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ABSTRACT: The evolution of particle shape is an important consideration in many industrial crystallizations. This article
describes the design of temperature-cycling experiments (between alternating positive and negative supersaturations) to
substantially change crystal shape with only a small number of cycles. The growth and dissolution of monosodium glutamate
crystals of varying shapes were monitored using in-process attenuated total reflection—Fourier transform infrared spectroscopy
(ATR-FTIR), focused beam reflectance measurement (FBRM), particle vision and measurement (PVM), and off-line optical
microscopy. The growth and dissolution kinetics were estimated in a multidimensional population balance model based on solute
concentration and crystal dimension measurements. This model fitted the experimental data with a limited number of parameters
of small uncertainty. In addition, with the estimated kinetic parameters, the model predicted the crystal size and shape
distribution in a different temperature-cycling experiment reasonably well. In contrast to previous studies that have estimated
kinetics along multiple crystal axes in mixed-tank crystallizers, this study implements dissolution terms in the multidimensional

population balance model along multiple axes.

1. INTRODUCTION

A large proportion of crystallizations from solution produce
rod-like crystals, which can cause problems in downstream
process operations. One effective method for modifying the
crystal shape and size is to introduce molecular additives,' ™
which have the potential problem of contaminating the
product. An alternative method of shape modification is to
optimally control the supersaturation trajectory or by cycling
between positive and negative supersaturations to take
advantage of different relative dependencies along the crystal
axes of growth and dissolution.*”'" A very large change in the
crystal shape has been reported with 20—80 temperature cycles,
both theoretically and experimentally.*'* This article exper-
imentally demonstrates that a large change in crystal size and
aspect ratio is possible with a reduced number of temperature
cycles (e.g, 3—6).

Many efforts have been directed toward the construction of
multidimensional population balance models (PBMs) suitable
for the design of process operations to optimize crystal
shape.”’>™** These models require the estimation of growth
kinetics along multiple axes, with most methods based on
sampling the slurry during crystallization, or on employing
imaging technology.**>™** A commercial instrument that has
been used for in situ measurement of the crystal shape
distribution is particle vision and measurement (PVM).*?
Focused beam reflectance measurement (FBRM) is commonly
available in crystallization laboratories, but it is not possible to
construct an arbitrary two-dimensional crystal size distribution
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(2D CSD) from measurements of the chord length distribution
(CLD) obtained via FBRM. The CLD data are not sufficiently
informative for accurate quantitative correlation to a 2D CSD,
even with a design limiting the variety of CSDs with a set seed
mass and supersaturation profile.

To identify dissolution and growth kinetic parameters in a
2D population balance model (PBM), this article uses solute
concentrations determined using ATR-FTIR spectrosc0py34_36
and mean crystal lengths and widths from microscope
images.17'37_40 Trends in mean crystal width, length, and
aspect ratio in intermediate times were measured using FBRM.
The initial crystal size distributions in the PBM were
determined from PVM measurements. Compared to the
previously published multidimensional PBMs, the PBM in
this article includes dissolution kinetics. The PBM is used to
predict the crystal size and shape distribution in a temperature-
cycling experiment with a different supersaturation profile.

2. EXPERIMENTAL AND NUMERICAL METHODS

This section summarizes experimental methods for character-
ization of the solute concentration and mean length and width
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for monosodium glutamate (MSG) crystals in aqueous solution
by attenuated total reflection—Fourier transform infrared
(ATR-FTIR) spectroscopy, chemometrics, FBRM, PVM, and
optical microscopy. Then, we describe a two-dimensional
population balance model (PBM) for the growth and
dissolution of rodlike crystals, and the numerical algorithms
for simulation of the model and for estimation of the growth
and dissolution kinetics along the length and width dimensions
of the crystals.

2.1. Experimental Setup. The solute was monosodium
glutamate (MSG, from Ajinomoto, with DSC and TGA data in
Figures S1 and S2 in the Supporting Information), whose
crystals are rodlike in shape. The solvent was deionized (DI)
water. Within the experimental temperature range and solvent,
MSG crystallizes as a monohydrate.*' Crystallizations were
carried out in two 100-mL cylindrical glass vessels were placed
side by side in an EasyMax crystallization platform. Because of
the inability to place all probes within one vessel (due to space
limitations), one vessel had PVM (Lasentec V819L) and S-
series FBRM probes and the other vessel had ReactIR and G-
series FBRM probes. This study utilized chord length data
measured every 10 s with the G-series (G400) FBRM probe
and iC FBRM 4.2.65 Beta software. Infrared spectra for MSG in
DI water were collected once every minute in a stirred
crystallizer, using an in situ ReactIR probe with iC IR 4.2
software (ReactIR 15 FTIR reaction analysis system) with 256
scans collected for each spectrum and DI water at 25 °C used
for the background spectrum. Metal overhead stirrers were
continuously operated at rotational speed of 150—200 rpm,
which was just enough to well suspend the crystals. The
temperatures of both crystallizers were measured every 2 s and
adjusted through the solid-state thermostat embedded in the
EasyMax platform controlled with iControl EasyMax 4.1
software. Off-line optical images were taken of the crystal
slurry or crystals obtained by vacuum filtration by polarized
microscopes (Leica DM2500 and Zeiss Axiovert 200) with a
digital camera (Leica DFC 400 Color).

2.2. Microscope Images for Measuring Mean Crystal
Length and Width. During two temperature-cycling experi-
ments, slurry samples of 2 mL were collected from the
crystallizer at certain times during the cycles when the slurry
was at the lowest temperature, to reduce potential size changes
during the off-line measurement of the mean crystal length and
width by optical microscope. The mean length and width of
crystals were measured from the microscope images.

2.3. IR Calibration for Solute Concentration. The two
crystallizers were cooled at a constant rate of 0.5 °C/min for
different known MSG concentrations (Table 1) in 120 g of
aqueous solution, while being measured with in situ ReactIR
spectroscopy and FBRM. Each decrease in the solute
concentration was achieved by dosing the solvent, followed
by equilibration after measurements were taken for a higher
concentration, all controlled with a procedure preset in the

Table 1. ReactIR Calibration Samples for In Situ Solute
Concentration Measurement

calibration  solute concentration (g/g temperature number of
sample solvent) range (°C) spectra
Csl 0.7937 65.0—48.3 34
Cs2 0.7576 55.0-37.9 35
Cs3 0.7246 44.9-32.1 26
Cs4 0.6944 35.0-22.7 25
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EasyMax software. The FBRM total counts per second were at
very low levels throughout the calibration experiments,
confirming that nucleation was negligible during these IR
calibration experiments (that is, the metastable limit was not
crossed).

IR absorbance spectra after DI water background subtraction
and baseline offset were exported from the iC IR 4.2 software.
Five chemometrics methods detailed by Togkalidou et al.*®
were applied to the absorbance spectra in the range 1200—1800
ecm™ with known solute concentrations and temperatures to
construct a linear calibration model for measurement of the
solute concentration:

1800
C= Z wa; + wrT + wy
j=1200

(1)

where C is the solute concentration (g MSG/g water), a; is the
absorbance at frequency j (cm™), T is the temperature (°C),
and wj, wy, and w, are regression coefficients. Representative
infrared (IR) spectra and the regression coefficients are shown

in Figure 1, with the equipment and procedures being the same
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Figure 1. (a) Representative Fourier transform infrared (FTIR)
spectra of MSG aqueous samples used for calibration. (b) Regression
coeflicients of the calibration model relating absorbance to solute
concentration.

as for other solute—solvent systems.**** The calculations were
carried out using in-house Matlab 5.3 code (The Mathworks,
Inc., Natick, MA). Standard principal component regression
with a noise level of 0.015 gave the smallest 95% prediction
interval of +0.0055 g/g solvent. The regression coefficient plot
in Figure 1b does not show any spikes that would indicate
overfitting, and is relatively flat except for frequencies where
there are large peaks, as expected.

2.4. Temperature-Cycling Experiments for Kinetics
Estimation and Model Validation. The cycling experiment
that produced the measurements of mean crystal length and
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Figure 2. Temperature profile for the estimation temperature-cycling experiment (five cycles).

width and solute concentration used for kinetics estimation
followed this procedure (Figure 2):

(1) Add 66.6 g of MSG (milled with IKA mill Werke MP 10)
to 60 mL of DI water.

(2) Stir at 25 °C for 5 min.

(3) Heat to 65 °C at a rate of 2 °C/min.

(4) Hold for 1 h to fully equilibrate.

(5) Cool to 35 °C at a rate of 10 °C/h.

(6) Hold at 35 °C for 30 min.

(7) Heat to 65 °C at a rate of 2 °C/min.

(8) Repeat the cooling/hold/heating cycle in Steps S—7

three more times before the end of the experiment.

The milling of the seed crystals to produce more surface area
for growth did not change the hydration state of the MSG
crystals (Figure S3 in the Supporting Information). The heating
rate in Figure 2 was set high because dissolution kinetics are
much faster than growth kinetics, which was observed in the
preliminary experiments by observing the IR spectra abruptly
stop changing when the temperature was held at a constant
value after heating. The cooling rate was set to be just slow
enough to suppress nucleation based on analysis of PVM and
optical microscopy images collected during preliminary experi-
ments.

Past studies have demonstrated a very large change in the
crystal shape with 20—80 temperature cycles.”'* In this study,
the temperature range was chosen to be much greater (65 °C —
35 °C =30 °C) so that a large crystal mass dissolves and then
grows during each cycle, to generate a larger change in crystal
shape during each cycle. The very high heating rate during the
dissolution state of each cycle, and the use of a cooling rate
nearly as high as possible while avoiding nucleation, enable a
larger number of cycles to be completed in the same time
period.

The mean crystal length and width were validated in another
temperature-cycling experiment that followed the same
experimental procedure, but with 7 cycles, a lower temperature
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range, and no solute concentration measurement. These
different experimental conditions were expected to lead to
different amounts of change in crystal size and shape for the
two experiments.

2.5. Simulation and Optimization Codes for Kinetics
Estimation and CSD Prediction. Experimental data (e.g,
size of time step, number of time steps, initial liquid
concentration and solvent mass) were input to a Matlab
simulation-optimization code that estimated kinetic parameters
based on an initial estimate obtained from an initial set of
simulation runs in which one parameter was changed at a time
based on physical intuition on the effect of each parameter on
the solute concentration and mean crystal length and width
profiles. The two-dimensional (2D) PBM included size-
dependent dissolution and growth terms,

o 0 d _
S @D + -Gy =0 forS20
of 0 J _ .

where f is the 2D population density, S the absolute
supersaturation, and ¢ the time. The growth and dissolution
rates in the length L and width W directions are assumed to be
2D generalizations of the 1D equations,44 ie.,

AE
G =k ——|S%(1 + 6, L
L Gyo exp( RT) ( Gy )

AE
GW = kao eXP(—E)SgW(l + 6GWW)

kp, (—=S)%
L= —Ly
kp, (=)™
Yowr (3)
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and §; and y define size dependencies. The 2D PBM (eq 2) was
combined with a solute mass balance and solved using a
multidimensional method of characteristics algorithm.*~** All
but six of the kinetic parameters were set to fixed values, as
described in the caption to Table 2, with the remaining six

Table 2. Kinetic Parameters Estimated from Fitting Data
from the Estimation Temperature-Cycling Experiment or
Set with Justifications”

optimal fitted or fixed
parameter value units parameter?
kg, 6.4 X 108 pum (g water)?/[min (g MSG)?] fitted
& 2.00 dimensionless fitted
g, 0 1/um fixed
kG, 2.3 X 108 pum (g water)?/[min (g MSG)?] fitted
w 2.00 dimensionless fitted
dg, 0 1/um fixed
kp, 44 x 10° um?® (g water)/[min (g MSG)] fitted
kp,, 1.6 x 10° um? (g water)/[min (g MSG)] fitted
d, 1 dimensionless fixed
dy 1 dimensionless fixed
y 1 dimensionless fixed
AE 71.24 kJ/mol fixed

“The lower and upper bounds for the growth exponents g and g
were 1 and 2, as specified by theory.*® The dissolution exponents dj
and d; were set equal to 1, to be consistent with the assumption of
mass-transfer-limited dissolution,®® and the size dependencies in the
growth rates (8, and 8¢, ) were set to zero, since nonzero values did

not significantly improve the fit to data. The average activation energy
(71.24 kJ/mol) in Gy, and G, expressions was estimated from ref 34.
The value of y was selected to capture the trends in the increase in
mean crystal length and width (see Figure 9b). Varying the value of
the dependency of the dissolution rate on the crystal dimensions (y in
eq 3) above 1 did not affect the quality of fit much (comparison not
shown). Although it could be argued from physical grounds that the
dissolution rate in the length direction should be better modeled as
being dependent on the size in the width direction and vice versa,
swapping these dependencies did not improve the quality of the
model’s fit to data.

parameters determined by applying successive quadratic
programming to minimize the sum-of-squared-deviations
between the model predictions and experiments,

Nc
. 1
min 2 Z |:Cmeasured(ti) - Cmodel(ti; 9)]2

0<6<0 o o
u 1
+ Z 2 [Lmeasured(tk) - Lmodel(tld 6)]2
k=1 OL,k
s 1
+ Z 2 |:M/measured(tk) - Wmodel(tk5 9)]2
k=1 Ow,k (4)
where
6 =[In kao In kGL0 S & In kDW In kDL]T (s)

is the vector of fitted model parameters, N is the number of
concentration measurements, ¢ is the standard deviation of
each measurement error, and the subscripts C, L, and W refer
to the solute concentration and mean crystal length and width,
respectively. These coeflicients weigh the relative confidence in
the measurements of solute concentration and mean crystal
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length and width, to produce parameter estimates that are
unbiased with minimum variance assuming that the errors have
zero expectation and are uncorrelated with each other and the
independent variables.*’

Uncertainties in the parameter estimates were quantified
using standard methods whose applications to crystallization
are well-established.’® With the vector of predicted variables

Yy=[C G = Cy Ly L, Ly L W W, Wy W, T

(6)
the sensitivity matrix for this system is
Pl 0r
=00 |y
[ ac, oC,  9C, aC,  aC, ac, |
dln kGW0 din kGLO (3gW ()gL oln k Dy dln k D,
0C, 0C, oC, 0C, 0C, 0C,
din kao din kGLO agw c?gL dln k Dy dln k D,
dCy. dCy. dCy, 0Cy,  9Cy, oCy.
dln kGW0 din kGLO (3gW ()gL dln k Dy dln k D,
oL, oL, oL, OL, oL, oL,
=| dln kao din kGLO agw c?gL dln k Dy dln k D,
oL, oL, oL, dL, oL, oL,
dln kGW0 din kGLO (3gW ()gL oln k Dy dln k D,
oW oW oW,  w, oW, oW,
din kao din kGLO agw c?gL dln k Dy dln k D,
ow, ow, ow, oW, ow, ow,
dln kGW0 din kGLO (3gW ()gL oln k Dy dln k D,
(7)

where 6* is the vector of optimal parameter estimates (values
listed in Table 2). Each element of F was calculated by the two-
point central finite difference formula and used to construct an
estimate of the parameter covariance matrix,

-1 —1 T
Vo =EV. E ©)

given the measurement error covariance matrix,

V. = diag(a.21 2 2 2 2 2 2 2 2)
Ye = A18\0c N OL,1 9 OL2 1 OL3 9 OL4 » Ow,1 0 Ow,2 s Ow,3 ) Ow e

©)

3. RESULTS AND DISCUSSION

3.1. Evolution of Crystal Dimensions for the Temper-
ature-Cycling Experiments. In the estimation temperature-
cycling experiment, the FBRM statistics had not converged to a
stable oscillation even after five cycles (Figure 3), with the
square-weighted mean chord length at the end of each cycle
increasing with cycle number, indicating that each cycle
continues to increase the size of the crystals. The increase in
the ratio of the mean cube-weighted and square-weighted mean
chord length (blue line in Figure 3) is associated with a change
in the mean aspect ratio (see Table 3). The trends agreed with
the off-line microscope images (see Figure 4) and PVM images
(see Figure S), which clearly showed that each cycle continued

dx.doi.org/10.1021/ie400859d | Ind. Eng. Chem. Res. 2014, 53, 5325-5336
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Figure 3. Mean chord length for various length weightings (none, length, square, and cubic) for the estimation temperature-cycling experiment. All
of the mean chord lengths show a periodic change following temperature cycles (cyan line) starting from the plateau of the first cycle (when the
slurry is equilibrated). Various length-weighted average chord lengths indicate that the crystal dimensions increase as the cycle number increases, and
the ratio of mean cube-weighted to square-weighted mean sizes indicate that the mean aspect ratio increases as the cycle number increases. To better
visualize the trends and variations, the chart displays 6 out of every 100 data points.

Table 3. Mean Aspect Ratio and Standard Deviations from
Microscope Measurements for the Five-Cycle Experiment®

mean aspect ratio standard deviation

cycle la 2.555 0.076
cycle 3b 3.244 0.159
cycle 4d 3.936 0.187
cycle Sc 4.660 0.243

“The sampling points (e.g,, 1a, 3b) are shown in Figure 2.

to increase the mean crystal length, width, and aspect ratio. The
same trends are seen in the FBRM statistics and off-line
microscope images for the validation temperature-cycling
experiment (see Figures 6 and 7). While past modeling results
for temperature cycling of a single crystal indicated that the
crystal shape can significantly continue to change after many
cycles,*'° an interesting aspect of the experimental data for the
crystal size and shape distribution in Figures 3—7 is that deep
cycling enables the mean crystal dimensions to significantly
increase at the end of each cycle.

We will see, in the solute concentration measurements in
section 3.2, that the solute concentration at the lowest
temperature, when the slurry samples are collected, increases
little from one cycle to the next. Since the total quantity of
solute molecules is constant, the total mass of crystals when
samples are collected changes slowly with cycle number, which
suggests that the increase in the crystal dimensions after each
cycle is mostly explained by a reduction in the total number of
crystals during each dissolution step. For this reduction to
occur, a significant fraction of the crystals becomes small
enough to completely dissolve in each cycle. This observation
implies that the CSD must become broader during each cycle,
which can only occur in the two-dimensional population
balance model (PBM(2)) if the growth and/or dissolution rates
are size-dependent. Most reported dissolution rate expressions
are size-dependent,** whereas most reported growth rates are
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size-independent,® so these assumptions were made in this
article.

3.2. Evolution of Crystal Dimensions and Solute
Concentration for the Estimation Temperature-Cycling
Experiment. The solute concentration during the estimation
temperature-cycling experiment is shown in Figure 8. For the
first cycle, the temperature was held constant immediately after
the first heating ramp, to enable a qualitative assessment of the
dissolution rate. The solution concentration reaches a constant
value shortly after the temperature is held constant, indicating
that the dissolution rate is fast enough for the solute
concentration to quickly reach steady-state (and, hence, the
saturated concentration).

The solute concentration at the highest temperature (~6S
°C) is almost the same for each cycle (Figure 8, where each
narrow peak arises from overshooting of the temperature at
each transition between heating to cooling), and the super-
saturation is largely consumed before the next heating stage
(Figure 9a). Given that the solute conditions are essentially the
same at the start of each cooling stage, the increase of solute
concentration at the end of each cooling stage (35 °C, see
Figure 8), must be associated with a decrease in the overall
crystal mass grown during each cycle. As the average
supersaturation during each cooling stage increases (thus the
growth rate increases™') with cycle number (Figure 9a), the
decrease in the overall crystal mass grown is explained by a
reduction in the amount of crystal surface area in each
subsequent cycle. This analysis is consistent with a decrease in
the total number of crystals at the end of each cycle, as the
crystals become larger, as seen in the FBRM statistics and PVM
and optical microscopy images (Figures 3—5).

The use of the in situ measurements of the solute
concentration and crystal mean length and width to estimate
the dissolution and growth kinetics is described next.

3.3. Simulation and Prediction of CSDs with
Estimated Kinetic Parameters. The two-dimensional

dx.doi.org/10.1021/ie400859d | Ind. Eng. Chem. Res. 2014, 53, 5325-5336
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Figure 4. Microscopy images (with polarizers) of MSG slurry for
samples collected at 35 °C in the estimation temperature-cycling
experiment at (a) cycle 1a, (b) cycle 3b, and (c) cycle Sc. The timing
of the sampling points is shown in Figure 2.

dissolution and growth kinetic parameters determined by the
application of least-squares estimation to the data from the
estimation temperature-cycling experiment are reported in
Table 2, with comparisons between model predictions and
experiments in Figure 9. The estimated parameters for the
growth and dissolution rates in Table 2 have values that are
consistent with theory.***" Approximately half of the model
parameters were set based on theory or experimental studies by
other groups, as described in the caption of Table 2, and the
simulation parameters are given in Table 4. The solute
concentration from the PBM (eq 2) tracks the experimental
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Figure 5. PVM images of MSG slurry at 35 °C in the estimation
temperature-cycling experiment at (a) cycle 1a, (b) cycle 3b, and (c)
cycle Sc. The timing of the measurement points is shown in Figure 2.
The PVM images show that crystals grow larger as the cycle number
increases, with some crystals growing larger than the image frame of
PVM, such as in the fifth cycle. No secondary nuclei were observed in
any of the PVM images collected during the experiments.
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temperature for the validation temperature-cycling experiment with samples collected at the end of the first, second, third, and seventh cycles (at 35
°C, timing of the four sampling points shown with cycle numbers). The validation experiment shows periodic changes in FBRM statistics as the
temperature cycles, with a decrease in the measured number of smaller chord lengths (<300 ym) and an increase in mean square-weight size with

cycle number.

Figure 7. Microscopy images (with polarizers) of slurry of MSG
crystals in aqueous solution for the validation temperature-cycling
experiment at the end of (a) cycle 1, (b) cycle 3, and (c) cycle 7.

value, including the slow increase in the minimum solute
concentration in each cycle (Figure 9a). The mean crystal
length and widths from the model also track the optical
microscopy measurements quite closely through all of the
cycles, with somewhat larger deviations for the ratio of the
mean length and mean width (Figure 9b).

The kinetic parameters in Table 2 were used to predict the
mean crystal length and width (Figure 10) in another
temperature-cycling experiment (e.g., the seven-cycle validation
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no FTIR equipment available. The distance along the vertical axis
between red and black lines is o in eq 4, which is the predicted
standard deviation of solute concentration.

experiment, detailed in section 2.4 and Table S). The
predictions closely track the experimental data throughout
the temperature cycles (Figure 10), except at the seventh cycle,
which is consistent with the accumulation of the effects of
model uncertainties on model predictions that would be
expected in any process that has states whose values continue
to drift over time. The mean crystal length prediction is
especially accurate, with negligible prediction error for cycles 1,
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Figure 9. Comparison between experimental data and model
predictions using the kinetic parameters in Table 2 for the estimation
temperature-cycling experiment for (a) solute concentration and
absolute supersaturation (the solubility, which is computed from an
expression in ref 34. based on the implemented temperature, uses the
same vertical axis as the solute concentration), and (b) mean crystal
length (black circle denotes the experiment; blue line denotes the
model) and width (green square denotes the experiment; red line
denotes the model).
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Table 4. Parameters Used in the Numerical Simulation of
the Population Balance Model (PBM) (eq 2) in the
Estimation Temperature-Cycling Experiment

variable description value
At time step 0.0S min
AW mesh size for the width 5.0 ym
AL mesh size for the length 5.0 um
C(0)  initial solute concentration 1.0558 g MSG/g water
M, mass of solvent (water) begins at 60.0 g
times at which a slurry sample was 215, 645, 875, 1145
collected min
T real-time temperature 35.0-65.0 °C
number of temperature points 1162

2, and 3 and <10% prediction error at cycle 7. The mean crystal
width and the length-to-width ratio have larger deviations. The
crystal size distributions at the sampling times were also
calculated (see Figures 11 and 12) based on the estimated
kinetic parameters (Table 2). The CSDs from the PBM grow
wider with cycle number, which is consistent with having size-
dependent dissolution rates in the model, and consistent with
experimental measurements (Table 6). The trends in mean
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Figure 10. Comparison between experimental data and model
predictions using the kinetic parameters in Table 2 for the estimation
in the validation temperature-cycling experiment (seven cycles) for the
mean crystal length (black circle denotes the experiment; blue line
denotes the model) and width (green square denotes the experiment;
red line denotes the model). The model expected errors in the mean
crystal length and width are reported later in Table 9. The
measurement error bars in the plot are the sample standard deviations
computed by resampling the crystal size measurements.

Table 5. Parameters Used in the Numerical Simulation of
the Population Balance Model (eq 2) in the Validation
Temperature-Cycling Experiment

variable description value
At time step 0.05 min
AW mesh size for the width 5.0 um
AL mesh size for the length 5.0 ym
C(0) initial solute concentration 1.0024 g¢ MSG/g water
M, mass of solvent (water) begins with 60.0 g
times at which a slurry sample was 199, 379, 567, 1297
collected min
T real-time temperature 35.0—60.0 °C
number of temperature points 1318

width, length, and aspect ratio in Figure 10 and Table 7 agree
with FBRM CLD data (Figure 6).

3.4. Parameter Estimation and Accuracy Quantifica-
tion for the Population Balance Model. The parameter
error estimates in Table 8 were obtained from eqs 4—9, using
oc = 0.01 g MSG/g water and o; and oy, in Figure 9b, based on
the experimental data from the single temperature-cycling
estimation experiment. Such parameter error estimates should
always be taken as being underestimates, since the statistical
assumptions that the errors have zero expectation and are
uncorrelated with each other and the independent variables*
almost never exactly hold in practice. In particular, the
derivation of a first-principles model always includes some
simplifying assumptions that do not exactly hold, such as
perfect spatially uniform mixing, in which case the statistical
assumptions will not hold exactly. Such parameter uncertainty
estimates have been found to be useful in past crystallization
studies,"”*° and so are discussed here with those caveats in
mind. A direct comparison to error estimates in past studies is
appropriate as the statistical assumptions made in this article
are the same.

From the single estimation temperature-cycling experiment,
the estimated 95% confidence intervals for the prefactor of each
growth rate in Table 8 are smaller than values reported in past
studies that employed up to four batch experiments.”> The
single cycling experiment collects experimental data for a longer

dx.doi.org/10.1021/ie400859d | Ind. Eng. Chem. Res. 2014, 53, 5325-5336


http://pubs.acs.org/action/showImage?doi=10.1021/ie400859d&iName=master.img-008.jpg&w=239&h=326
http://pubs.acs.org/action/showImage?doi=10.1021/ie400859d&iName=master.img-009.jpg&w=178&h=138

Industrial & Engineering Chemistry Research

500 B — 375 — —
£ 260y..... y = E 2804 dnd i
& ik S £
5 3
2 2 0.
a 2
8 E
= T .2504....
N N
- 5 . i : | bt 800l ik ek
6583~'<:._ T, e . o 600 00\3“ P i
AL T . TN g
400 : B i e i, - : ; i
20\ = N0 1400 0 400 600 800 10001200 1400 160
; 0 200 400 600 80O 1000 1200 1400 1600  \igth (um) 0 200 400 600 800
Witk () Length ( um) Length ( um)
(a) (b)
500~ A

500~ ..., e : s R

L]

o

o
:

Size distribution (#/,m )
o
Size distribution (#/ pmz)
o

2

L]
(44
(=]
/

304 IR s s st o s
250 b : oo N
} P o N T T . . e
- : ' - 600 . . )
e iy i 200 ST
T e —— e e, : ————
400 g~ e PR Wit 0 o 200 400 600 800 1000 1200 1400 1600
: 0 g 200 400 600 800 1000 1200 1400 1600 idth ( m) Langh ()
Width (o) Length { um)

(©) (d)

500 .. s ; _
°§ 250. - i) ;
E : : =t
8 0 A :
3 bt
pe)
T : : ;
200 s S 5 e i |
N i :
(2] : 4

B00] i IS I :

600 i

400 _
% —
0 g 200 400 600 800 1000 1200 1400 1600

Length { um)

(e)

Figure 11. Crystal size distributions f(L,W,t) of MSG slurry from model simulation using the kinetic parameters in Table 2 for the five-cycle
estimation temperature-cycling experiment, with the points as in Figure 2: (a) cycle 1a, (b) cycle 2f, (c) cycle 3b, (d) cycle 4d, and (e) cycle Sc.

period of time than most batch experiments, and was designed uncertainties in the dissolution rate constants are larger than for
to have positive supersaturation with significant growth rate the parameters in the growth rate expressions.

occurring for >90% of the entire time period (see Figure 9a), 3.5. Comparison of Population Balance Model
hence producing data that is highly informative for growth rate Predictions with Data from Validation Experiments.
estimation. The estimated 95% confidence intervals for the The small parametric uncertainties in Table 8 provide some
growth exponents are similar in magnitude to past studies.>” confidence that the model predictions could be accurate
The uncertainties in the dissolution rate constants are higher, enough to be used for design purposes. To make a more-
up to 10%, which is quite accurate considering that the solute informed assessment, the parameter covariance matrix was also
concentration closely follows the solubility curve during used to estimate the accuracy of the model predictions for the
dissolution. The dissolution kinetics are so fast that the validation seven-cycle experiment. The parameter covariance
supersaturation is never far from zero during dissolution, so the matrix, Vj, remains the same, while the sensitivity matrix is
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Figure 12. Crystal size distributions f(L,W,t) of MSG slurry from model simulation using the kinetic parameters in Table 2 for the seven-cycle
validation temperature-cycling experiment at the end of cycles, with the points as in Figure 6: (a) cycle 1, (b) cycle 2, (c) cycle 3, and (d) cycle 7.

Table 6. Crystal Length and Width Measurement from the Seven-Cycle Validation Experiment®

cycle minimum width maximum width minimum length
number (um) (um) (um)
1 17.0 3453 38.0
2 25.6 389.8 36.9
3 26.8 474.8 81.0
7 40.2 651.2 160.5

“The cycle numbers are defined in Figure 3.

maximum length range of width range of length number of
(pm) (pm) (pm) crystals
1056.5 328.3 1018.5 201
129S.5 364.2 1258.6 287
1176.7 448.0 1095.7 138
1505.2 611.0 1344.7 187

Table 7. Mean Aspect Ratio and Standard Deviations from
Microscope Measurements for the Seven-Cycle Experiment”

mean aspect ratio standard deviation

Cycle 1 2.349 0.064
Cycle 2 2.399 0.050
Cycle 3 2.622 0.059
Cycle 7 2.835 0.0S3

“The sampling points are defined in Figure 6.

specific for each experiment. The sensitivity matrix for the
seven-cycle experiment, F, was calculated using the same

central finite difference method. The prediction error
covariance matrix V, was calculated from V;, = E V,E. The
diagonal elements of Vi include the standard deviations of

mean crystal length (;) and width (oy;;) from the model

5334

prediction, all of which are listed in Table 9. The 95%
prediction intervals for the predicted mean crystal length and
width are estimated to be +12.5 ym and +2.5 um, respectively,
at cycle 7, suggesting that the difference between the model
predictions and experimental data in Figure 10 is more likely to
be due to uncertainties in the measurements rather than
uncertainties in the model predictions.

B CONCLUSIONS

Temperature-cycling experiments were designed in which the
mean crystal dimensions and aspect ratio significantly increased
at the end of each cycle, in a much smaller number of cycles
than in previous studies.*'” Dissolution and growth kinetics in
a population balance model were estimated along the length
and width directions for rod-shaped crystals based on
experimental data from commercial instrumentation applied
to a single experiment in which the temperature cycles. The

dx.doi.org/10.1021/ie400859d | Ind. Eng. Chem. Res. 2014, 53, 5325-5336
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Table 8. Estimated Confidence Intervals for Each Parameter
Estimate in 8°

parameter optimal value lower bound upper bound
In kg,, 30.78 30.72 30.84
In kg, 3179 3176 31.82
gw 2.00 1.97 2.03
gL 2.00 1.98 2.02
In kp, 14.3 129 15.6
In kp, 153 14.0 16.6

“As determined from Montgomery and Runger.54 @ is calculated from
the expression 0 = 6 — at/Z,DOF(VH,ii)l/Z <0, <0F + ta,/z,DOF(Ve,ii)l/z»
where t, , por is the Student t-distribution and DOF represents the
degrees of freedom (DOF =842 + 4 + 4 — 6 = 844; N, = 842). For a
confidence level of 100(1 — @)% = 95%, the value of t is 1.960. A
confidence hyper-ellipsoid cannot be plotted, because @ has six
dimensions.

Table 9. Standard Deviation of the Mean Crystal Length and
Width Predicted by the Model with Its Uncertainty
Description, with the Time Points Being the Same as Given
in Figure 12°

Standard Deviations

time point mean crystal length, o;; (um) mean crystal width, oy, (um)

cycle 1 1.7249 0.4516
cycle 2 2.804S 0.4993
cycle 3 3.0404 0.4663
cycle 7 6.2465 1.2851

“The prediction errors are much smaller than the noise in the mean
crystal length and width measurements, so only bars on the estimated
experimental measurement noise are shown in Figures 9 and 10.

outputs of the population balance model (eq 2) based on the
minimum-variance kinetic parameter estimates tracked well the
experimentally measured mean crystal dimensions and solute
concentrations. With the same parameter estimates, the model
predicted the crystal dimensions for another temperature-
cycling experiment reasonably well (see Figure 10). Both this
observation and uncertainty analysis suggested that growth and
dissolution rates estimated in a single temperature-cycling
experiment might be suitable for designing a temperature-
cycling protocol for optimizing the size and shape of the
product crystals.
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