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ll control engineers should be able to detect and iden-
tify faults (that is, abnormal conditions in a system) 
from the analysis of large heterogeneous time-series 

data sets. This “Focus on Education” column provides an 
introduction to multivariable data-based methods for fault 
detection and fault identification, with the latter being the 
determination of system variables that contribute the most 
to a detected fault. For fault identification in statistical 
process monitoring, the contribution plot is the most com-
monly used tool for quickly identifying the most affected 
variables. Contribution calculations are revisited in the 
context of principal component analysis (PCA) and T2 sta-
tistics, and a two-dimensional (2-D) contribution map is 
illustrated for the examination of time-series data under 
faulty conditions. The 2-D contribution map is compared 
to the traditional one-dimensional (1-D) contribution plot 
using simulated data from a realistic chemical process. The 
2-D contribution map demonstrates the potential to enable 
a greater understanding of the fault and how its effects are 
propagated through the system. 

INTRODUCTION
Faults inevitably occur in industrial systems and become 
more prevalent as systems become increasingly large scale 
and interconnected. The closed-loop performance of the 
control system depends critically on the proper function-
ing of the process and control equipment, so faults need to 
be detected and diagnosed quickly from the real-time data 
collected from the system. Rapid detection and diagnosis 
can minimize downtime, increase the safety of plant oper-
ations, and reduce manufacturing costs. Statistical process 
monitoring (SPM) applies multivariate data-driven meth-
ods to process data for fault detection and diagnosis and 
has been popular in both academic research and indus-
trial practice over the past two decades [1]–[5]. Data-driven 
methods such as PCA, partial least squares (PLS), and 
other modified methods are used to characterize the data 
collected during normal process conditions. Such methods 
are dimensionality reduction techniques that project the 
high-dimensional process data into much lower dimen-
sional spaces. Fault detection is based on multivariate sta-
tistics, such as T2 statistics for describing variations within 

the lower dimensional space and Q statistics for represent-
ing variations in the residual space, in which rigorously 
derived control limits are computed from the data [1]–[5].

Typical procedures in SPM involve a fault identification 
step after the detection of a fault to identify the most likely 
variables closely associated with the fault (that is, the “faulty 
variables”) by analyzing each variable’s contributions [4]. 
A contribution plot summarizes quantitative information 
about the potentially faulty variables. While useful, the tra-
ditional contribution plot only examines the contributions 
at one observation (time point), and multiple contribution 
plots are needed to illustrate multiple observations in time 
series data. In comparison, a 2-D contribution map stacks 
multiple observations into one image to clearly illustrate 
the contribution of the variables over the entire faulty data 
times series, which enables the fast identification of faulty 
variables within large heterogeneous data sets.

The next section is an introduction to PCA [1]–[5], which 
is the most commonly used technique for fault detection and 
identification for large heterogeneous data sets. The 2-D contri-
bution map is presented as a more effective visualization than 
the commonly used 1-D contribution plot used for fault iden-
tification. The methods are illustrated and compared through 
application to data collected from a well-known model prob-
lem known as the Tennessee Eastman process (TEP).

PCA AND T2 STATISTIC REVISITED
Consider a data matrix X Rm n! #  containing m  observa-
tions of n  process variables at the normal process condi-
tions. The matrix X  should be autoscaled, that is, each pro-
cess variable should be pretreated by subtracting its mean 
and dividing by its standard deviation. PCA dimensional-
ity reduction uses the singular value decomposition 

	 ,
m

X U V
1

1 TR
-

= � (1)

where U Rm m! #  and V R nn! #  are unitary matrices and 
Rm n!R #  is a diagonal matrix containing the singular val-

ues in decreasing order .0,min m n1 2 g$ $ $ $v v v^ h" ,
For each principal component i , its loading vector is given 

by the i th column vector of the matrix V , with the vari-
ance of the projected training data along the loading vector 
being equal to .i

2v

In the data-modeling step, only a small number of the 
principal components, known as the reduction order a , are 
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retained in the PCA model. Several methods are available 
for determining the value of a , including the percent vari-
ance test, the scree test, and cross validation [1]–[5]. For 
demonstration purposes, this article uses the percentage 
variance test, which chooses a based on the lower dimen-
sional space containing a specified minimum percentage of 
the total variance (for example, at least 95%). 

Once the reduction order a is determined, the loading 
matrix P Rn a! #  is the first a column vectors in the V  matrix. 

For an observation x Rn 1! # , the score vector t , which rep-
resents the data projection onto the principal components, is 

	 .t P xT= � (2)

The T2 statistic, which is a measure of how far the obser-
vation is from the center of the characterized normal data, 
can be calculated directly from the PCA representation by

	 ,T x P P xT
a

T2 2R= - � (3)

where Ra
a a!R #  is a diagonal matrix containing the first a  

rows and columns of R in (1). 
The threshold for detecting abnormalities in new obser-

vations is given by the T2 statistic

	 ( ) ( )
( ) ( )
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F a m a
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CL
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where ( , )F a m a-a  defines the upper 100a% critical point of the 
F-distribution with a and m a-  degrees of freedom. When the 
T2 statistics of the new observations (for example, two consecu-
tive observations) violate the threshold, a fault is alarmed.

Fault identification is carried out immediately after a 
fault is detected in the process data using the T2 or any alter-
native fault detection statistic. The contribution plot quantifies 
the contribution of each process variable to the PCA scores 
(2) to identify the process variables that are most closely 
associated with, and potentially responsible for or a direct 
consequence of, the abnormal/out-of-control status. The 

procedure for the calculation of the 
contributions is [4]:
1)	 �Given a vector of observations x  

(auto-scaled with the mean and 
variance of the training data) and 
its calculated score vector t , the 
contribution of each process vari-
able xj  to each ti  in the score 
vector t  is calculated from
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	� where P ,j i  is the ,j i^ hth element 
of the loading matrix .P

2)	� The total contribution of the pro-
cess variable j  at the observa-
tion is calculated by

	 CONT( ) cont( , ) .j i j
i

a

1
=
=

/ � (6)

For each observation, the CONT 
is a vector whose length is equal to 
the number of process variables. In 
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Figure 3 A traditional contribution plot of the testing data set at the time of the detection  
of Fault #1. 
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test data (red) indicates that Fault #1 is detected after hour 25. 
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the traditional contribution plot, the CONT is plotted for 
the observation at which the fault is detected. For time-
series data, the procedure is repeated to generate one con-
tribution plot at each observation. A 2-D contribution map, 
which stacks the series of observations in one single color 
map, is a more convenient alternative for representing the 
information. The usefulness 
of the 2-D contribution map is 
illustrated in the next section.

TENNESSEE EASTMAN 
PROCESS EXAMPLE
The TEP is a realistic simula-
tion of a chemical facility cre-
ated by the Tennessee East-
man Company [6]. The TEP 
is widely used by researchers 
for evaluating process control 
and monitoring methods (see, 
for example, [2], [7], and [8]). 
Figure 1 shows the TEP flow 
diagram  with  a  plant-wide 
control structure, which has 
41 measurements, 12 manipu-
lated variables, and 21 prepro-
grammed faults. The process 
consists of three main units 
(a reactor, a separator, and a 
stripper), and produces two 
products (labeled G and H) 
from four reactants (labeled 
A, C, D, and E). The process 
is nonlinear, open-loop unsta-
ble, and contains a mixture of 
fast and slow dynamics. The 
closed-loop  system  is  stable 
and provided acceptable per-
formance over the entire oper-
ating regime when no faults 
occur in the system. Of the 
21  preprogrammed  faults, 
some faults are detectable and 
identifiable  using  classical 
single-variable control charts 
such  as  Shewhart,  exponen-
tially weighted moving aver-
age (EWMA), and cumulative 
sum (CUSUM) whereas some 
faults are challenging for even 
the most advanced methods. 
Detailed descriptions of the 
process and the control struc-
ture, as well as a description of 
the classical control charts, are 
available in [2] and [9].

In this example, the data under the normal operating 
conditions were used as the training data for PCA mod-
eling, and the data collected during Fault #1 was used as 
the testing data for demonstrating the method (the data 
are available online at http://web.mit.edu/braatzgroup/
TE_process.zip). Fault #1 is a step change in the A/C feed 
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Figure 4 Different most-faulty variables were picked out in the traditional contribution plot. (a) One 
and (b) three samples after the time of the detection of Fault #1. 
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ratio in Stream 4 (Figure 1). The data set for normal operat-
ing conditions contains 500 observations equally sampled 
over 25 h, and the data set for Fault #1 has 480 observations 
equally sampled during a 24-h period. Based on the nor-
mal training data, a reduction order a 36=  was obtained 
to retain 95% of the variance. Figure 2, which shows the 
T2 statistic of the training and testing data sets, indicates a 
fault detected at around hour 25, several sample times after 
the fault has occurred. The control limit shown as a blue 
line was calculated by (4) at the 99% confidence level. 

The traditional contribution plot in Figure 3 illustrates 
the contribution of process variables at the observation 
upon which the fault was detected (the fault was alarmed 
after two consecutive T2 control limit violations or eight 
sampling points after the fault occurrence). The plot sug-
gests the fault is most likely associated with process vari-
able 16 (XMEAS 16, the stripper pressure). However, con-
tribution plots for subsequent observations show different 
variables having the largest contributions (Figure 4). In 
this circumstance, because of the dynamics of the closed-
loop system, the most critical process variables associated 
with the fault was indeterminate using the 1-D contribu-
tion plots. 

The same contribution data plotted as the 2-D contri-
bution map in Figure 5 enables the reliable identification 

of the key process variables associated with the fault: 
XMEAS 1 (A feed, Stream 1) and XMV 3 (A feed flow, 
Stream 1), both of which show consistent strong bands of 
contribution. Fault #1 is involved with a feed ratio change 
of A/C in Stream 4, and a control loop changed the A feed 
in Stream 1 to compensate for the fault. The 2-D contribu-
tion map indicates low initial contributions of all process 
variables at times right after the fault occurs and how the 
effects of the fault are gradually propagated into XMEAS 1  
and XMV 3. 

Figure 5 shows that in the first few hours following the 
fault occurrence (hours 25–29), more than a dozen process 
variables show high contributions to the fault, which corre-
sponds to the period when the closed-loop control system 
is trying to compensate for the fault. It is unlikely that a 
control engineer applying 1-D contribution plots to obser-
vations in this time period will correctly determine the key 
faulty variables. 

An inspection of Figure 5 indicates that the 1-D contribu-
tion plot would correctly identify the variables associated 
with Fault #1 if the contributions were averaged over 2 h or 
the data were averaged over two hours before applying the 
1-D contribution plot. Averaging over long time windows, 
however, would directly conflict with the goal of correctly 
identifying the associated faulty variables quickly after the 
fault is detected. Further, plotting multiple time series, as 
in the 2-D contribution map, is generally more useful than 
plotting single snapshots as done in the 1-D contribution 
plot because the best time period for identifying faults is 
not known a priori and will vary depending on the differ-
ent fault dynamics. 

The 1-D contribution plot will typically give comparable 
results when the fault response is fast and localized. For ex-
ample, consider Fault #4, which is a change in reactor cooling 
water inlet temperature. The effect of this fault on the vari-
ables is simple enough that the contribution is concentrated 
on XMV 10 (reactor cooling water flow) from the point of 
fault occurrence, as shown in Figure 6, so the 1-D contribu-
tion plot can also quickly identify the faulty variable.

The 2-D contribution map and the 1-D contribution plot 
are essentially two ways of presenting the same data. In 
fact, in Figure 5, each column corresponds to the 1-D con-
tribution plot at that observation time. The 2-D contribution 
map, however, assembles the information to enable a more 
useful visualization for identifying the faulty variables. 
The 2-D contribution map enables the human operators or 
control engineers to be better informed, to speed their abil-
ity to track down the precise nature and cause of the fault.

The implementation of the 2-D contribution map is 
briefly summarized by the pseudocode in Table 1.

FINAL REMARKS
The 2-D contribution map provides an alternative means 
of plotting fault contributions compared to the 1-D contri-
bution plot. By plotting multiple observations (time-series 

% pretreat the testing data (auto-scaling)

X = pretreat(X );

% calculate the contributions

,m n =6 @  size(X );

CONT = zeros ( ,m n);

for :k m1= % for each new observation k

   ( , :) ;t P X k ')= l

   cont = zeros ,a n^ h
   for :i a1= % for each principal component

    for :j n1= % for each process variable

        cont , , ( , ) / ;i j t i X k j P i j i
2) ) v=^ ^ ^h h h

        cont , cont , cont , ;i j i j i j 0) 2=^ ^ ^^h h h h
    end

  end

  , :CONT k =^ h sum(cont, 1);

end

% plot the 2-D contribution map

imagesc(CONT');

x label('New Observations (hour)');

y label('Process Variable');

Table 1  Pseudocode for implementation of the 2-D 
contribution map.



October 2014 «  IEEE CONTROL SYSTEMS MAGAZINE  77

data) on the same map, control engi-
neers can more accurately identify the 
most impacted variables directly and 
potentially gain a better understand-
ing of the fault and how its effects are 
propagated through the system.

There are alternative means for cal-
culating the contributions [5]. While the 
details of the formulas may be different, 
the idea of the 2-D contribution map is 
universally applicable. Complementary 
to the T2 statistic, the Q statistic, which 
captures faults in the residual space 
corresponding to the m a-  smallest 
singular values, can also employ the 
contribution map for fault identification 
in a similar manner. 

It is the authors’ opinion that every 
control engineer should receive some 
training in fault detection and diagno-
sis and that the multivariable statistical 
methods, as well as classical Shewhart, 
EWMA, and CUSUM control charts, 
should be the covered at a minimum. 
Preferably, this content is contained in 
a course devoted to the topic of fault 
detection and diagnosis, which should 
be a component of any undergraduate 
or graduate control curriculum. If such 
a course is not offered, then the con-
tent should be covered in one to two 
lectures of an introductory controls, 
systems engineering, or data analysis 
course. At the authors’ institution, this 
material is covered in the modeling and 
data analysis section of an introduc-
tory systems engineering course mostly 
taken by first-year graduate students.
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Figure 5 A 2-D contribution map of the testing data (Fault #1) provides a visual identifica-
tion of the most contributing variables in bright bands. 
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Figure 6 A 2-D contribution map for Fault #4.


