩ, then the contrapositive
of (47) implies that ĩ did not occur. This observation suggests the
design of ũ such that (48) holds for exactly one ĩ ∈ Ĩ. However, it is
only necessary to enforce this condition for certain ỹ ∈ R(N+1)ny , as
described in the following definition and subsequently discussed.
The qualifier L below distinguishes this condition from (16) and
reflects the dependence on L(i), i ∈ I.

Definition 2. An input ũ ∈ RNnu is said to L -separate ĩ, j̃ ∈ Ĩ at N
given ĩ, if

Ψ̂N(ũ, ĩ, ỹ0:N−1) ∩ Ψ̂N(ũ, j̃, ỹ0:N−1) = ∅, (49)

∀ỹ0:N−1 ∈ Ψ̃0:N−1(ũ0:N−2, ĩ0:N−1). (50)

Similarly, ũ ∈ RNnu is said to L -separate ĩ, j̃ ∈ Ĩ at N given j̃ if
(49) holds ∀ỹ0:N−1 ∈ Ψ̃0:N−1(ũ0:N−2, j̃0:N−1). If ũ both L -separates
ĩ, j̃ ∈ Ĩ at N given ĩ and given j̃, then it is simply said to L -separate
ĩ, j̃ ∈ Ĩ at N . Finally, ũL -separates Ĩ at N , or is a L -separating input,
if it L -separates every ĩ, j̃ ∈ Ĩ with ĩ ≠ j̃.

To see that every L -separating input guarantees diagnosis via
the tests (48), suppose that ũ is injected, scenario ĩ ∈ Ĩ occurs,
and the output ỹ ∈ R(N+1)ny is measured. By (47), (48) holds for
ĩ. Moreover, ỹ0:N−1 must satisfy (50). Thus, if ũ is a L -separating
input, then (49) and (50) imply that (48) fails for all other j̃ ∈

Ĩ. Therefore, checking (48) for all ĩ ∈ Ĩ guarantees diagnosis
at N . Note, however, that it is not required that all of the sets
Ψ̂N(ũ, j̃, ỹ0:N−1) aremutually disjoint, but only that the observer set
for the correct scenario is disjoint from all of the others, regardless
of what the correct scenario turns out to be. Finally, when N is
large, the inclusions (48) are much easier to check online than
the test ỹ ∈ Ψ̃0:N(ũ, ĩ) required to make use of separating inputs,
because (48) involves an ny-dimensional set that can be recursively
computed, whereas Ψ̃0:N(ũ, ĩ) is an (N + 1)ny-dimensional set and
cannot be recursively computed (see Section 3.2).

Although L -separating inputs have an intuitive interpretation,
a weaker condition suffices to ensure diagnosis via (48), and this
condition enhances the computational advantages of the observer-
based method, as discussed in the next section.

Definition 3. An input ũ ∈ RNnu is said to L ∗-separate ĩ, j̃ ∈ Ĩ
at N if it either L -separates ĩ, j̃ ∈ Ĩ at N given ĩ or given j̃, but
not necessarily both. Similarly, ũ L ∗-separates Ĩ at N , or is a L ∗-
separating input, if it L ∗-separates every ĩ, j̃ ∈ Ĩ with ĩ ≠ j̃.

If ũ is a L ∗-separating input, then it can happen that yN ∈

Ψ̂N(ũ, ĩ, ỹ0:N−1) ∩ Ψ̂N(ũ, j̃, ỹ0:N−1) for some ĩ, j̃ ∈ Ĩ. Nonetheless,
the tests (48) still suffice to determine the correct scenario. For
example, if ũwas designed to separate ĩ, j̃ at N given ĩ (as opposed
to given j̃), then the failure of (49) immediately implies that
ỹ0:N−1 ∉ Ψ̃0:N−1(ũ0:N−2, ĩ0:N−1), and hence ĩ did not occur. This
reasoning can be used to eliminate one scenario from every pair
with yN in the intersection of their observer output sets, leaving
only the correct scenario. Despite the need for this additional
reasoning, optimal L ∗-separating inputs are easier to compute
than optimalL -separating inputs (see Section 7.1), and can clearly
achieve lower objective values.

Any L ∗-separating input (and hence any L -separating input)
is also a separating input in the sense of Definition 1, but the
converse is not true because the observer sets Ψ̂N are approximate
(i.e., the converse of (47) is false). The proofs of these assertions
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are straightforward and are omitted for brevity. The practical
consequence is that optimal separating inputs are guaranteed to
be at least as good as optimal L ∗-separating inputs. On the other
hand, L ∗-separating inputs aremuch easier to compute when N is
large.

7.1. Optimal L - and L ∗-separating inputs

This section shows that the set of L ∗-separating inputs can be
described in the form

{ũ ∈ RNnu : N[q]ũ ∉ Z [q], q = 1, . . . ,Q }, (51)

formatricesN[q]
∈ Rny×Nnu and zonotopes Z [q]

⊂ Rny to be derived.
Of course, (51) is exactly the form used for the set of separating
inputs in Section 5, so that the optimization procedure described
there can be applied directly to compute optimal L ∗-separating
inputs.

Let ĩ, j̃ ∈ Ĩ, ĩ ≠ j̃. It suffices to derive a constraint N[q]ũ ∉

Z [q] equivalent to the condition that ũ L -separates ĩ, j̃ at N given
ĩ. Adding one such constraint for each distinct pair of scenarios
specifies the set of L ∗-separating inputs, and the L -separating
inputs can be specified by adding a second constraint for each pair
that is derived analogously.

To begin, (49) is reformulated using Lemma 2 to obtain

ψ̂N(ũ, j̃, ỹ0:N−1)− ψ̂N(ũ, ĩ, ỹ0:N−1) ∉ F̂N(ĩ)⊕ F̂N(j̃). (52)

The set of differences ψ̂N(ũ, j̃, ỹ0:N−1)−ψ̂N(ũ, ĩ, ỹ0:N−1) achievable
with ỹ0:N−1 generated by scenario ĩ can be computed recursively
as follows. Assuming that ĩ occurs, consider the evolution of qk =

(x̂k(ĩ), x̂k(j̃), xk), where xk is the system state, and x̂k(ĩ) and x̂k(j̃)
are the states of the observers for scenarios ĩ and j̃, respectively.
Straightforward algebra shows that qk and the corresponding
output pk = (ŷk(ĩ), ŷk(j̃), yk) obey
qk+1 = Akqk + Bkuk + Bw,kwk + Bv,kvk + Rk, (53)
pk = Ckqk + Dv,kvk + Sk, (54)

where Bk ≡

BT(ik) BT(jk) BT(ik)

T
,Bw,k ≡


0 0 BT

w(ik)
T
,Dv,k ≡

0 0 DT
v(ik)

T
,Bv,k ≡


(L(ik)Dv(ik))T (L(jk)Dv(ik))T 0

T
,Sk ≡

s(ik), s(jk), s(ik)

,Rk ≡


r(ik), r(jk)+ L(jk)(s(ik)− s(jk)), r(ik)


,

Ak ≡

AL(ik) 0 L(ik)C(ik)
0 AL(jk) L(jk)C(jk)
0 0 A(ik)


,

Ck ≡

C(ik) 0 0
0 C(jk) 0
0 0 C(ik)


.

Note that (53)–(54) is a linear system with zonotopic errors and
zonotopic initial condition set {c0}×{c0}×X0. From the derivations
in Section 3.2, it follows that the set of all possible pN is a zonotope
of the form ΓN(ũ) = {GΓN ,B

Γ

N ũ + γ N}, where γ N is the output
of (53)–(54) at N when x0 = c0, (wk, vk) = (cW , cV ), and uk =

0, ∀k. Moreover, GΓN ,B
Γ

N , and γ N can all be computed recursively
as described in Section 3.2.

From the definition of pN , the set of differences on the left-
hand side of (52) is given by [−I I 0]ΓN(ũ). Thus, (52) becomes
[−I I 0]ΓN(ũ) ∩ (F̂N(ĩ) ⊕ F̂N(j̃)) = ∅. By a final application of
Lemma 2, this is equivalent to

[I − I 0]BΓ

N ũ ∉ F̂N(ĩ)⊕ F̂N(j̃)⊕ [I − I 0]ΓN(0), (55)

using the fact that M{G,−c} = M{−G,−c} = −M{G, c} for any
matrix M and zonotope {G, c}.

Eq. (55) is now in the desired form, so that an optimalL - orL ∗-
separating input can be computed exactly as in Section 5. However,
the zonotope on the right-hand side of (55) is ny-dimensional as
opposed to (N + 1)ny-dimensional. With fixed zonotope order ℓ,
such a set is described by nyℓ generators, leading toQ (2nyℓ) binary
variables in the computation of an optimal L ∗-separating input
(this increases to (2Q )(2nyℓ) for L -separating inputs because two
constraints are required for each pair ĩ, j̃ ∈ Ĩ). Clearly, the resulting
reduction in computational time can be very substantial when
N is large. On the other hand, L ∗-separating inputs are more
conservative than separating inputs due to the conservatism of the
set-based observers, so separating inputs are preferred when the
computational cost is manageable.

7.2. Choosing the observer gains

The choice of the matrices L(i), i ∈ I, has a large impact on the
performance of the observer-basedmethod. As a limiting case, it is
simple to show that choosing L(i) = 0, ∀i ∈ I, gives the condition
for separation

ΨN(ũ, ĩ) ∩ ΨN(ũ, j̃) = ∅. (56)

In words, this choice requires the reachable sets at the terminal
time N to be disjoint, so that diagnosis can be achieved solely on
the basis of the terminal measurement yN . This choice performs
reasonably well in practice, especially when rank(C(i)) = nx for all
models. In contrast to non-zero choices of L(i), note that the sets
in (56) do not depend on the output measurements, and that (56)
is symmetric with respect to interchange of ĩ and j̃, so that L - and
L ∗-separating inputs coincide.

Assuming that each model is observable, nontrivial observer
matrices can be designed so that eachAL(i) is stable using standard
algorithms, such as Kalman filtering or pole placement. The latter
choice ensures that the error sets Êk are described by stable
dynamics and works well for most cases attempted. However, the
results are highly dependent on the user-specified pole locations.
At present, it is not clear how to choose optimal observer matrices
in the context of the proposed diagnosis scheme. We leave this
topic for future research.

8. Numerical examples

Consider the second-order linear nominal system

A(1) =


0.6 0.2

−0.4 −0.2


, B(1) =


1 0
0 1


,

C(1) =

1 0


,

Bw(1) =


1 0
0 0


, Dv(1) =


1

, r(1) =


0
0


,

s(1) =

0

,

with four fault models, i = 2, . . . , 5, defined by the modifications
to the nominal model:

B(2) =


1 0
0 0


, B(3) =


0 0
0 1


,

A(4) =


1.2 0.2

−0.4 −0.2


, A(5) =


2.0 0.2

−0.4 −0.7


.

Models 2 and 3 have faulty actuators, and models 4 and 5
represent system faults. In generator notation, define X0 =

{0.2I, (−3,−3)},W = {0.5I, 0} and V = {0.2, 0}.
First, the method of Section 5 was applied to synthesize an

input that distinguishes betweenmodels {1, . . . , 5} in a minimum
number of stepsN . For convenience, themethodof Section 5will be
referred to as the full-measurement method below. It is assumed
that onemodel is active on all of [0,N]; i.e., Ĩ contains the five fault
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Fig. 1. Full-measurement method: Reachable output sets on [0, 2] given the optimal
separating input with N = 2 and ℓ = 2.

scenarios (1, . . . , 1), . . . , (5, . . . , 5). For optimization, R = I and
U = {u : ∥u∥∞ ≤ 9}. To limit the number of binary variables
in (33), the zonotope order is limited to ℓ = 1 or ℓ = 2 below,
resulting in 2Q (N + 1)nyℓ = 10(N + 1) or 20(N + 1) binary
variables. The method was feasible for N ≥ 2. With ℓ = 1 and
N = 2, the minimum two-norm separating input was found in
0.02 s,2with ∥ũ∥2 = 8.6143. Increasing ℓ to 2, themethod required
3.58 s and found a minimum norm of 8.6081, which is a slight
reduction at the cost of a significant increase in the computational
time. These results did notmakeuse of the pair eliminationmethod
of Section 6.1. Including this procedure, 3 pairs are eliminated
based on infeasibility of (36) (i.e., @ũ ∈ Ũ such that Ñũ ∈ Z̃ [q]).
With ℓ = 1, an additional pair is eliminated through the inclusion
of a linear constraint leaving Q ′

= 6 pairs, and with ℓ = 2, four
additional pairs are eliminated in this way, leaving Q ′

= 3. The
drastic reduction when ℓ = 2 results in a speed-up of one order
of magnitude (0.36 s) while providing the same optimal objective
value as the original problem (∥ũ∥2 = 8.6081). Fig. 1 shows the
reachable output sets on [0, 2] for all models given the optimal
separating input. Clearly, these sets are disjoint, so that output
measurements on [0, 2] will be consistent with at most one fault
scenario, providing the desired fault diagnosis.

Next, the observer-based method of Section 7 is applied to the
same problem and compared. Two choices of the observer gain for
each i ∈ I are considered: (a) L(i) = 0, and (b) L(i) is the Kalman
observer gain computed with weighting matrices Q′

= 1000I and
R′

= I (not to be confused with R used to define J in Section 5).
Choice (a)will be referred to as the terminal-measurementmethod
following the discussion in Section 7.2. The advantage of the full-
measurement method over the terminal-measurement method
can be seen in Fig. 1. Although the 3-dimensional sets in Fig. 1 are
disjoint, their projections onto the y2-axis are not. Therefore, the
optimal separating input is not L ∗-separating for choice (a). The
terminal method is found to be feasible for N ≥ 3.With N = 3 and
ℓ = 1, the minimum two-norm L ∗-separating input was found
in 0.01 s, with ∥ũ∥2 = 11.5203 (see Fig. 2). Using choice (b), L ∗-
separating inputs exist for N ≥ 2. With N = 2 and ℓ = 1, the
minimumtwo-normL ∗-separating inputwas found in 0.01 s,with
∥ũ∥2 = 9.2144. This example shows that non-zero observer gains
can provide a reduction in input length and norm. Fig. 3 shows the
results for choice (b). Note that, when L(i) ≠ 0, the position of the
output reachable sets depends on the measurements. Fig. 3 shows
a single simulation assuming model i = 1 is correct. According to
the definition of anL ∗-separating input, it is guaranteed for such a

2 Laptop (Intel i7, 2.67 GHz, 4 GB RAM) running Windows 7 and using a single
core; optimization using CPLEX 12.2 (IBM, 2012).
Fig. 2. Observer-based method, L(i) = 0: One-dimensional observer output sets
(boxes) at k = 1, 2, and 3 given the optimal L ∗-separating input with N = 3 and
ℓ = 1. Sets are plotted at different vertical positions for clarity. Circles represent
1000 output samples from the nominal and faulty systems.

Fig. 3. Observer-based method, Kalman observer gain: One-dimensional observer
output sets (boxes) at k = 1, 2, and 3, given the optimal L -separating input with
N = 2 and ℓ = 1, for one simulation of the system with i = 1. Sets are plotted at
different vertical positions for clarity. The red line represents the measurement.

simulation that the correct model can be determined via the tests
(48), as described in Section 7. Under the same input, an analogous
guarantee holds regardless of the correct model. However, the
observer sets need not be mutually disjoint as they are in Fig. 3.
For this example, increasing ℓ did not provide a benefit for either
observer-based approach.

To illustrate the computational aspects of the proposed ap-
proaches, they were applied to randomly generated models with
nx = 50 and ny = nu = nw = nv = 10. The MATLABTM func-
tion drss was used to generate systems with random stable poles
(with the possible exception of poles at z = 1). First-order zono-
topes X0,W , and V were also randomly generated. The input con-
straints U = {u : ∥u∥∞ ≤ 20} were fixed for all tests. The
full-measurement method and observer-based method (with
L(i) = 0) were first evaluated for the separation of two randomly
generated systems with N = 10 and ℓ = 1. Over 100 tests, the av-
erage computation time of the full method was 1.13 s, compared
to 0.04 s for the observer-based method. In terms of norm, the
full method performed much better (19.01 vs. 41.70). Increasing
the number of models to 3, the average time for the full method
increased to 50.30 s, compared to 1.04 s for the observer-based
method, which clearly shows the increase in computational com-
plexity for additional models. Again, the minimum norm obtained
with the full method was considerably smaller (247.10 vs. 573.99).
When considering longer horizons, the full method became too
costly due to the dependence of the number of binary variables on
N . On the other hand, the observer-basedmethodwas able to solve
problem instances with N = 100 in an average time of 20.42 s. The
number of binary variables required for this method is indepen-
dent of N . Compared to the case where N = 10, the mild increase
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Table 1
Description of faults.

Model Fault type

1 Fault-free
2 Increase of armature resistance (+0.5�)
3 Increase of armature resistance (+1.14�)
4 Wearing of brush, insufficient brush pressure
5 Short circuit of two commutator bars
6 Disconnection of coil from commutator bar

in time is due to the increased number of continuous decision vari-
ables ũ. Considering two models with increased zonotope order
ℓ = 2, average times for N = 10 and N = 100 were found to
be 6.0358 s and 18.4609 s, respectively.

8.1. Permanent-magnet DC motor

A low-frequency linear model for a permanent-magnet DC
motor can be developed from basic physical laws as:

di(t)
dt

dn(t)
dt

 =


−Ra/L −Ke/L
Kt/J1 −fr/J1

 
i(t)
n(t)


+


1/L
0


u(t)


y1(t)
y2(t)


=


1 0
0 1

 
x1(t)
x2(t)


,

where u, i, Ra, L, Ke, Kt , J1, and fr denote the armature voltage, cur-
rent, resistance, inductance, torque constant, back EMF constant,
motor inertia, and friction coefficient, respectively. Six fault mod-
els are described in Table 1, corresponding to the model parame-
ters in Table 2 (Liu, Zhang, Liu, & Yang, 2000). For each fault, the
parameters in Table 2 were identified from experimental data.

The torque constant Kt (N m/amp) is related to Ke by Kt =

1.0005Ke. To keep the nominal speed of the motor at around
70.3 rad/s, the nominal input was set to uc = 6 V, which was
modeled by adding r(i) = B(i)uc to the state equations. The active
input us was added to uc , subject to the constraint |us| ≤ 6 V.
The models were discretized by forward Euler differencing with a
sampling interval of 5 ms. The initial condition and measurement
errors lie in X0 =


0.06 0
0 0.6


,

0.6
70


and V =


0.06 0
0 0.6


, 0


,

respectively. In order to account for parameter uncertainties,
the discretized state dynamics were augmented with the term
Bw(i)wk, where

Bw(1) =


−0.0254 −0.0778
−0.3996 0.3026


,

Bw(2) =


−0.0231 −0.0471
−0.3470 0.2798


,

Bw(3) =


−0.0227 −0.0346
−0.3113 0.2230


,

Bw(4) =


−0.0242 −0.0537
−0.3516 0.2797


,

Bw(5) =


−0.0241 −0.0661
−0.3672 0.3154


,

Bw(6) =


−0.0282 −0.0589
−0.3926 0.1684


,

and wk lies in W = {I, 0}. These matrices were obtained
by assuming 5% uncertainty in Ra, Ke, J1, and fr , and computing
the worst-case additive error with the current and motor speed
bounded in [−2, 2] A and [−150, 150] rad/s, respectively.

The problem of separating the six models in Table 1 was con-
sidered under the assumption that one model is active on the
whole interval of interest. That is, Ĩ consists of the six scenar-
Table 2
Fault model parameters.

Model Ra (�) L (10−3 H) Ke

10−2 V rad

s


J1


10−4 J s2

rad


fr


10−4 J s

rad


1 1.2030 5.5840 8.1876 1.3528 2.3396
2 1.7725 5.5837 8.0203 1.3320 2.3769
3 2.2837 6.4942 8.1094 1.4503 1.9291
4 1.7690 6.0798 8.7987 1.4964 2.3570
5 1.1743 4.4053 7.0094 1.1664 3.8335
6 1.4365 8.7548 7.7020 1.4185 4.1279

Fig. 4. Optimal L ∗-separating input with L(i) = 0 (lower right) separating
observer output sets for six DC motor fault models on the interval [0, 9] (upper
left–lower left). Circles represent 1000 samples of the nominal and faulty outputs.

ios (1, . . . , 1), . . . , (6, . . . , 6). The observer-based method with
L(i) = 0 was applied with zonotope order reduction to ℓ = 3.
The minimum horizon N for which a feasible L ∗-separating input
exists was found to be 9. Theminimum two-norm separating input
was found in 58.47 s, with a norm of 15.92 (see Fig. 4). In this case,
applying the pair elimination approach of Section 6.1 reduces the
number of pairs from 15 to 10, but does not preserve the optimal
solution of the original problem; the minimum horizon increases
to 10 with optimal input norm ∥ũ∥ = 16.0095. On the other hand,
the computational time is reduced dramatically, to only 0.065 s.

Considering the 3 scenarios (2, . . . , 2), (4, . . . , 4), (6, . . . , 6),
the results of the observer-based method were compared with
L(i) = 0 and L(i) designed via pole placement (the Kalman
observer design did not provide satisfactory results in this case).
In the second case, L(i) was chosen to place the eigenvalues of
AL(i) at zero for all i = 2, 4, 6. Table 3 reports the results for
different values of ℓ, which clearly show that an appropriate design
of L(i) can drastically improve performance. The full-measurement
method for this example was feasible for N ≥ 2. With N = 2
and ℓ = 1 the minimum two-norm separating input was found
in 0.035 s, with a norm of 6.5762.

9. Conclusions

A deterministic method was proposed for computing the set
of inputs that are guaranteed to lead to a fault diagnosis in a
specified period of time, provided that such inputs exist. This set
is shown to be characterized in terms of the complement of a
finite number of zonotopes, and can be computed efficiently and
reliably. Furthermore, a computationally practical optimization
formulation has been derived for choosing an optimal separating
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Table 3
Effect of gain on observer-based method.

ℓ L(i) = 0 Pole placement
N ∥ũ∥ Time N ∥ũ∥ Time

1 7 13.571 0.02 2 7.182 0.01
2 7 13.571 0.02 2 7.182 0.01
3 7 13.571 0.07 2 7.182 0.03
4 7 13.559 0.28 2 6.846 0.71
5 3 8.433 4.41 2 6.846 4.33
6 3 8.230 36.71 2 6.846 22.35

input in a flexible way. Using this formulation, a separating input
ofminimumnorm can be computed, or the set of separating inputs
can be used within a more complex predictive control calculation,
which will be the focus of subsequent investigations.
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