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Many process systems can be modeled as a stable Wiener system, which is a stable linear system followed
by a static nonlinearity. A nonlinear control design procedure is presented that provides robustness to
uncertainties while being applicable to systems with unstable zero dynamics, unmeasured states, dis-
turbances, and measurement noise. The design procedure combines nonlinear internal model control

with linear matrix inequality feasibility or optimization problems, such that all robust stability and per-
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formance criteria are computable in polynomial-time using readily available software. Application to a
pH neutralization case study demonstrates the importance of taking uncertainty into account during the
design of controllers for Wiener systems. The approach is generalizable to Hammerstein and sandwich
systems, whether well- or poorly conditioned, and to systems with actuator constraints.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A Wiener model consists of a linear dynamic system G followed
by a static nonlinear operator I" (see Fig. 1). Many process sys-
tems have been described by Wiener models including distillation
columns [1], heat exchangers[1], pH neutralization [2], packed bed
reactors [3], and plasma reactors [4,5]. Various control strategies
have been developed for Wiener systems, including adaptive con-
trol (6], linearizing feedforward-feedback control [7], and model
predictive control [8,9] strategies, many of which have been eval-
uated by application to pH neutralization processes.

The static nonlinearity in a Wiener model for a practical applica-
tion is always uncertain, and most existing methods for the control
of Wiener systems ignore this uncertainty. As will be demonstrated
in a case study later in this paper, the uncertainty in the non-
linearity can have major effects on the closed-loop stability and
performance. While robust optimal controllers for Wiener systems
have been designed by formulating the optimal control problem
in terms of bilinear matrix inequalities (BMIs) [4,5], a drawback
of such an approach is that optimization over BMlIs is an NP-hard
problem [10]. This paper proposes an approach that only involves
convex programs that can be solved using off-the-shelf software
in polynomial-time. The proposed approach is applicable to sta-
ble Wiener systems with unstable zero dynamics, unmeasured
states, disturbances, and measurement noise. A novel aspect of the
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approach is that various characteristics of the nonlinearities can be
taken explicitly into accountin the closed-loop stability and perfor-
mance analyses. The approach is applied to a case study involving
the control of pH in which the Wiener model is identified from
experimental data. The control of pH is an important industrial
problem that has been extensively studied [11-15].

2. Theory
2.1. Standard nonlinear operator form

The proposed approach employs the standard nonlinear oper-
ator form (SNOF) in Fig. 2, which has its roots in the 1940s
Russian control literature [16-18]. The SNOF consists of a linear
system with a static nonlinear operator in feedback, where the
static nonlinearities of the operator can be further restricted to be
diagonal, monotonic, and locally slope-restricted. Nearly any arbi-
trary nonlinear system (including unstable zero dynamics, chaotic,
and quasi-periodic behavior) can be approximated with arbitrary
accuracy by a model in standard nonlinear operator form [19].
Furthermore, all dynamic artificial neural networks can be trans-
formed into the SNOF, so that any of the software packages available
for fitting DANNs to experimental data' produces models that
can be written in SNOF. The static, monotonic, and locally slope-
restricted nature of the nonlinearities can be exploited to produce

! The Matlab neural network toolbox
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Process

Fig. 1. Wiener model structure where G is linear time-invariant and T is a static
nonlinearity.

polynomial-time tools to analyze the stability and performance of
these systems (e.g. see [20,21] and references cited therein). The
analysis tools can be written in terms of linear matrix inequal-
ities (LMlIs) [22], which are computable using available software
(e.g. [23,24]), much of which can be run in Matlab. The proposed
nonlinear control design stategy, described below, weds the above
analysis tools with internal model control.

2.2. Nonlinear internal model control strategy

As is standard in inversion-based control strategies for the con-
trol of Wiener systems (e.g. see [25] and citations therein), the
control structure has the form in Fig. 3, where I'; is selected to
be either the identity or the inverse of the process nonlinearity I'y,
depending on whether the overall controller is desired to be lin-
ear or nonlinear. For nonlinear I',, the controller in Fig. 3 has the
Hammerstein structure, in which a dynamic linear controller K; is
augmented with the inverse of the nonlinear operator combined
with the identified parameters of the process Wy and W5.

The remaining task is to determine the linear time-invariant
controller K; based on some closed-loop criteria. For example, an
example of an £;-optimal control problem would be to determine
the K; that minimizes a weighted combination of the worst-case
effects of the disturbance d and noise n on the output z:

inf o sup |22> +(1 —Ot)( sup IZz)
Ky (udu<1 Inlly=1 (1

s.t. the closed-loop system in Fig. 3 is stable,

Problem :

where the weight «<[0, 1]. For a linear time-invariant process
(I"y =), it is well known that the above optimal control problem
is equivalent to a weighted H..-control objective, [wuS + WpT 0o,
where S is the sensitivity function that maps the output disturb-
ance d to the controlled output z, Tis the complementary sensitivity
function that maps the measurement noise nn to z, and w, and wj, are
weights that define the tradeoff between disturbance suppression
and insensitivity to measurement noise (e.g. [26,27]).

While there are several approaches available for solving £5-
optimal control problems for linear time-invariant systems, solving
such problems for nonlinear systems is much more challenging
[28] and would require extensive software generation, even in the
case where there is no uncertainty in the system. The nonlinear-
ity I" has associated uncertainty, so that the nonlinear inversion
introduces nonlinear uncertainty into the closed-loop system. Rig-
orously taking that uncertainty into account while solving (1)
results in a nonconvex optimization over bilinear matrix inequality
constraints [4,5]. It is straightforward to show that optimizations
over bilinear matrix inequality constraints are NP-hard,® either
by reduction to the knapsack problem [10] or to an indefinite
quadratic program [29]. An alternative approach is to parameter-
ize K; in Fig. 3 in terms of the well-known Youla parameterization
(e.g. [26,27]), KL =Q/(1 — P.Q), where the stable transfer function Q

2 Except for very specialized matrix structures

provides degrees of freedom for controller design. The engineer can
parameterize Q in any way that maintains stability, and then tune
the control parameters to optimize the objective (1).

Internal model control (IMC) restricts the degrees of freedom in
Q so that the control tuning parameters are few and have a direct
relationship to setpoint tracking response, disturbance suppres-
sion, insensitivity to measurement noise, and robustness to model
uncertainties (e.g. [26,30]). The form for Q is selected as a low-pass
filter Fin series with the inverse of a minimum-phase approxima-
tion of the linear model of the stable process being controlled. For
the notation used here,Q = Pl":n where P , is the minimum-phase
approximation of the stable transfer function P;.

Instead of directly solving an optimization such as (1) for the
control tuning parameters, a common alternative is to tune the
controller as fast as possible while satisfying all of the control objec-
tives, such as guaranteed closed-loop stability with respect to all
uncertainties with a prescribed set, effectiveness at disturbance
suppression, or insensitivity to measurement noise (e.g.[31]). This
approach avoids having to explicitly define a performance weight,
and avoids having to balance the weights withrespect to each other.

The above approaches apply to both continuous- or discrete-
time systems; for brevity only the discrete-time equations will be
presented below. To parametrize the controller, consider the low-
pass filter

1
1
(AMz-1D/(z+ 1)+ D"

F(z) = 2)

where A specifies the response speed of the low-pass filter and m is
an integer that defines the order of the transfer function. This form
for F is obtained from Tustin’s discretization [32] of the low-pass
filter F(s) = [As_ll)”’r in the Laplace domain. The order of the low-

pass filter is fixed and the control tuning parameter is the IMC filter
time constant A >0. If needed, this filter form can be generalized
to include numerator dynamics or different time constants in each
diagonal element [26,33,34].

The closed-loop system in Fig. 3 can be rearranged into the
SNOF in Fig. 2 by using block-diagram algebra as described in
standard textbooks [26,31] or by using the sysic program in the Mat-
lab Robust Control Toolbox. The next section presents methods to
quantify robust stability and performance criteria for the closed-
loop system in terms of linear matrix inequalities, which can be
computed using off-the-shelf software that have Matlab interfaces
(e.g. [23]). These quantifications can be inserted into an optimiza-
tion formulation for A using a weighted control objective such as (1)
or can be used to determine the minimum value for A that satisfies
all of the robust stability and performance criteria.

Remark 1. The authors of [35] proposed an augmentation of
the nonlinear controller with a linear filter, in which the model
inverse was constructed using numerical procedures based on the
contraction mapping principle and Newton's method. The same
nonlinear IMC structure was later used [36], in which the model
inverse was determined using differential geometry. The nonlin-
ear control structure in Section 2.2 is very similar to those used in
these and other past publications. As described in the next section,
the proposed design method will differ from past works by rigor-
ously taking uncertainties associated with nonlinear inversion into
account.

3. Theory and methods: stability and performance criteria
3.1. Stability analysis

This section describes a necessary condition and sufficient con-
ditions for the analysis of stability of a system in SNOF. To simplify
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Fig. 2. Standard nonlinear operator form for discrete-time systems. The structure for continuous-time systems is obtained by replacing z with s, replacing x;+; with dx/dt,

and redefining the other variables to be continuous-time.

the notation, (B, C, D) is used as a shorthand notation for (Bp, Cgq,

Dagp).
The following necessary condition for stability of an SNOF is
obtained from linearization of a nonlinear process model [37].

Theorem 1 (Necessary stability condition). Consider a nonlinear
system in SNOF as shown in Fig. 2(a):

X1 = Axi + Bpy
qr = Cx + Dpy (3)
P =T(q)

wherex e R", p c R, g e R", A ¢ R™" B ¢ RN C e RM D ¢ RN,
I' is a diagonal nonlinear operator, n is the number of states, and h is
the input-output dimension of I". A necessary condition for asymptotic
stability of the steady-state X5 is that the eigenvalues of the matrix

-1
gy
q |, dq

all have magnitude less than or equal to one, i.e., p(Ar(xss)) <1 where
p(-) denotes the spectral radius of a matrix.

C (4)

S5

AL(xss)AAJrB(I

The term (d"/dq) ‘ ., Is the Jacobian of I evaluated at the steady-
state value for the state. For a diagonal I" =: diag{y;}, this Jacobian
has a rather simple form, (31"/3q)‘55 = diag! (3y1/3q1)|kx55}.

Any of the sufficient conditions for analyzing the stability of sys-
tems in SNOF using linear matrix inequalities (e.g. see [22,38,39]
and citations therein) can be applied to this approach. Which
stability condition to apply depends on the assumptions made
on the nonlinearities concerning the matrix structure (e.g. full-
block, block-diagonal, or diagonal) and the extent of time variation

Fig. 3. Block diagram for the nonlinear closed-loop system, with output z, dis-
turbance d, and noise n. The linear time-invariant and nonlinear static monotonic
operators of the process are P (assumed to be stable)and I'y, respectively. The linear
and nonlinear internal model controllers have I';=1 and I'; = I'| ', respectively.

(e.g. arbitrarily fast time-varying, arbitrarily slow time-varying,
static). Which condition to use depends on the nature of the specific
problem. For example, if the assumption that the process nonlin-
earity is static was only an approximation during the identification
of the Wiener model, then a stability condition can be selected that
allows the uncertainty in the nonlinear to be dynamic. If the non-
linearity in the Wiener model is multivariable, then a full-block
uncertainty structure should be used. If the nonlinearities in the
Wiener model are distinct and isolated, then a diagonal uncertainty
structure should be used to reduce conservatism. Few of the pub-
lished conditions, however, take into account the static, monotonic,
and slope-restricted nature of most nonlinearities and such condi-
tions that have been derived either require restrictive assumptions
(see[20,21] for details). The following sufficient condition, which is
computable for large-scale systems while taking into account these
characteristics of nonlinearities, will be applied in the pH control
case study.

Theorem 2 (Sufficient stability condition). 3 Consider a system
described in Fig. 2(a) with

Xkp1 = AXp + Bpy
G = Cxp +Dpy, (5)

and py. = I'(q,) subject to the sector-bounded and slope-restricted con-
ditions

Yilaeolvilqr,i) — &iqil <0, YqpieR,i=1,...,h (6)
and
0< Villker.i) — Yild,i) < iy VaieRyi=1,...,h 7)

Q+1,i — ki

where &; and (; is the maximum sector bound and slope of the ith
nonlinearity, respectively. A sufficient condition for global asymp-
totic stability is the existence of a positive-semidefinite matrix P=P"
with a positive-definite submatrix P11 = P1T1 and diagonal positive-
semidefinite matrices Q, Q, T, T, N € R"*"a such that the LMI

G2AlPA; —EIPE; + Uy + Uy —5; - S3 —53 <0 (8)

holds, where the matrices Aq, Eq, Uq, Us, Sy, Sa, and Ss are defined in
Appendices C and D.

3 A preliminary version of this theorem was presented at the 2011 IEEE Multicon-
ference on Systems and Control [20].
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Although stated as a stability condition, Theorem 2 is also a
robust stability condition, in that the existence of a feasible solution
to the LMI (8) implies that the system is stable for all nonlinearities
that satisfy the sector and slope bounds (6) and (7), respectively.
Uncertainties in the parameters W; and W, in Fig. 3 can be com-
bined with the uncertainty in the nonlinearity when applying the
robust stability condition.

3.2. Performance analysis

The input w of the system described in Fig. 2(b) is assumed
to belong to a set of £3-norm-bounded functions. Sufficient con-
ditions for the £;-gain of a system in SNOF to be finite and less
than some bound have been derived in terms of convex opti-
mizations with LMI constraints (e.g. see [22,38,39] and citations
therein). As for stability conditions, which performance condition
to use depends on the assumptions made on the uncertainty in the
nonlinearity inversion. The following sufficient condition, which is
applied in the pH control case study, quantifies the performance
for nonlinearities that are diagonal, static, sector-bounded, and
slope-restricted.

Theorem 3 (£,-Gain performance condition). Consider the system
described in Fig. 2(b) with

Xkp1 = AXg + Bppi + Bwwy
Ak = CqXy + Dgpp + Dgwwy, (9)
Zy = szk -+ szpk + DZWWk

where p, =I"(q, ) satisfies the sector-bounded and slope-restricted con-
ditions (6) and (7), A € R™", B, ¢ R, B, e R™™M, C, e R, C, €
E™7", Dgp € RN, D, € R™*™, Dy, € RP*™, D, e R7M, 1 is the num-
ber of states, h is the number of nonlinearities, m is the dimension of
the input vector, and r is the dimension of the output vector.

The system of the form described in Fig. 2(b) and (9) is stable and
has an upper bound on the induced £,-norm (or L;-gain) n* if the
optimization problem
n*= min_n

P.QAA
st. P,P;;=P,>0,0Q20,0>20,T>0,T=0,
N=0,G=<0, n=>0

(10)

has feasible solutions, where Q, Q, T, T, and N are diagonal, £ = diag(£;),
ju=diag(yt;), the matrix G = ET is defined by

0
=, =T = —T. = — — — — - 0
G2APA, —E,PE,+U; +U, -5, -5, -55 — 0 [0 00 1]
I
q
1 | D}
7 04' [ Dp 0 Dul, (11)
Dy,

and the matrices A, E, Uy, Uz, Sy, Sy, and S5 are defined in
Appendix F.

4. Results: application to pH neutralization

Consider the continuous pH neutralization of an acid stream by
a highly concentrated basic stream (see Fig. 4). The only measured
signal is the controlled variable, which is the pH, and the manip-
ulated variable is the flow rate of basic solution. The tank has a

b P";'_“\p acid stream
ase
stream + +
pH drain
control probe
computer

Fig. 4. pH neutralization apparatus.

volume of 51, and the 0.01 M hydrochloric (HCI) and 0.1 M caustic
soda (NaOH) solutions are pumped from 200-1 tanks into the mix-
ing tank. Solutions are prepared with tap water, which contains
a significant amount of dissolved carbon dioxide (in the form of
aqueous HCO; and CO%‘). Unmeasured disturbances include the
buffering species (carbonates) in the base and acid flows, nonideal
mixing in the main tank, nonideal mixing in the acid and base stor-
age tanks, and air bubbles in the tubes through which the acid and
base streams flow.

In a pH process represented as a Wiener model in Fig. 1, the
dynamic linear system describes the mixing dynamics and the
static nonlinearity describes the titration curve [40]. Other than
having a different analytical expression for the nonlinearity, the
same process model was used as in [41]:

dy
vel - Py -
ar 4 (12)

pH = Wstanh(W;Y)

where V is the volume of the mixing tank, u is the base flow rate, F
is the acid flow rate, W; and W, are weights, and Y is the dimen-
sionless strong acid equivalent [41].

For the pH process, each term in the SNOF has clear physi-
cal meaning. The nonlinearity directly corresponds to the titration
curve, and the linear term directly corresponds to the mixing
dynamics. Fig. 5 shows the form of the nonlinear relation between Y
and pH, with some experimental data collected for a pH experimen-
tal apparatus at the University of lllinois. The process disturbances
result in significant uncertainty in the nonlinearity, as shown in
Fig. 5.

2
-0.06

-0.04 -0.02 0 0.02 0.04

Strong acid equivalent (Y)
Fig.5. Titration curve nonlinearity (W and W> were determined by nonlinearleast-

squares fitting). The modelis the thick blue line; experimental data points are purple
dots.
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Table 1

Lowest IMC filter parameter A (ins) that indicates stability for the closed-loop system
with the linear IMC controller. Perfect model information is assumed. Theorem 2 was
applied with &=yt =1. All times are in seconds.

Table 2

Lowest IMC filter parameter A (in seconds) that indicates robust stability for the
closed loop system with the nonlinear IMC controller and significant uncertainty in
the process nonlinearity.

2] Necessary (Theorem 1) Sufficient (Theorem 2) 2] Necessary (Theorem 1) Sufficient (Theorem 2)
0 091 091 0 1.44 1.44
2 2.08 2.08 2 3.71 4.28
6 463 4.63 6 8.79 9.38

10 717 717 10 13.88 14.49

12 846 8.46 12 16.44 17.04

16 11.00 11.00 16 21.52 2217

An exact discretization [32] of (12) leads to:
Xepr = e A xp 1 (1/F)e ATV — 1y,
Yo =Xk (13)
pH, = Wshtanh(Wixy)

where Af is the sampling-time. In addition, there is a time delay
& due to the sensor location. The process time delay 6=0.27 min
(=165) and effective time constant T =3 min were determined from
experimental data by nonlinear least-squares estimation.

The linear and nonlinear IMC structures are shown in Fig. 3. The
block diagram in Fig. 3 can be written directly as an SNOF.

4.1. Linear IMC design with no nonlinearity cancellation

First consider the case where the IMC is linear and the process
nonlinearity I'; is perfectly known and equal to tanh. Closed-loop
stability results for a range of time delays are included to provide
an indication as to the potential conservatism of the analysis tools
for the pH neutralization problem (see Table 1). The necessary and
the sufficient stability analysis results gave identical stability lim-
its, indicating no conservatism for this closed-loop system. For this
problem, the smallest stabilizing IMC filter parameter increased
linearly with the time delay.

Now the linear internal model controller was designed that min-
imizes the desired closed-loop response time (1) while requiring
that the effect of worst-case disturbances d on the output y can-
not be magnified by more than a factor of 2.5. This is a direct
nonlinear generalization of the linear IMC design procedure for
the specification that the peak sensitivity is less than 2.5 [26,31].
The performance measure for a range of controller tuning param-
eter A for the linear IMC controller is shown in Fig. 6. The optimal
A is equal to 8.5 min. This performance condition places a much

45 i 4 T '
4,,,,,

3.5
3,,

25t
2.....

Performance measure

0 10 20 30 40 50
A (in minutes)

Fig. 6. Performance measure n* for the closed-loop system with the linear internal
model controller with tuning parameter A (for a process time delay 6 =0.27 min).

stronger restriction on the closed-loop speed of response than the
requirement of nominal stability.

4.2, Nonlinear IMC design with perfect nonlinearity cancellation

The geometric control literature commonly assumes that the
nonlinear process is perfectly known. This assumption would imply
that the controller nonlinearity I'> (in Fig. 3) perfectly cancels the
process nonlinearity I'y, and the closed-loop stability could be
determined from linear stability analysis. The resulting stability
conditions are exactly the same as those used to compute the nec-
essary condition in Table 1. Hence for the pH neutralization process
under the assumption of a perfect model, the stability limit for the
linear IMC is equal to the stability limit for the nonlinear IMC, which
is A=11s for the time delay #=16s.

4.3. Nonlinear IMC design with robustness to uncertainty in
nonlinearity inversion

Nonlinear models are rarely of very high accuracy, and this is
certainly true for the pH neutralization process as demonstrated
in Fig. 5. Now a nonlinear IMC controller is designed that mini-
mizes the desired closed-loop response time (A) while requiring
stability to uncertainties in the cancellation of the process non-
linearity, which is mathematically represented as deviations in
',y from one. Based on close inspection of Fig. 5, it was assumed
that the maximum overall slope of I';I"; could be as high as two,
while its instantaneous slope could be off as much as a factor of
four. Ensuring stability for this range of uncertainties is a nonlinear
generalization of the common objective used in the design of con-
trollers for linear systems of providing a gain margin of 2. Table 2
gives stability limits for a range of time delays to provide some
indication of potential conservatism of the stability analysis results.
The minimum IMC filter parameter A that provides robust stability
increases linearly with the time delay. The minimize filter param-
eter is A =22 s for the time delay #=16s, which is twice the value
computed for the nonlinear IMC design that ignored uncertainty in
the nonlinearity inversion.

5. Discussion

Whether a performance or stability constraint was used in the
IMC design had a significant influence on the filter parameter A
in the nonlinear IMC-based controller. For the pH neutralization
process, controllers tuned based on a nominal stability or robust
stability constraint provided much faster closed-loop speed of
response than the controller based on the worst-case performance
constraint. This observation indicates the importance of carefully
choosing the controller design criteria.

The sufficient stability condition in Theorem 2 was noncon-
servative to three significant figures for the closed-loop system
controlled by the linear internal model controller, for a range
of time delays (see Table 1). For the stability analysis that took
the uncertainty in the nonlinearity inversion into account, the
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Fig. 7. Block diagram for pH system.

sufficient condition could potentially be somewhat conservative,
as there is a gap in the values for the minimize allowable filter
parameter A computed from the necessary condition and sufficient
conditions (see Table 2). The gap is less than 0.1% for a system with
no time delay and about 3% for the time delay of 165 identified
in the experiments. The gap in the values of the minimum A for
the other time delays are all about 0.6 s (see Table 2). Although the
limits computed from the necessary and the sufficient conditions
are not exactly equal, they are certainly close enough for practical
application.

The stability analysis that took uncertainty in the nonlinearity
inversion into account indicated that the minimum stabilizing val-
ues for the filter parameter A were twice as large as the values
that were computed that ignored the uncertainty in the nonlin-
earity inversion. This observation indicates that importance of
taking uncertainty during nonlinearity inversion into account when
designed nonlinear inversion-based controllers.

The approach in this paper can be extended to nonlinear oper-
ators " in which each of its outputs is related to each of its inputs
from conditions such as shown in Theorem 2. The simplest way
to implement this generalization is to rearrange the scalar nonlin-
earities to form a larger diagonal nonlinear operator in Fig. 2. The
expressions for the state-space matrices in Fig. 2 are messier. The
generalization to full-block or block-diagonal nonlinear operators
I" follows the same derivations, but with much messier nomencla-
ture.

The approach in this paper applies to systems with larger time
delays. Appendix B shows the transformation of a system with
potentially large time delay into the standard state-space system
description; this transformation is standard in the control litera-
ture. The computational cost of analyzing systems with larger time
delays is much smaller than suggested by the increase in dimen-
sions, because the state-space matrices for the extended system in
Appendix B are highly sparse, and many existing LMI solvers are
effective at exploiting sparsity (e.g. [23,24]).

6. Conclusions

A nonlinear internal model control procedure was presented
for stable Wiener systems that ensures robustness of closed-loop
stability and performance to uncertainties in the inversion of the
static nonlinearity, while having polynomial-time computational
cost. Several more general observations can be made based on a pH
control case study. Assuming perfect nonlinearity inversion when
controlling pH processes led to overly optimistic predictions on
the achievable closed-loop performance, which indicates that the
commonly made assumption of perfect nonlinearity inversion can
produce poor results in practical applications. A comparison of pH
controllers designed to satisfy robust stability or disturbance sup-
pression constraints showed that the closed-loop response speed
could significantly change depending on the design criteria. Acom-
parison of the sufficient robust stability condition with a necessary
condition showed that the sufficient robust stability condition was
nonconservative for this particular application.

The nonlinear IMC procedure is applicable to stable Wiener
systems with unstable zero dynamics, unmeasured states, dis-
turbances, and measurement noise. This is in contrast to many
nonlinear control methods that require stable zero dynamics
and/or ignore disturbances and measurement noise. The general-
ization of the approach to Hammerstein and Sandwich models is
straightforward, and can be used to explicitly incorporate actua-
tor constraints into the nonlinear controller design, by combining
these static nonlinearities with any other static nonlinearity asso-
ciated with the input to the process. The approach can also be
combined with directionality compensation, which can improve
the closed-loop dynamics for ill-conditioned processes [42,43].
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Recollections of Ken Muske

Everyone in the process control community knew of Ken
through his papers on model predictive control in the mid 1990s,
and his presence was continuously felt through his very high degree
of professional service to the community. Ken was one of a handful
of process control engineers who have been very active in the orga-
nization of the American Control Conferences in the last decade,
which are managed by the American Automatic Control Coun-
cil (AACC) of eight societies that include the American Institute
of Chemical Engineers (AIChE) and the Institute of Electrical and
Electronics Engineers (IEEE). Ken’s leadership that | personally had
witnessed for the AACC and AIChE motivated me to nominate him
for the Program Coodinator of the Systems and Process Control area
of the AIChE Computing and Systems Technology (CAST) divison, as
he was demonstrating a much higher degree of professional service
in the field than the other U.S. process control engineer that had not
yet held that position. | was pleased when Ken was selected for the
position, and he continued to be selected and elected into higher
leadership positions, including on the AACC Board of Directors and
Director of the CAST divison of AIChE.

Mostly in service to AIChE and AACC, we simultaneously served
on numerous organizing and program committees, served back-
to-back terms for leadership positions, and interacted very closely.
Many times we were organizing papers into sessions and schedul-
ing sessions for American Control Conferences, debating the merits
of nominations for awards, or discussing strategies for encouraging
other AIChE members to become more involved in AACC activi-
ties. We also discussed control education, a subject that Ken cared
deeply about, and [ was looking forward to a tutorial paper that I
had invited him to give at the 2010 American Control Conference.

Ken cared deeply about the control profession, always tried to
do the best for the community, and always behaved with a very
high degree of professional and personal ethics. I am not ashamed
to admit that I cried when I learned of his passing, and [ am crying
as | write this sentence. [ miss Ken deeply, and I always will.

-Richard D. Braatz
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Appendix A. Computation of SNOF for pH system

Aq | Bg

Consider the block diagram in Fig. 7 where Ca | Dq
2C4(z21 —Ayg) 'By+Dy and w = d. The system equation is given by

zy = —(pHy +wi) = —Wap — wy
q. =Wy
=W (CyYy + DyCexy — DgDWapy, — DgDewy)
Yir1  =AgYk + ByCexy, — BaDWapy — BaDewy
Xiy1 = AcXy — BcWapy — Bewy

b =D(q)

Define the concatenated vector %, £ (Y, x.)", then the SNOF in Fig,
2(b) for the pH system is given by

. Ag ByCe . —ByDcW> —B4D¢
Xky1 = X + Pr + B Wi

0 A —B:W» —b¢
~ Ne——
A Bp By
qy = [chd ClDdCC}ik+ [7W1DdDCW2:|pk
Cq Dqp
+ [ —W,DyD, } Wi
N —
Dgw
Z = [0}&k+[7wl}pk+|:fl]wk
~ S—— S~
G Dzp Dzw

Appendix B. Extended state-space representation for
systems with time-delay in input channels.

Consider the discrete-time system model

Xiey1 = Ag( ALK + By( AL (0) (B.1)

where At is the sampling interval for discretization such that
X =x(kAt) and i1, (6) 2 u(kAt — 8) with time delay 6. Suppose that
#=mAt where m is an integer. Then the system equation can be
written as

Xpy1 = Ad( ALKy + Ba(Aflug_m (B.2)
Define the auxiliary states
0 LALALD + By( Ay,

k+1 k (B3)

£+1 &
§k+1 :f,’k, £=0,....,m-1.

Then the state of the system (B.1) is the output of the extended
state-space model:

Chpr = Aq( AL+ Ba( Aty

(B.4)
X  =Caly

where £ £vec({?, 1, .-, &™) € R"™ and?
FAAD) O . o 0] [BalAD7
1 0 ... .. .0 0
0 10 0
Adag & | OO0 0 e
0 0 o0 1 0 :
L i 0
Ca 2 [0 : 0 l}.

Proposition 1.
(B.4) is stable.

The system (B.1) is stable if and only if the system

Proof. (<«): This direction is shown by observing that the state
vector in (B.1) is a subset of the state vector in (B.4), thatis, ™ =x.
(=): Suppose that the system (B.1) has a unique stable steady-state
x4, Then, there exists a sufficiently large K € Z,. such that ' = x*1
forall k > K, where it can be assumed that K > m without loss of gen-
erality. This implies that f;,f =x% {=0,...,m—1forall k=K—m,
which is equivalent to stability of the system (B.4). O

Appendix C. Proof of Theorem 2

Proof. Consider the Lyapunov function
, "q Ay,
V(x) = XLPR+2) Qi

i=1

"9 Qi
+ZZQ‘:'/ &0 — ¢i(0)] do,
i=1 0

¢i(o)do
0

where
Xk P11 P12 P13
Eké Pr ,PT =P4 P{Z Py Pyy =>0,P;; > 0,
13 P1T3 PzTB P33

Qi=0,Q;=0,Vi=1,...,ng,

and the subscript k indicates a sampling instance. Both p; and g, are
functions of the state variable vector x, and the above Lyapunov
function is radially unbounded and positive for all nonzero x;, € R".
The difference in the Lyapunov function between the k+1 and k
sampling instances is

g

k1.0
AV(x) = GH(ATPA — EJPEQ)C +2) Qi f $ilo)do
i=1 ki
Ma _ Qher1.i
+2 0 f (50— ¢i(0)] do, (c1)
i=1 Ai,i
Xi A B 0O I 00
where £, 2 | p , A2 |0 0 I |, Eg2 |01 O
Prit CA CB D C DO

4 vec(a, b) e BM+"2 refers to the concatenation of vectors a e B and b € E™2, ie,,
its first n entries are equal to a and the remaining entries are equal to b
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Slope restrictions on the nonlinearities place an upper bound on
the first integral:

k1, Mg
ZZQu f P(o)do < 2Zer(¢k+1,r — @k, i dks1i — Gr.i)

k.i i=1

1
- z_m(qbkﬂ,i — i)} = (Ui,

where Uy is given in Appendix D. Similarly, an upper bound can be
derived on the second integral:

Apet1,i Ar1,i
ZZQH f [t (o)) do = —22% fq k $(o)do
k.i i=1 i
qk+1,i
+22Q11f SJ:IG,dO, = ZZQH{ (¢k+l i d)k,i)z

g

1@t — Qi) | + ZZQ‘:‘%’x‘UﬁH,i — gl = LUk,

i=1

where U, is given in Appendix D.
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Mg
Zzﬁﬁbkﬂ,i[ff] Prr1i — Qesr,i] = L S2.8ks

i=1

(C.5)

where S; and S; are given in Appendix D. A similar notation based
on the inequality (C.3) is:

Mg
ZZNii(¢k+1,i — Pl (Driri — P

i=1

— i)l = &L S38k (C6)

=Gk
where S; is given in Appendix D.
Applying the S-procedure, if the LMI G £ AlPA, — EJPE, + Uy +
Uy, — 51 — 52 — 53 < 0 is feasible then AV(x,)<0 is satisfied for
the specific class of feedback-connected nonlinearities ¢ tD[U i
¢£? “#1_All of introduced matrix (decision) variables are of compat-
ible dimensions. O

Appendix D. Matrices for the application of the
S-procedure in Theorem 2

[0 —(cA-0O)Q (cA-c)fa
U £ |% —QB-D)-(CB-D)'Q-Qu' -QD+Qu!
ER —-QD-DTQ — Qu!
[ATCTQECA — CTOEC ATCTQECB - (CA—C)'Q — CTQED ATCTQED
o 2 (oo sy uig) #7220
| * —u~'Q +2D7Q£D
[0 —CTT 0 0 0 —ATCTT
S1 £ |% 28'T-TD-D'T 0 S 2 |« —B'C'T
B 0 *x % 2671 T-TD-D'T
[0 —(cA-O)'N (CA-C)'N
S3 £ |« 2Nu~ 14 (CB-D)'N+N(CB—D) —2Nu~'+ (CB—D)'N+ND
B 2Npu~1' —D'N —ND

Since the (negative) feedback-connected nonlinearity is mono-
tonic with slope restriction in addition to being [0, £] sector-
bounded, i.e., ¢ € ¢£g=51 n beﬂ’“]. it can be shown that the following
inequalities are satisfied at each sampling instance k and all indices

i=1,...,nq
breil€; i — qril <0, (€.2)
(Drs1,i — Dl iy (Drrni — biei) — (Gini — Gii)] < 0. (C.3)

The following notations based on (C.2) are useful when applying
the S-procedure:

g
D 20l B — Quil = 151 G (C.4)

i=1

Appendix E. Proof of Theorem 3

Proof. It is not difficult to see that the system given in
(9) is g.a.s. and is dissipative with respect to the supply rate
I 0

T
W
Wiz 2 |
Zj, 0

V(xy) if and only if AV(xy) < s(wy, x,) holds for all k € Z, which
is equivalent to the £,-gain performance bound, sup |z|2 < n.
Iwiz=<1
Consider the Lyapunov function (C.1) and the system equation (9).
Thenthe condition AV(x;) — s(wk, z,) < Ocanberewritten as C CCk

Pe Piey
tation of the matrix G can be performed by using the S-procedure
and the derivation is similar to the proof of Theorem 2 given in
Appendix D. O

w,
1 [ k] and the Lyapunov function
7?[ Zj,

where Gis givenin(11)and @’ = [x{ w, ] .The compu-
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Appendix F. Matrices in Theorem 3

A B, 0 B, 1 o
Ac 2|0 0 I 0 , ER2(0 1 o0 0],
| C,A CBy Dy (B Cq Dgp 0 0
[0 —(GA-C)'Q (CA-C)'Q 0
—Q(CqBp — Dgp)
T (CqBp — Dgp)'Q
* —(CqBp —Dgp) Q B —QCyBy
ou-1 —QDgp + Qe
U, 2 .
Q(CyBp — Dgp)
* o +(CqBp — Dgp)'Q QCyBuw
,Qp__—l
ER * 0
r ~ C,A—Cy)e
ATCTEQC A (g q CA-C)T CA—-Cy)T
CQTZ(%C!] -Q(CqBp + Dgp) N . " C - ?
—CTeQ ~ -£QD -EQCyB
q q 7(CqA _ Cq)TQ g qp %‘ qPw
2(CyBy + Dyp)'E
A T T
T -Q(CqByp + Dygp) (CyqBp + Dgp) (C4Bp + Dygp)
S —Q(CqBp — Dgp) -£QDyp -EQCyBy '
~(CqBp — Dgp)'Q —QDgp +Qu~? —~QCyBw
-Qu?
* * 2DgpEQDgp — Q' DL,EQCeBw
L * * * ZBLCgEQCqu
[0 —-CIT 00 0 -ATQJT 0 0
_ # 2671T—TDg—Dg,T 0 0 _ * —BiCIT —TCBy —TDgp TCqBw
Sis * % 00 525 * % 26-1T 0 ’
' = 0 x % x -BICIT
[0 —(CiA—Cg)'N (] 0
(CqBp — Dgp)'N
(CgBp — Dgp)'N
- . | * | NGBy —Dgp) NCgBw
53 = —2Np =1 + NDyp
+2Np !
+ * 2Npu ' —DJ,N —NDgy —NCqBw
L+ = * 0
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