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SUMMARY

A control problem motivated by tissue engineering is formulated and solved, in which control of the uptake
of growth factors (signaling molecules) is necessary to spatially and temporally regulate cellular processes
for the desired growth or regeneration of a tissue. Four approaches are compared for determining one-
dimensional optimal boundary control trajectories for a distributed parameter model with reaction, diffusion,
and convection: (i) basis function expansion, (ii) method of moments, (iii) internal model control, and (iv)
model predictive control (MPC). The proposed method of moments approach is computationally efficient
while enforcing a nonnegativity constraint on the control input. Although more computationally expensive
than methods (i)—(iii), the MPC formulation significantly reduced the computational cost compared with
simultaneous optimization of the entire control trajectory. A comparison of the pros and cons of each of the
four approaches suggests that an algorithm that combines multiple approaches is most promising for solving
the optimal control problem for multiple spatial dimensions. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The primary goal of tissue engineering is the production of biological tissues for clinical use. One
of the main manufacturing strategies utilizes the attachment or encapsulation of cells within a tissue
matrix that is typically made of collagen or synthetic polymers [2—4]. Beyond receiving nutrients
and releasing waste products, the development of a healthy functioning tissue requires that the cells
uptake hormones, drugs, or signaling molecules in a controlled way [5-10]. For example, in the
development of tissues from stem cells, the stem cells must uptake growth factors, which are proteins
that regulate cellular processes such as stimulating cellular proliferation and cell differentiation.
The spatial and temporal control of the cellular uptake can be achieved through localized release
(e.g., [11-13]).

Many materials and devices have been created for releasing molecules in a controlled way
[14, 15]. Biodegradable polymeric nanoparticles or microparticles have been developed that can be
placed within a tissue matrix to provide localized timed release. These particles include spheres,
core-shell particles, and capsules that encapsulate small molecules, protein, or DNA including
growth factors or other signaling molecules or, in the case of microcapsules, can contain cells that
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excrete hormones or other macromolecules. Techniques have been established to make highly uni-
form particles that produce a wide variety of highly reproducible release profiles by manipulating
physical dimensions or by combining different types of particles [16, 17]. These particles can be
accurately positioned and attached to a tissue matrix using such technologies as solid free-form fab-
rication [18] and layer-by-layer stereolithography [19], so as not to move until the particles have
released their payloads to the cells.

The tissue engineering application motivates the formulation of an optimal control problem for
the release of molecules from biodegradable polymeric nanoparticles or microparticles to achieve
a specified temporal and spatial uptake rate for cells within a tissue matrix. A potential application
is to control the development of a tissue from stem cells within a matrix so that the timed release
of different growth factors in various locations form the multiple types of cells needed for the func-
tioning components of a tissue. The shape and dimensions of these components are a function of
both the spatial and temporal release of growth factors (e.g., [11]).

Tissue engineering with one spatial dimension arises when the growth factor is released at a sur-
face to control the development of tissue within a fixed distance from that surface, as would occur in
the engineering of the epithelial tissue that forms the covering or lining of all internal and external
body surfaces. This paper is the first (except our previous conference paper [1]) to formulate tissue
engineering as an optimal control problem. The paper compares several approaches to solving the
optimal control problem for one spatial dimension to provide insights into how to best address the
much more complicated case of three spatial dimensions, which would be required for more compli-
cated organs such as the heart. Section 2 formulates molecular release within a biological tissue as
a distributed parameter optimal control problem. Sections 3—6 solve the control problem using four
methods: basis function expansion, method of moments, internal model control (IMC), and model
predictive control (MPC). Finally, Section 7 provides a summary and recommendations on how to
solve the optimal control problem with higher spatial dimensions.

2. PROBLEM SETUP

To keep the nomenclature consistent, the term growth factor will refer to the molecule being
released, although the theory and algorithms also directly apply to other molecules such as drugs,
hormones, and DNA for gene therapy. Spatial and temporal control of the cellular uptake rate in a
biological tissue under the influence of reaction, diffusion, and convection can be formulated as a
distributed parameter optimal control problem:

I3
min Y [ [ Gz = Ry zap?ava, M)
ujeU; T JoJv

where Jyes,; 1s the desired cellular uptake rate for species j, R is its cellular uptake rate, and its
concentration C; is the solution to the reaction—diffusion—convection equation [20]

88%4—1)-VC1~=V«(DJ~VC,~)—RJ~; )
(x,y,z) are the spatial coordinates defined over domain V', t¢ is the final time of interest, v is a
known velocity field as a function of the spatial coordinates, and D ; is the effective diffusion coef-
ficient for species j. Depending on the specific tissue engineering application, the optimal control
variables u j, which influence the solution to partial differential equation (PDE) (2), can either be
distributed throughout the spatial domain such as in the case that controlled release particles are
integrated into the tissue matrix or be a subset {{; of the boundary conditions on the surface of the
domain V. This model (2) considers applications in which the minimum length scales of interest in
the domain V' are larger than the maximum dimensions of the molecules, cells, and polymer parti-
cles that release growth factors. The cellular uptake kinetics and desired rate Jqs ; are determined
in small-scale biological experiments so as to produce a response, such as differentiation to form a
desired type of cell [5,20,21]. The model (2) is appropriate in the early stages of tissue development,
before substantial cell migration and proliferation occur.
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A standard approach to solving the above optimal control problem is the finite-difference method,
in which the control variable u; (x, y, z,t) and state C;(x, y, z,t) are discretized with respect to the
spatial and time variables, inserted into (1)—(2), and solved numerically as an algebraic optimiza-
tion problem. The difficulty in applying this approach using the standard discretization of the control
and state (e.g., C;j (X, Y1, Zm, tn)) is the large number of degrees of freedom. For example, for a sin-
gle three-dimensional (3D) state, 100 discretization points in each spatial dimension and in time
result in 100* = 10® degrees of freedom in the algebraic optimization. The large dimensionality
of such distributed parameter control problems is well recognized in the optimal control literature
(e.g., [22,23]). Although many approaches have been proposed, no single algorithm dominates the
literature or applications, and it is generally accepted that the best approach depends on the details
on the optimal control problem being solved.

To gain insight into how to best solve the 3D optimal control problem (1)—(2), this manuscript
solves the one-dimensional optimal control problem for a single species with manipulatable
boundary condition and linear cellular uptake kinetics:

/3
min [ (Jaes(t) —kC(1,1))%dt A3)
u(®)=0 Jo

subject to the PDE

ac  aC 92C
iy—=D— _ v 1), V 4
TR 57 —kC, ¥x e (0,1), Vi >0, “)

with initial and boundary conditions

C(x,0) =0, C(0,t) =ul(r), DE)_C =0. 5)
dx Ix=1

The reference trajectory Jues(t) = 0,Vt > 0, is a desired cellular uptake rate at one boundary
(at x = 1), and the control trajectory is the concentration u(¢) at the other boundary (x = 0)
(see Figure 1). The control input u(¢) is the concentration of growth factor, which is nonnegative.
This problem arises when the objective is to ensure that a desired time-varying uptake of a growth
factor occurs at a specified distance (of 1 dimensionless unit) from a position where the growth
factor is released through microparticles or nanoparticles or is carried with fluid entering the tissue
at x = 0 (this fluid also brings nutrients such as glucose to the cells). The cells within the domain
would uptake at least as much growth factor as cells at x = 1, ensuring that all of the cells within
the domain respond to the growth factor. The case where too much cellular uptake of growth factor
is undesirable can be handled by the incorporation of nanoparticles with the scaffold as in [24].

min ] (Ju (0= kC(1,0)) dt

(20

C(0,0) = u(t) p9CLD) _

ox

Figure 1. Boundary control at x = 0 with a Neumann boundary condition at x = 1.
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The following sections consider Gaussian reference trajectories, which have been employed in
tissue engineering experiments [25-28], and step trajectories that are useful for illustrating perfor-
mance limitations associated with sharp changes in the desired cellular uptake profile. Any trajectory
can be well approximated by a linear combination of Gaussian and step functions.

3. BASIS FUNCTION EXPANSION

This method generalizes an approach studied in the mid-1980s to solve optimal control problems for
systems described by ordinary differential equations [23] to PDEs, in a similar manner as has been
carried out for sheet and film processes (e.g., see [29-31], and citations therein) as well as nonlin-
ear PDEs such as Burgers equation [22]. To apply this method, start with the analytical solution to
the PDE (4) [32]:

o0 t U2
CL =D Y juBysin( i) [ (e Hr02) 0, ©)
n=1 0

where

oY) (SiI:/ITl:” —cos un> — 1+ cos /ity

B, =4 "
2/l —sin(2/n)

)

and u, is the nth root of

tan /iy = =2/ UnD/v. )

Parameterize the control trajectory

n
u(t) ~ Y aidi(1) =a"(), ©)
i=1
in terms of any set of linearly independent basis functions {¢; (¢)}, where
a=lay,as,...,a,", (10)
$(1) = [1(1), $2(0), ... du(D)]". (1
With f; () defined as the solution to the PDE (4) for the input ¢; (¢),
v > d v2 k D
Jil0) =D Y jun By sin(in) [ gu(oye (0PN, (12
n=1 0
and
fO =A@, L), faO]", (13)
the optimal control problem with u(¢) parameterized by (9) can be written as
I
min_ [ Ualt) — ka0 (14)
aTte@)=0Jo

as the function (6) is a linear operator on u (). Although this approach does reduce the optimization
over a function u(¢) to the optimization of a finite number of parameters a, the inequality constraint
(14) remains defined over a continuum. The simplification occurs by dropping the nonnegativity
constraint on u(¢) to enable an approximate analytical solution to the optimal control problem to
be obtained:

% /of (Jies (1) = 2k Jaes ()@ f (1) + (ka " f(1))?) dt

= ftf (—2k Jaes (1) £ (£) + 2k f(2) f M (1)a) dt =0, (15)
0
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Figure 2. Outputs for the basis function expansion approach for reference trajectories that are Gaussian
[33] and step functions (for D = v = 1 and k = 7.6, which are the nondimensionalized parameters used
for the entire paper). The number of basis functions is 7, and the number of eigenfunctions for the spatial
variable was 10. The negative uptake rate is the result of a negative growth factor release, which is not

physically realizable.
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There are many choices of basis functions [29,31] for which the temporal accuracy to the solution
of the unconstrained optimal control problem is specified directly by the number of basis func-
tions. A set of basis functions that provides excellent performance for one reference trajectory can
give poor performance for another. For example, excellent tracking performance is obtained for a
Gaussian reference trajectory, using 20 terms in a truncated Fourier cosine series [34] as the basis
functions ¢; () (see Figure 2(a)). On the other hand, this same set of basis functions (i) can have
oscillations near discontinuities along the time axis because of the Gibbs phenomenon [35,36] and
(i1) does not take into account the nonnegativity constraint on the control variable, which can result
in constraint violations. Figure 2(b) shows both deficiencies for a step reference trajectory.

4. METHOD OF MOMENTS

Although the method of moments has been widely applied for the solution of optimal control prob-
lems involving population balance models [37,38], the approach has had little application to other
control problems. An exception is its application to determine the control needed to bring a dis-
tributed parameter system with nonzero initial condition to quiescent conditions in the least time
[39]. Here, we present a new and different approach to applying method of moments to optimal
control problems that utilizes analytical expressions derived for the moments of the output variables
in a PDE in terms of the moments of the input variables. For a linear system with u, tu, t?u, y, ty,
t?y, g,tg, t?>g in Ly, the input and output are related by

Ky = Hg + Hu, (18a)
0y2 =O’§ +0,f, (18b)
where 1y, is the mean residence time defined by
o0
ty(t)de
o ty(@) (19
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and ay2 is the variance

o2 o~ 2y@de) (g y@dr) = (fy~ ,y(t)d,)z’ (20)

g (52 y(e)de)®

which is a measure of the spread of the function y(¢) about its mean; similar expressions hold for
u and g. Equation (18b) can be proved using the Laplace transforms of the input (U(s)), output
(Y (s)), and process (Y (s) = G(s)U(s)). First, note that

(=D)"U™(0) = /Ooo "u(r)de 1)

provided that the integral exists [40],% where U™ is the nth derivative of U(s) with respect to s.
Equation (18b) follows from (21) and application of the chain rule (see Appendix).

When used together, equations (18b) and (21) enable the determination of the mean residence time
and spread of the output of a linear system without analytical or numerical determination of g(z) or
¥(t). This property is especially useful for distributed parameter systems for which these functions
are unknown, or are known but described by complicated infinite series. Analytical expressions can
be derived for pg and oy directly from the Laplace transform of the PDE with respect to time, and
My and oy can be computed easily from (18b).

To illustrate these ideas, consider the transfer function obtained by taking the Laplace transform
of (4) with respect to time, which gives

_kCUs) _ p b=

G(s) = = —_— 22
= "T6) Erof1 _ Eyof2 (22)
where
v+ v2+4(k +5)D v—v2+4(k +s)D
= N = . 23
€1 2D & D (23)
From (21), exact analytical expressions for
G(0) G@©0) [GW(©0)\>
= d = — 24
= ™ %=\ 5o (G0 e

are obtained from G(s) using MATHEMATICA (Wolfram Research, Inc., Champaign, Illinois) or
MAPLE (Maplesoft, Waterloo, Ontario, Canada). In contrast, the expressions for jt, and o, derived
in the time domain are more complicated. Insertion of u(¢) = §(¢) into the analytical solution (6)
results in

e ¢]

00 Z Un By sin /1ty
/ tC(1,1)det — (1)2/4D+k—|—/,LnD)2
He = "o =% , (25)
/ C(1,1)dt Z Fn Bn Sin /1t
0 = v2/4D + k + u, D
> Un By sin /1
o0 nt~n n
/ t2C(1,1)dt 22_:1 (v2/4D +k + pn D)3
Op + g = =5 , (26)

o0 o] .
/ C(1,1)drt 3 Hon Bn Sin /1in
0 v2/4D + k + [tn D

n=1
where each u, in (8) has to be solved iteratively.

Existence is implied, for example, if the Laplace transform of the function u(¢) is analytic in the closed right-half plane.
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Figure 3. Uptake rate using the method of moments approach. The number of Gaussians was N = 2.

Although moments have been applied to the analysis of PDEs for decades [41], here we apply
these expressions to obtain a highly computationally efficient algorithm for solving an optimal
boundary control problem. The reference trajectory Jyges is decomposed into a linear combination of

nonnegative basis functions, each of which is parameterized by mean time 1, ; and variance 0y2 i

N
Jaes(t) % ) Ji(1), where Ji(1) = 0, 27)
i=1
and
o thi(0)de s Jo Pi(n)d

=20 P g2 =20 T i—=1,....N. 28
o fo Ji()de > Jo~ Ji0de ()

The form of the basis function is selected such that the shape of the optimal control trajectory ¢;
is known and parameterized by mean time and variance that are computed from the known pg, 0g,
and (18b):

Hpi = Myi— Mg, oq%’i = oyz,i —og. (29)

The overall optimal control trajectory is computed by summing the optimal control trajectories
corresponding to each of the basis functions, as in (9). This approach provides nearly perfect track-
ing for a Gaussian reference trajectory using Gaussian basis functions [33], for which the optimal
control trajectories are Gaussian-like functions (see Figure 3). This approach is computationally effi-
cient for computing a nonnegative optimal control trajectory, as the computation of the summations
in (25) and (26) is cheap and the computation of the parameters for the optimal control trajectories
(29) requires only two subtractions per Gaussian.

5. INTERNAL MODEL CONTROL
The analytical expressions derived for IMC [42] apply to real-rational functions with time delay

rather than to the irrational transfer function (22). One approach to deriving a real-rational transfer
function for the PDE (4) starts by taking the Laplace transform of (6) to obtain

o0 .
. B, sin /ii;
G(s) =Py Lo nSMVHn (30)
n=1s+v2/4D+k+ﬂnD

Even with a large number of terms in the summation, this transfer function can have very different
high frequency behavior than the PDE (see Figure 4). This observation is consistent with the more
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Figure 4. Bode plots of various transfer functions. ‘MOL’ corresponds to method of lines (34) with different
discretization size, ‘Expansion’ corresponds to (30), and ‘Irrational’ corresponds to (22). The MOL magni-

tudes are within 10% of the exact solution for frequencies up to 103 (in dB), whereas the 51-term expansion
can be 75% different from the exact solution.

general observation that analytical solutions for PDEs can have very slow convergence, in which
case the solution obtained from a finite number of terms can have poor accuracy [43].
Another approach to deriving a real-rational transfer function is to apply the second-order
finite-difference method to discretize the spatial variable in (4) (method of lines):
dG; DCi+1 —-2C; +Ciy Ciy1—Ciyq

& _ — kG 1
dr (Ax)? T oA G, 3D

where each C; is a concentration, which is a function of time, that corresponds to an equally spaced
spatial location with grid spacing Ax, C; = C(0,¢), C,, = C(1,¢), and C,4+1 = Cp—_;1. The
state-space equations for the discretized system are

2 1 0 - 0 0O 1 0 - 0
Ci
1 -2 1 -1 0 1
d C2 —_— D . . . v . . .
al| | |@ax2 o oo 0 x| 0 o 0 0
Cy S 1 =21 R R |
0 - 2 =2 0O --- 0 0 0
- - - - (32)
1 0 0 C, 1
0 : C, D v
—k — 1),
. : +((Ax)2 2A ) v
0 0 1 Cn 0
Cy
G
y=kC(lLty=[0 - 0 k]| . |. (33)
Cy
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Figure 5. Outputs obtained using the internal model control approach with Ax = 1/20 and A =
0.0112174 /.

The transfer function from u(¢) to y(t) = kC(1,t) is

Gr(s)=C(s] —A)~'B, (34)
where
r 2D D -
ooz K Gor s 0 0
D 2D
Go? T2ax Tane K
_D_ 4 v : _D__ v
) ’ (Ax)2 T 2Ax : (Ax)2 ~ 2Ax
0 0 2D _2D__
L (Ax)? (Ax)? _
D
(Ax)? + ﬁ
0
B = , C=[0 -+ 0 k. (36)

This approximate transfer function for the PDE is accurate over the frequency range of the interest,
even with a coarse spatial discretization (see Bode plots in Figure 4).
The real-rational transfer function (34) is in minimum phase, for which the IMC controller is [42]

1
O(s) = F(s)/G,(s), where F(s) = o 37)
and A is the IMC tuning parameter. Applications of IMC for Gaussian and step reference trajecto-
ries are shown in Figure 5. The value of A was set just large enough for the control variable to be
nonnegative. This approach can give insight into the form of the optimal control trajectory but is
suboptimal and does not handle general constraints; extensions of IMC to handle constraints [44]
are not optimal with respect to the optimization objective (3).

6. MODEL PREDICTIVE CONTROL

Model predictive control is a well-known method for solving optimal control problems with con-
straints [45] that has been applied to distributed parameter systems in industry since the late
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1970s [46]. Since the early 1990s, many researchers have proposed the application of MPC to
lumped parameter models for distributed parameter systems in which the actuation is distributed
along a physical boundary (e.g., see [31] and citations therein). Very few papers have considered
MPC implementations on the basis of more sophisticated models of distributed parameter sys-
tems. Most closely related to this application, Shang et al. [47, 48] developed an unconstrained
MPC formulation that exploits the special characteristics of convection-dominated processes,
whereas Patwardhana et al. [49] applied a rather modern state-space MPC formulation to a model
similar to (4).

In contrast to the usual application of MPC to closed-loop control problems, here MPC is used to
solve an open-loop optimal control problem. Also, many MPC formulations assume a staircase con-
trol trajectory [50,51]. To achieve a continuous control trajectory, the input—output process model
was augmented by an integrator, and the actual control variable was computed from the integral
of the MPC control variable. This MPC formulation is a modification of a standard state-space
formulation [52].

6.1. Model predictive control setup

The control trajectory in the tissue engineering application is better modeled as being continuous,
which is much more accurately represented by a piecewise-linear rather than the staircase function
usually used in MPC formulations. A piecewise-linear function can be implemented by augment-
ing the process input with an integrator, where u, is a staircase function. The resulting PDE can
be spatially and temporally discretized using the finite-difference method, which is equivalent to
converting the continuous-time model of G, (s)/s into discrete time, to obtain the state-space model

Xq(h+1) = Agxq(h) + Baug(h), y(h) = Caxq(h), (38)

where x, is the state vector with an integrator and u, is the control variable for the augmented
system (its integral is u). The value for u, at time instant / is obtained by solving the optimization

p
i h+ilh)y—rh+10)? 39
ps T ; [y +ilh) = r(h+1)] (39)
subject to
Aug(h+ilh)=0, i=m,....,p—1, (40)
t
[ ug(r)dr = u(t) =0, (41)
0
where
Aug(h) =ug(h) —uqg(h —1), (42)

p is the prediction horizon, m is the control horizon, Au,(h) is the control increment, ‘(h + i|h)’
is the value predicted for time instant s 4 i on the basis of the information available at time instant
h, and r(h) is the reference variable Jg at time instant 4. At time instant /4, the piecewise-linear
control trajectory

u(t) = /Ot ugq(t)de (43)

is implemented on the process, where u,(h) = ug(h — 1) + Aug(h|h)* and Aug(h|h)* is the first
element of the optimal sequence. The above process is repeated at each sampling instant on the basis
of the updated variables.

Copyright © 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2013; 34:680-695
DOI: 10.1002/oca



690 M. KISHIDA ET AL.

6.1.1. Prediction. From (38), the prediction at time instant /2 of the future output trajectory is

y(h+1) Aug(h)
: = Sxx(h) + Syru(h —1) + Sy s (44)
y(h+ p) Aug(h+p—1)
where
C,A, CuB,
C A2 CaBa + CaAuBa
Se=1 L Sa= : : (45)
CaAg P CaALT'B
C,B, 0 v 0]
C,B,+ C,A,B, C,B, :
Sy = _ _ . (46)
CA’ 'By YOI ICA’ 'B, -+ CuB.

6.1.2. Optimization variables. Equation (44) relates p outputs y(h + 1|h),...,y(h + plh)
and p inputs Auy(hlh),...,Augs(h + p — 1|h), while only m free optimization variables
Aug(h),..., Aug(h 4+ m — 1) are available. With the optimization variables defined as z(h + 1) :=
Aug(h+1i)fori =0,...,m— 1, the last vector of (44) is related to the vector z by

Aug(h) z(h)
: =M : , (47)
Aug(h+p—1) z(h+m—1)

where

0(p—m) xXm

M=|: Im } (48)

6.1.3. Objective function. The MPC objective (39) can be written in terms of z as

(h+1) rth+1) 1|

y(h+l)) r(h+p) ||,

r(h+1)
=2 Kpauz +2 | Kex(h) + Kyu(h —1) + : K, |z

r(h+ p)

rh+1) 7|7
+ || Sxx(h) + Sypqu(h —1) — : , (49)
rth+p) ||,

where

Kay=MTSTS,M, K,=-S,M,
Ky =S,SuM, Ky=S!S,M.
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Figure 6. Model predictive control outputs for a control horizon of m = 2 and a sampling time Az = 1/10
obtained for a state-space model obtained by the finite-difference method with Ax = 1/20. This sampling
time corresponds to 100 s for a tissue thickness of 1073 m and a diffusion coefficient of 10~° m?/s.

6.1.4. Constraints. Satisfying (41) requires that u(i) > O foralli = h+1,...,h + p, which can
be written as

Aug(h) 1 1
: =—| 1 |uth)=At| ¢ |ug(h—1), (50)

At :
Augh+p—1) 1 p

where At is the sampling time. Insertion of (47) results in the expression in terms of z.

6.1.5. Model predictive control simulation results. The convex quadratic program (49)—(50) was
solved at each time instant /1 by using the gpdantz implementation of the Dantzig—Wolfe algorithm
in the MATLAB MPC toolbox [52]. The MPC formulation gave good reference tracking with a con-
trol horizon of m = 2 and a prediction horizon of p = 3, 5, or 7 for the sampling time of 1/10
(see Figure 6).

6.2. Computational requirements

The computational cost of MPC is an important consideration when extending this approach to a
larger number of spatial dimensions (1)—(2). The computational cost for solving (49)—(50) is a lin-
ear or cubic function of the horizons, depending on the details of the numerical implementation
[53-56]. For implementations with a cubic cost dependence, the number of flops required for the
MPC computation (O(m?3)T) is orders of magnitude lower than for simultaneous optimization of
(3) over of the entire time period (O((mT)?)), where m is the control horizon and T is the num-
ber of time step. For implementations with a linear cost dependence, the MPC approach is similar
to the simultaneous optimization. More importantly, the MPC implementation with small horizons
requires orders-of-magnitude less memory, which is an important consideration for a PDE model
with three spatial dimensions.

The one-dimensional optimal control problem is simple enough that simultaneous optimization
could be implemented, by choosing m and p to span the entire length of the reference trajectory
and dropping the use of the receding horizon. A regularization term of 1074/ was added to Kay
in the optimization objective (39) to remove numerical ill conditioning that arose because of the
large number of degrees of freedom. The time-domain plots were very similar to those obtained
from the best MPC tuning (in Figure 6), with the total computational cost for both approaches
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being about 0.1 s as measured by averaging the computation time on an Intel Core Duo computer
(Intel, Santa Clara, California) for over 10 trials as measured using the MATLAB program tic-toc.!
Applying MPC to the optimal control problem resulted in nearly globally optimal results, with many
orders-of-magnitude reduction in memory requirements. This suggests that MPC is suitable for the
solution of the optimal control problem (1) for a larger number of spatial dimensions.

7. IMPLEMENTATION

From a practical point of view, the growth factor concentration at a boundary can be implemented
by using a permeable or semipermeable membrane with an aqueous solution on the side opposite
of the biological tissue. An increase in the growth factor concentration specified by solution of the
optimal control problem can be physically implemented using a syringe pump that adds a small
quantity of aqueous solution with a high concentration of growth factor, with the quantity at each
sampling instance specified by a concentration measurement obtained by any spectroscopic method
such as Fourier transform infrared spectroscopy [57]. A decrease in the growth factor concentration
specified by a solution of the optimal control problem can be physically implemented by dilution
using another syringe pump, on the basis of the same concentration measurement. When the optimal
control problem is formulated so that the growth factor is released from within the tissue, the release
can be either directly from the scaffold material or by polymeric nanoparticles adhered to the scaf-
fold (see references in the introduction). Such technologies are already described in some detail in
the tissue engineering and related literatures, which include methods for precise positioning of the
nanoparticles as well as cells within the scaffold during its construction [18, 19] while maintaining a
high survival rate for the cells. The tissue engineering technologies for implementing such optimal
control trajectories have been available for the last 5 years; what this paper considers is the design
of systematic approach for determining how much growth factor should be released, instead of the
current approach that is to use trial-and-error experimentation. Given the uncertainties of biological
systems, implementation of optimal control methods may not produce the desired engineering tissue
and organ exactly to specifications, but it is hoped that the proposed approaches are at least able to
reduce the amount of experiments needed to develop a successful experimental protocol.

8. CONCLUSIONS

The strengths and weaknesses of four approaches were investigated for the solution of an optimal
control problem motivated by tissue engineering. The basis function expansion approach is compu-
tationally efficient but can violate the nonnegativity constraint on the control input and could lead
to oscillations at discontinuities (see Figure 2(b)), depending on the selection of basis functions and
the reference trajectory. Basis functions that have been applied to other distributed parameter sys-
tems with convection and diffusion [29,31] may have promise in this particular application. The
IMC method does not take constraints explicitly into account when optimizing the control objec-
tive, and detuning the IMC tuning parameter to satisfy the nonnegativity constraint led to a sluggish
performance compared with the method of moments approach (compare Figures 3 and 5(a)).

The new optimal control method based on the method of moments was highly computation-
ally efficient while enforcing the nonnegativity constraint on the control trajectory (see Figure 3).
Although providing higher performance than IMC for a smooth reference trajectory, it is unclear
how to best generalize the approach to deal with state constraints or reference trajectories with dis-
continuities. The MPC approach was the most flexible method, with the ability to handle control and
state constraints, but was also the most computationally expensive. Some results were presented that
are of broader interest to the optimal control field:

1. The proposed method of moments approach to solving optimal control problems is different
from and goes beyond its applications to population balance models.

IThe total computational cost for MPC could be reduced by using warm starting [53,54].
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2. MPC is shown to be a useful approach for solving some non-receding horizon optimal control
problems (in particular, problems in which nearly optimal performance is obtained for a small
control horizon).

The paper considered many approaches to solving the optimal control problem for one spatial
dimension, to provide insights into how to best address the much more complicated case of three
spatial dimensions. Recall that the 3D control problem (1)—(2) has too many degrees of freedom
to be solved by direct temporal and spatial discretization. The results in Sections 3—6 suggest that
the 3D optimal control problem may be solvable by a combination of multiple design methods. The
generality and near optimality of MPC observed in Section 3 suggest that MPC is promising for solv-
ing the 3D control problem (1)—(2). The near optimality of the basis function expansion approach
in Section3 suggests that parameterization of the control input in terms of basis functions within
such a 3D MPC algorithm would lead to minimal loss in performance for some reference trajecto-
ries while further reducing the computational time. The good suboptimal solution obtained by the
method of moments approach motivates the development of 3D extensions to provide warm starts
for a 3D MPC optimization, to speed convergence. Nonlinear uptake kinetics could be addressed by
successive solution of linearized problems, just as nonlinear MPC problems are typically solved as
a series of linearized MPC problems [58]. Although how to best combine the various methods may
depend on the spatial and temporal dependence of the desired cellular uptake rate and how far an
unconstrained solution is from satisfying the constraints, this conclusions section provides guidance
as to the most promising method to incorporate depending on the needs of a particular application.

APPENDIX. DERIVATION OF EQUATION (18b)

P omd  —y®(0)
=Sy oar T Y0)
_ —GO0U©0) -GOU(©0)

G(0)U(0)

G(l)(O) U(l)(())

TG0 U©O)
= g + Hu, (51)

[ y(nde Y@ (0)
O y@de Y(0)
_ GDO)U0) +26D0)UD0) + UP(0)G(0)
G(0)U(0)
B G(z)(O) 2@(1)(()) U(l)(O) U(Z)(O)
G(0) G@0) U() U(0)
= 0 + iy + 2l + 0f + 1z, (52)

2 2
Oy+My

which implies (18b), after application of (51).
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