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Abstract

When black holes or neutron stars are formed in close binary star systems, X-ray-emitting

accretion disks are often created. Previous research has shown that the light output from

these X-ray binaries flicker rapidly, a phenomenon called quasi-periodic oscillations (QPOs).

The QPOs indicate that the accretion disks are not axisymmetric. In this paper, we un-

dertake a theoretical investigation of one possible explanation for the lack of axisymmetry:

spiral density waves. Using both analytical methods and computer simulations, we inves-

tigate accretion disk density under the spiral density wave model. The analyses indicate

that spiral density waves in accretion disks can persist throughout time and are therefore a

plausible explanation for the QPOs.



1 Introduction

Accretion disks around black holes or neutron stars are powerful kiloelectronvolt-range X-

ray sources (Shapiro & Teukolsky 1983). In fact, accretion disk X-ray emission is commonly

used to detect the existence of the compact objects (COs, includes black holes and neutron

stars) themselves.

When a CO is formed very close to its companion star (the active star) in a binary system,

it has a strong gravitational influence on particles near the edge of the active star. When

this influence becomes greater than the active star’s gravitational attraction, the particles

approach the CO. Because they have angular momenta (and because angular momentum is

conserved), they cannot fall directly to the event horizon or the star; instead, they enter into

orbit. The orbiting material is collectively called the accretion disk.

Previous research (van der Klis 2000, Remillard et al 2002, using data from the Rossi X-

ray Timing Explorer) has shown that the amount of X-ray light emitted from some CO accre-

tion disks fluctuates with time in a quasi-periodic manner. These quasi-periodic oscillations

(QPOs) indicate that the disks are not axisymmetric, or uniform: were they axisymmetric,

there would be no method of varying the light intensity.

One possible form for the non-axisymmetries is spiral density waves. That is, accretion

disks with QPOs could have regions of high density arranged in a classic spiral shape. These

waves are analogous to regions of high star density forming spiral arms in spiral galaxies

(Struck-Marcell 1990). We can therefore say that accretion disk density increases when

near-parallel streams of gas approach each other.

Taking this idea to the extreme, we must consider the case when gas streams intersect.

Because the streams are densely composed of particles, their intersection would result in a

high frequency of particle collisions. In reality, however, particle collisions occur infrequently

in accretion disks. In order for collisions to be common, the random kinetic velocities would

have to be comparable to the orbital velocities, but observations that T ≈ 107 K (Shaprio
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& Tukolsky) rule out that possibility. In terms of the density model, gas stream intersection

would cause the density to instantly jump instead of increasing smoothly. In singularity

theory, a discontinuity in the density is called a caustic (Arnol’d 1992). Therefore, an

important test for any density wave model is that it must be caustic-free, even as it evolves

over time.

In this paper, we discuss the construction of accretion disk models with spiral density

waves. We first create models analytically, and then by computer simulation. The computer

models, generated by looking at the positions and orbits of many millions of particles, enable

us to use the criterion above in order to consider the plausibility of density waves in real

accretion disks.

We begin the discussion with a general consideration of orbital mechanics and perturba-

tion theory (§§2.1 and 2.2), tools which we then apply to the relativistic situation around a

black hole in §2.3. Finally, we will discuss the three main steps in our investigation: creating

an axisymmetric disk by random sampling (§3), deforming the disk to a non-axisymmetric

shape by displacing particles (§4), and evolving the disk over time (§5). The results of this

investigation will determine whether or not the spiral density wave theory is plausible.

2 Orbital mechanics with perturbation theory

In order to model accretion disks we first must investigate orbital dynamics in a central

potential. We expand the orbits using first-order perturbation theory in order to simplify

calculations. Perturbation theory assumes that orbits are very close to circular. That is, if

r is the distance from the gravitating object,

r(τ) = r0 − ε(τ) and φ(τ) = φ0 + Ωφτ (1)
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where r0 is the circular approximation of r and ε(τ) is the correction. We use the symbol τ

for the proper time measured by the particle. In the non-relativistic case, τ is equivalent to

the universal Newtonian time t. We discuss the relativistic case in §2.3 below.

In this section, we first derive an exact solution for the orbital energy equation in any

arbitrary central potential and then discuss the orbit with perturbation theory. We then

evaluate the relativistic potential, which we need to use around black holes for a number of

reasons. These are discussed more thoroughly in §5.

2.1 General orbits in a central potential

We can derive our orbital equations from two assumptions (Landau & Lifschitz 1993). The

first one is the expression for angular momentum per unit mass.

�L ≡ �r × �v (2)

where �v ≡ d�r/dτ . For orbits in a central potential, angular momentum is conserved, or

d�L/dτ = �0 (Kleppner & Kolenkow 1973 §6.3). Then, by splitting �v into radial and tangential

velocity components (�vr and �vt = rdφ/dτ), and defining �e as the unit vector in any given

direction, we have

L ≡ |�L| = |�r × (vr�er + vt�er)| = r2
dφ

dτ
, (3)

after using the fact that |�r × �er| = 0.

Our next assumption pertains to the orbital energy. We assume that orbits in a central

potential V (r) have energy per unit mass

E ≡
1

2
�v2 + V (r) =

1

2
(vr�er + vt�et)

2 + V (r) =
v2r
2

+
r2v2t
2

+ V (r) =
1

2

(
dr

dτ

)2
+

L2

2r2
+ V (r),

(4)
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since we know that �er ⊥ �et ⇒ �er · �et = 0. We now define the effective potential Veff(r) as

Veff(r) ≡ V (r) +
L2

2r2
. (5)

Solving equation (4) for dr/dτ and using the expression for V (r) from equation (5), we have

an expression for radial velocity:

dr

dτ
= [2E − 2Veff(r)]

1/2. (6)

2.2 Nearly Circular Orbits

In order to approximate an orbit with perturbation theory, we must calculate equations of

motion dr/dτ and dφ/dτ for any arbitrary Veff(r), and then integrate them.

Substituting r = r0 − ε(τ) into equation (18) and Taylor expanding Veff(r) about r = r0,

we get

(
dε

dτ

)2
+ Ω2rε

2 = 2E − 2Veff(r), (7)

where

Ωr ≡

(
d2Veff
dr2

)1/2∣∣∣∣∣
r=r0

. (8)

The solution of equation (7) gives

r(τ) = r0 − ε0 cos[Ωrτ + θ0] = r0 −
(2E − 2Veff)

1/2

Ωr
cos(Ωrτ + θ0). (9)

Note that the appearance of Ωr as the frequency constant within the cosine argument

proves that it is the orbital frequency in radius; the frequency of cycling between the minimal

and maximal radii. This does not necessarily equal Ωφ, the angular frequency in equation
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(1). In order to determine Ωφ, we differentiate equation (1) with respect to τ and then

use our expression for dφ/dτ from equation (3). After replacing r = r0 for the circular

approximation of Ωφ, we have

Ωφ =
L

r20
⇒ φ(τ) = φ0 + Ωrτ (10)

and thus our second equation of motion.

2.3 Solution for the relativistic central potential

In order to evaluate orbits with the Schwarzschild metric (relativity around a non-rotating

black hole), we need to determine r(t) and φ(t). This requires two assumptions about

relativity. We must start with the Schwarzschild central potential, as well as the relationship

between proper time and universal time.

We begin by considering the central potential for a Schwarzschild black hole. It is given

by Ohanian & Ruffini (1994 §7.6) as

Veff(r) = −
GM

r
+

L2

2r2
(1− 2x), x equiv

GM

rc2
(11)

equivalent to the Newtonian potential with an extra term of order r−3. By setting dVeff/dr =

0 at r = r0, we find

r0 =
L2 ± (L4 − 12G2M2L2c−2)1/2

2GM
. (12)

This result implies

L2 =
GMr20

3GM/c2 − r0
=

GMr0

1− 3x
. (13)

In relativistic situations, time is observer-dependent. We must therefore distinguish
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between universal time, t, (time according to an observer at rest with respect to the central

object and at effectively infinite distance from our system) and local proper time τ , as

observed in the particles’ rest frames. According to Ohanian & Ruffini (1994 §8.1), t and τ

are related by

c2dτ 2 = c2(1− 2x)dt2 − (1− 2x)−1dr2 − r2dφ2, (14)

with the speed of light c no longer being set equal to unity, as done in Ohanian & Ruffini.

This expression accounts for gravitational redshift as well as the special relativistic Doppler

shift. We now reduce this equation to a circular approximation, in which dr/dτ = 0 and

dφ/dτ is given by equation (3). Then we use the expression for L2 in equation (13), followed

by the definition of x in equation (11) and then division by dτ 2, to find

dt

dτ
=

(
1 + L2r−20 c−2

1− 2x

)1/2
= (1− 2x)−1/2

(
1− 2x

1− 3x

)1/2
= (1− 3x)−1/2. (15)

Because 1− 3x is independent of t and τ , integration tells us that

t

τ
=

dt

dτ
. (16)

In order to complete our relativistic perturbation equations we must consider the radial

and angular frequencies. These change when we move into the relativistic case because t �= τ .

We call the new frequencies ωr and ωφ, respectively.

According to equation (16), replacing τ in equations (9) with t will only demand an

additional factor of dτ/dt. Because this ratio is constant for a given orbit (in our circular

approximation), we absorb it into the frequency. Therefore r depends only on t. This means
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that

ωr =
dτ

dt

(
d2Veff

dr2

)1/2
r=r0

and ωφ =
L

r20

dτ

dt
. (17)

Calculating ωr is now straightforward. We differentiate Veff(r) with respect to r twice,

and then evaluate it at r = r0 to obtain

ω2r =

(
dτ

dt

)2
d2Veff

dr2

∣∣∣∣
r=r0

= (1− 3x)

(
−
2GM

r30
+

3L2

r40
−

12GML2

c2r50

)
=

GM

r30
(1− 6x) (18)

after using equations (13) and (11).

We can similarly calculate ωφ:

ωφ =
L

r20

dτ

dt
=

[
GMr0

(1− 3x)r40

]
(1− 3x)1/2 =

(GM)1/2

r
3/2
0 (1− 3x)1/2

(1− 3x)1/2 =

(
GM

r30

)1/2
. (19)

Our equations of relativistic orbits in perturbation theory are now

r(τ) = r0 − ε0 cos(ωrt+ θ0), φ(τ) = φ0 + ωφτ. (20)

If we set the determinant of equation (12) equal to zero, we can solve for the innermost

stable circular orbit. Then,

r0,min =
L2

2GM
=

6GM

c2
= 3rS, (21)

where rS = 2GMc−2 is the Schwarzschild radius for a black hole of mass M (Ohanian &

Ruffini, §8.1). This is confirmed using the expression for ωr in equation (18): at r = r0,min,

ωr =

(
GM

r30

)1/2
(1− 6x)1/2 =

(
GM

r30

)1/2(
1−

6GMc−2

6GMc−2

)1/2
= 0. (22)
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A frequency of zero is allowed; it means that the radius never changes and we have, as

expected, the innermost stable circular orbit. At r < r0,min, however, 1 − 6x < 0 and its

square root is not a real number. Because every orbit must have a real frequency no orbit

can exist at r < r0,min.

3 Axisymmetric disk models

Now that we have evaluated the relativistic orbits we can begin to model accretion disks.

The first of our three steps in accretion disk modeling is to place many particles at random

in a plane so as to produce any desired density profile in the disk. We generate random

positions for each particle using polar coordinates (r̄, φ̄).

In this section, we look only at axisymmetric disks. Because of that, the density profile

n0 (where the subscript zero denotes the circular disk) depends only on r̄; we can measure

the density along any radial line we choose. In order to make the disk axisymmetric, we

distribute φ̄ uniformly on [0, 2π); that is, every value on the interval [0, 2π) has an equal

probability of being selected. The radius r̄ is based on a uniform [0, 1] distribution that

has been modified to give the desired n0(r̄). Thus, the goal of this section is to derive an

algorithm for modifying the uniform distribution to obtain any n0(r̄).

In order to derive this algorithm, we must calculate dN , the small number of particles in

some small area dĀ, two different ways:

dN = n0(r̄)dĀ = n0(r̄)r̄dr̄dφ̄, dN =
dξdφ̄

2π
Ntot. (23)

The first method uses the number density n0 of number of particles per area, multiplied by

the area dĀ. For a sector of an annulus, dĀ is calculated by approximating it as a rectangle

with width r̄dφ̄ and radial length dr̄.

The second expression for dN depends on the uniform distribution. Let us define ξ as
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the random variable uniform in [0, 1]. Then dξ is the probability that a given particle is in

some radial space dr̄. We multiply this by the angular probability, which is equal to dφ̄/2π

because of the uniformity in angular distribution. This gives the probability that a given

particle is in dĀ, or, equivalently, the fraction of all particles that are in dĀ. In order to get

dN , the finite number of particles in dĀ, we multiply by the total number of particles.

Combining the two parts of equations (23), we have

n0(r̄) =
dN

dĀ
=

dξdφ̄

dĀ

Ntot
2π

. (24)

In order to use this expression, we must calculate dξ. Consider the function f(ξ), which

we require to be monotonic (so that we can take its inverse below) with f(0) = 0 and

f(1) = 1. This function allows us to sample r̄ using

r̄(ξ) = r̄min + (r̄max − r̄min)f(ξ), (25)

where r̄min and r̄max are the inner and outer edges of the disk, respectively. We subtract r̄min,

divide by (r̄max − r̄min) and take the inverse of each side, giving

ξ = f−1
(

r̄ − r̄min
r̄max − r̄min

)
. (26)

We define y ≡ (r − r̄min)/(r̄max − r̄min), noting that dy = dr/(r̄max − r̄min), for purposes of

simplicity. Differentiating equation (26) with respect to ξ and multiplying by dξ yields

dξ = df−1(y). (27)

If we use this in equation (24), solve for df−1, and integrate, we have

f−1
(

r̄ − r̄min

r̄max − r̄min

)
=

∫ r̄
r̄min

2πr̄′n0(r̄
′)

Ntot
dr̄′, (28)
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where r̄′ is a dummy variable of integration. We can then take the inverse of f−1 to get f(ξ),

which allows us to create an axisymmetric accretion disk.
                        

Figure 1: Two axisymmetric density models in Keplerian disks, generated from equation
(25): the first was generated with f(ξ) = ξ and the second with f(ξ) = ξ1/2. The density of
the first one decreases outwards and the density of the second increases with r.

4 Perturbed disk models

We now allow our accretion disks to be non-axisymmetric by replacing the coordinates in §3,

(r̄, φ̄), with new coordinates (r, φ). We determine (r, φ) by using mapping functions of (r̄, φ̄),

which are generated just as in §3. These mapping functions, F and G, can be expressed as

r = F (r̄, φ̄) = r̄ − ε0(r̄, φ̄), φ = G(r̄, φ̄) = φ̄+ φ0(r̄, φ̄). (29)

The perturbation functions are required to be periodic, such that ε0(r̄, φ̄ + 2π) = ε0(r̄, φ̄)

and φ0(r̄, φ̄ + 2π) = φ0(r̄, φ̄) (that is, the period must be an integer unit fraction of 2π) so

that all particles lying at a given original point (r̄, φ̄+ 2πn) are mapped to the same (r, φ).

They must be smooth and once-differentiable with respect to both r̄ and φ̄. Additionally,
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D A
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dA

Figure 2: A mapping of (r̄, φ̄)→ (r, φ) in order to calculate the area of area element dA.

recall our fundamental assumption about perturbations: ε20 
 r20. The final density function

can be calculated using one invariant: the number of objects in our region. Although the

region is deformed by the mapping, the particles are required to stay within it. As in §3, we

calculate the density by equating the number of particles in a small area two different ways:

dN = n0(r̄)dĀ, dN = n(r, φ)dA. (30)

Here dĀ is the area of a small region before the mapping and dA is the area after hte

mapping. Thus

n(r, φ) = n0(r̄)
dĀ

dA
. (31)

Because n depends on the new area dA, we must now calculate dA, which may be more

complex than dĀ.

Figure 2 illustrates the mapping of an area dĀ, where the corner points are defined

as Ā = (r̄, φ̄), B̄ = (r̄ + dr̄, φ̄), C̄ = (r̄ + dr̄, φ̄ + dφ̄), and D̄ = (r̄, φ̄ + dφ̄, r̄ + dr̄, φ̄).

Then, each of these points is mapped using F and G to its respective new coordinate. The

new area dA can be approximated by a quadrilateral, ABCD, which can be split into two
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triangles, ABC and CDA. The areas of each of the triangles can be calculated as one-half

the magnitude of the vector product of the two sides labeled as vectors. Then our vectors

representing sides of quadrilaterals can be expressed in terms of F and G. For example,

−→
AB = (dr, rdφ) =

(
∂F
∂r̄
dr̄, r ∂G

∂r̄
dr̄
)
. This gives, for our final area,

dA =
∣∣∣−→AB ×

−→
BC +

−→
CD ×

−→
DA
∣∣∣ = rdr̄dφ̄

∣∣∣∣∂F∂r̄
∂G

∂φ̄
−

∂F

∂φ̄

∂G

∂r̄

∣∣∣∣ = rdr̄dφ̄J, (32)

where J ≡ ||∂(F,G)/∂(r̄, φ̄)|| is the Jacobian determinant. Note that we sum the vector

products before taking the magnitude because it is possible for one of the areas to be negative.

If we have a concave quadrilateral, one of the triangles would include an area exterior to the

quadrilateral, which would be subtracted.

The expression for dA can be replaced into equation (31) to obtain

n(r, φ) =
∑
r̄(r),φ̄(r)

n0(r̄)
r̄

r
J−1 =

∑
r̄(r),φ̄(r)

n0(r̄)
r̄

r

∣∣∣∣∂F∂r̄
∂G

∂φ̄
−

∂F

∂φ̄

∂G

∂r̄

∣∣∣∣
−1

. (33)

The expression is summed over all values r̄ that get mapped to the given r, as there could

be more than one.

If we reduce this formula to the case when φ = φ̄ and F depends only on r̄, we discover

that ∂G/∂r̄ = 0, ∂G/∂φ̄ = 1, and ∂F/∂r̄ = dr/dr̄. Thus, the density becomes

n(r, φ) =
∑
r̄(r),φ̄(r)

n0(r̄)
r̄

r

∣∣∣∣∂F∂r̄
∣∣∣∣
−1

=
∑
r̄(r),φ̄(r)

n0(r̄)
r̄

r

∣∣∣∣drdr̄
∣∣∣∣
−1

. (34)

The density is proportional to the inverse derivative of r(r̄). So as r(r̄) flattens out and its

derivative decreases, the density increases. Any point where the derivative is zero has an

infinite discontinuity in the density, or a caustic.

Figure 3 demonstrates caustics of this type. This simulated disk has density n0(r̄) ∝ r̄−1,
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Figure 3: A caustic in an accretion disk, generated with the cubic function (35). The right-
hand side of the first frame is expanded in the second frame to give a (vertically stretched)
higher-resolution view of the two caustics and the high-density area between them.

or f(ξ) = ξ. The perturbation function is

ε0(r̄, φ̄) = (ar̄3 + br̄2 + cr̄ + d) cos(φ̄), (35)

where a = −3.84615 · 10−15, b = 1.49254 · 10−7, c = −0.9, and d = −5 · 105. The density

on the right-hand side of the disk peaks at the bright lines (which are magnified the second

frame), and is much higher between them than outside of them. We tested this disk by

analyzing the density along the line φ = φ̄ = 0 based on the simulated data as well as our

analytical model. The results were in agreement.

5 Time evolution in disk models

Although we can now manipulate static disks by varying F,G, and thus the density n, we

are interested in time variability. For each particle, we map the original position (r̄, φ̄) onto

(r, φ) and then allow time evolution.
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The mapping functions F and G from equations (29) can be modified to incorporate time

when taken together with equations (20). We simply allow ε0, θ0, and φ0 to be functions of

r̄ and φ̄. The result is that

r(t) = r̄ − ε0(r̄, φ̄) cos[ωr(r̄)t+ θ0(r̄, φ̄)] and φ(t) = φ̄+ φ0(r̄, φ̄) + ωφ(r̄)t. (36)

The functions ε0, θ0, and φ0 are required to be periodic in φ̄ (and θ0 specifically must have

a period of 2π) so that the mapping is identical for all particles at a given position, despite

the use of polar coordinates.

As before, we look at the accretion disk density by considering the Jacobian determinant

J . As J decreases, we get a density wave; furthermore, as J → 0, we get a caustic.

In order to ensure J �= 0 for all (r, φ, t), we must require the Jacobian not to change sign.

For any given (r̄, φ̄), the only variable is t. The Jacobian has terms sinusoidal in t which

would naturally change sign every π/ωr. As t becomes large, the terms linear in t (grouped

together on the second line) would naturally dominate and cause the sign changes. We must

therefore be able to set them equal to zero and allow the terms on the first line to prevent

the sign change. Because µ(r̄) is predetermined, the coefficient of the cosine is equal to zero

only when ∂ε0/∂φ̄ = 0, implying that ε0 is only a function of r̄. Looking at the sine term,

we need to ensure

1 +
∂φ0

∂φ̄
− µ

∂θ0

∂φ̄
= 0, µ ≡

dωφ

dωr
. (37)

Integrating this with respect to φ and solving for φ0,

φ0(r̄, φ̄) = µ(r̄)θ0(r̄, φ̄)− φ̄+ η(r̄), (38)

where η(r̄) is the constant of integration. It can depend on r̄ because r̄ is independent of
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the variable of integration, φ̄. If we replace this into equation (36), we find that

φ(t) = µ(r̄)θ0(r̄, φ̄) + η(r̄) + ωφ(r̄)t. (39)

This will allow us to generate caustic-free disks for any given functions θ0(r̄, φ̄) and η(r̄).

However, the disks will have finite discontinuities (edges) if φ0 and θ0 are not both periodic

with period 2π. This happens if µ �= 1.
                        

Figure 4: The accretion disk model on the left has initial conditions which approximate the
necessary conditions for the elimination of caustics. The one on the right is far from those
conditions. Both images were taken after 1000 orbits in the model.

Figure 4 shows two accretion disks modeled after 1000 orbits. The first one meets the

criteria in equations (39) and the second does not. Although these disks are imperfect

(as edges are visible in the first one), they demonstrate qualitatively the possibility for

eliminating caustics by using more precise equations.
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6 Conclusion

Our analytical work has shown that it is possible to create spiral density waves in first-

order accretion disk models for the Schwarzschild black hole without forming caustics and

thereby rendering the model unrealistic. By carefully defining initial parameters, we can

create accretion disk models which appear to match emperically observed situations.

Although our computer simulation has not yet created an accretion disk that matches

the paramters above, it has successfully modeled many aspects of accretion disks, including

mapping, caustics, and time evolution. These individual aspects are critical to understanding

accretion disks.

The logical progression from this work is to complete the realistic accretion disk model

by truly avoiding caustics. This appears to be a promising area for future research and it

would naturally lead to an even larger step. Once an accurate model has been completed

it will be possible to compare its simulated light emission with emperical light curves and

determine the validity of our model and whether our criteria were accurate and sufficient.
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