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Abstract

Hypervelocity stars are stars travelling at velocities great enough to allow their escape

from the Milky Way Galaxy. We consider close encounters of binary stars with Sagittarius

A*, the massive black hole that is believed to lie at the Galactic center, as the ejection

mechanism of hypervelocity stars. We predict the velocity at which these stars are ejected

from the Galactic center and their distance from the Galactic center when this happens.

After a hypervelocity star is ejected, its orbit is determined by the Milky Way potential.

We simulate the behavior of hypervelocity stars in three distinct Milky Way potentials,

integrating the orbits over a time shorter than the stellar lifetime. This behavior is then

compared to a current survey of 16 hypervelocity stars. We compare the distributions of

the rest frame velocity of the hypervelocity stars as well as their distance from the Galactic

center. Such a comparison can place constraints on the model of the Milky Way. Similar

analyses have been performed by Bromley et al. [1] and Sesana et al [13], but with a smaller

catalog of hypervelocity stars. A wider catalog of hypervelocity stars can yield results that

are much more refined. In this study, we show how these results can be obtained. Future

studies with improved codes and a larger catalog of synthetic stars can yield more accurate

statistical analyses and place constraints on the nature of the Milky Way and binary systems.



1 Introduction

In 2005, Brown et al. [2] reported on a star leaving the Milky Way galaxy at a velocity of

v ≈ 853 km s−1, well above its escape velocity from the Milky Way. This observation of a

so-called hypervelocity star (HVS) was crucial for providing a strong piece of evidence for

the existence of a supermassive black hole (SMBH) at the Galactic Center (GC), specifically

a 3.5× 106M�
1 black hole identified with the radio source Sagittarius A*.

A binary system involves two partners, a primary and secondary, both either a star or

black hole. Nearly half of the stars in the Milky Way are a part of a binary system [4]. Yu &

Tremaine [14] consider three models for the origin of HVSs involving the interaction between

a stellar system and at least one black hole. The first of these models involves an encounter

between two stars, the second an interaction between a binary system of two stars and a

supermassive black hole, and the third an encounter between a single star and a binary black

hole. In this study, we focus on the second model, the tidal breakup of a binary star. In this

model, a close encounter between a binary star and a black hole, e.g., Sagittarius A*, leads

to an exchange collision.

Hills [10] first suggested that if a binary system passes close enough to a supermassive

black hole, that is, within the tidal radius of the binary system, it will experience a perturba-

tion in its orbit that can break it apart. At the tidal radius, the gravitational force between

the stars in the binary is equal to the gravitational force on the binary by the SMBH. So,

when the binary passes closer to the SMBH than this tidal radius, the gravitational force

of the SMBH is great enough to perturb the orbit of the binary and disrupt the binary,

causing the two stars to separate in what is called an exchange collision. Hills believed that,

if discovered, hypervelocity stars would be sufficient proof of the existence of Sagittarius A*,

a SMBH at the GC.

11 M� ≡ 1 solar mass = 1.988×1030 kg
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At the time that Hills published his work, no hypervelocity stars had yet been discovered.

The first hypervelocity star was discovered in 2005 by Brown et al. [2]. This star, SDSS

J090745.0+024507, was leaving the Milky Way with a velocity of 853±12 km s−1, the greatest

velocity that had yet been measured in the Milky Way. Four years later, a comprehensive

catalog of known hypervelocity stars was published by Brown et al.[3]. This catalogue

contains 16 known hypervelocity stars and 4 possible hypervelocity stars.

The velocity at which the hypervelocity star is ejected from the MBH is dependent upon

a number of parameters, which include the masses of the two stars in the binary (m1 and

m2), the mass of the black hole (mBH), the distance between the binary and the black hole

at the time of disruption (Rmin), and the semi-major axis of the binary (a0). Hills [10], Yu

and Tremaine [14], Bromley et al. [1], Sesana et al. [13], and Pfahl [11] found estimates of

the theoretical average ejection velocity vejec. Bromley et al. [1] and Sesana et al. [13] used

empirical distributions of the binary parameters, such as the Salpeter initial mass function

[12] and the Heacox [9] distribution for a0, to numerically generate a catalog of HVSs, both

bound and unbound by the Milky Way potential. They also performed calculations to

investigate how the Milky Way potential affects the path that the hypervelocity star will

travel after ejection.

In the present study, we use similar numerical simulations to create a catalog of synthetic

HVSs which we then compare to the current catalog of HVSs. In Section 2, we define the

parameters of the synthetic HVSs and create a distribution of the ejection velocities (vejec).

We then use these velocities to integrate the orbits of these synthetic HVSs in the Milky

Way potential. We do this in three potentials given by Bromley et al. [1] and Dehnen and

Binney [5]. In Section 3, we compare our catalog of synthetic stars with the current catalog,

attempting to identify the potential that yields orbits most consistent with observations to

provide a clearer understanding of models of the Milky Way.
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2 Simulations

2.1 Numerical Generation of a Distribution of Ejection Velocities

Our simulation, written in Mathematica version 7.0, considers an initial population of binary

stars with the same properties as the initial population used in the study by Bromley et al.

[1]. The binaries are initially found at a distance of several thousand AU 2 from the Galactic

Center (GC). They are travelling at a velocity of 250 km s−1 toward the GC, as suggested

by Hills [10]. We assume zero eccentricity.

We first define the characteristic parameters and produce a population of stars using

Monte Carlo Methods to produce relevant distributions. For the masses, we adopt the

Salpeter [12] initial mass function,

ps(m1) ∼ m−2.35
1 , (1)

and we assign a value to m1 in the range 3-10 M�, as suggested by current surveys of such

stars. We again use the Salpeter IMF to assign a value to m2 such that .01 M� ≤ m2 ≤ m1.

We define the more massive star as the primary star and the less massive star as the secondary

star.

For the semi-major axes, we use the distribution suggested by Heacox [9],

p(a0) ∼ a−1
0 . (2)

Finally, we find Rmin based upon the linear probability density function mentioned by

Hills [10]. Observations lead us to assign values to these two parameters such that 0.05 AU

≤ a0 ≤ 4 AU and Rmin ≤ 700 AU.

21 AU ≡ 1 astronomical unit = 1.49598 ×108 km
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Having defined all parameters, we are now able to calculate vejec. As it can be seen in

Appendix A, an analytical estimate of vejec can be found:

vejec ≈ (1.49× 103km s−1)

(
mBH

106M�

) 1
4
(

mpc

Rmin

) 1
4
(

δv

383km s−1

) 1
2

. (3)

However, in what follows, we use the distribution suggested by Hills [10], in which

vejec = 1760
( a0

0.1AU

)−1/2
(
m1 +m2

2M�

)1/3

fR km s−1. (4)

The factor fR is used to modify vejec so that values are consistent with three-body simulations.

Hills [10] defines fR as

fR = 8.62× 10−11D5− 4.24× 10−8D4 + 8× 10−6D3− 6.23× 10−4D2 + 0.0204D+ 0.744 (5)

and D as a dimensionless quantity such that

D =

(
Rmin

a0

)[
2MBH

106(m1 +m2)

]1/3

. (6)

For vejec, we assume a Gaussian distribution with dispersion δ = 0.2 · vejec, as published by

Bromley et al. [1].

The probability of ejection (Pej) of a star in a close encounter with a SMBH, as suggested

by Bromley [1], the value of Rmin

a0
. It is defined as
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mass (M�) lifetime (Myr)

0.5 20,000
1 9,961
1.25 4,912
1.5 2,695
1.7 1,827
2 1,116
2.5 585
3 352
4 165
5 94
7 43

Table 1: Table of Stellar Lifetimes

Pej ≈ 1− D

175
, (7)

As negative probabilities are illogical, we reject any stars with a Pej ≤ 0. To determine

whether or not the star will be ejected, we use another Monte Carlo simulation. We generate

a random number between 0 and 1 following a uniform distribution: if this random number

is greater than the star’s probability of ejection, the star is not ejected. Otherwise, the star

is ejected.

We calculate the stellar lifetime of each star through interpolation of empirical data, as

recorded in Table 1. We then select a random time at which we assume that the binary

encounters Sagittarius A*. If this time is greater than the lifetime of a star with that mass,

we deduce that the star does not reach the GC within its lifetime. Therefore, we reject all

stars with a stellar lifetime shorter than their approach time.

Finally, assuming that both the primary and secondary stars have equal probabilities

of being the ejected star, we use the rejection method to compute the ejection velocity

distribution according to a Gaussian distribution with a µ = vejec and σ = 0.2 · vejec. We
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eliminate from this catalog all stars with a vejec lower than the speed necessary to reach 10

kpc 3 in a given MW potential so that it can be observed or not within the range 3 - 5 M�,

which is the range probed by current surveys of HVSs.

An example distribution for a binary with m1 = 4 M�, m2 = 0.5 M�, a0 = 0.1 AU, and

Rmin = 5 AU can be seen in Figure 1. In this distribution, µ = vejec = 1850 km s−1 and

σ = .2 · vejec km s−1.
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Figure 1: Sample Gaussian Distribution of vejec for vejec = 1850 km s−1 for m1 = 4 M�,
m2 = 0.5 M�, a0 = 0.1 AU, and Rmin = 5 AU

2.2 Orbit Integration in Distinct Milky Way Potentials

Determining the exact distribution of mass in the Milky Way (MW) potential is one of

the great undertakings of modern astrophysicists. In this study, we attempt to account

for and limit this uncertainty by integrating and comparing with observations the orbits of

the synthetic HVSs using three models of the Milky Way potential (Bdef from Bromley et

al. [1] and DB2d and DB4d from Dehnen and Binney [5]), all of which assume spherical

symmetry in the Milky Way. We find each HVS’s distance from the Galactic Center (GC)

at a random time within its lifetime, only considering HVSs further than 10 kpc from the

31 kpc ≡ 1 kiloParsec = 206,264,806 AU
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ρ0 rc Σ0 Mb rb Md Rd Mh rh

Bdef 1.27× 104 8 — — — — — — —
DB2d — — 53.3 8.19× 109 1 5.0× 1010 8.5 57.5× 1010 21.8
DB4d — — 48.3 7.89× 109 1 3.97× 1010 8.5 32.5× 1010 5.236
units M�pc−3 pc M�pc−2 M� kpc M� kpc M� kpc

Table 2: Parameters Used in MW Potential Models[1, 5]

GC and within 90 kpc for 3 M� stars, 120 kpc for 4 M� stars, and 150 kpc for 5 M� stars,

distances suggested by current surveys of HVSs [3]. The distinct data sets that each of the

three potentials yields allow us to determine which model of the MW potential is closer to

observational reality.

We begin with a single-component model of the MW potential. This model was used in

2006 by Bromley et al. [1] and will be referred to as the Bdef model. The density equation

used in this model is

ρ(r) =
ρ0

1 + (r/rc)2
. (8)

The Bdef model of the MW potential depends on two parameters: ρ0, the central density,

and rc, the core radius, which are shown in Table 2 according to Bromley et al. [1].

The other two models of the MW potential, DB2d and DB4d, are found in a 1998

publication by Dehnen and Binney [5]. These models are both multi-component models

which take into account the difference in the potentials of the galactic bulge (Φb), disc (Φd),

and halo (Φh), which can allow us to determine that

Φb(r) =
−GMb

rb + r
, (9)
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mass (M�) absolute magnitude maximum RGC (pc)

3 -0.3 144,544
4 -0.9 190,546
5.4 -2.4 380,189
15 -5 1,258,930

Table 3: Table of Stellar Magnitudes

Φd(r) = −2πGΣ0R
2
d

(
1− e−r/Rd

r

)
, (10)

and

Φh(r) =
−4πGMh

r
ln

(
r + rh

rh

)
. (11)

The values of the parameters used in (9), (10) and (11) are defined in Table 2 according to

the values mentioned by Dehnen and Binney [5].

We use as input to this simulation the values of mass, distance, time and velocity for each

synthetic star as found in the simulation described in Section 2.1. Assuming that each star

was ejected soon after its creation and that the time required for the star to reach Rmin is

also marginal, we find the position and velocity after a random time shorter than the lifetime

of each star.

A star’s absolute magnitude is a measure of its luminosity and thereby places a constraint

on the distance at which the star can be observed from Earth. In this simulation, we reject all

stars at a distance greater that that at which their absolute magnitude (or luminosity) would

allow them to be observed by the current surveys. The HVS survey published by Brown et al.

[3] suggests an apparent magnitude limit of 20.5. Table 3 contains the absolute magnitudes

used for this rejection and the maximum distance at which a star of each magnitude can be

observed.
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RGC in kpc vrf in km s−1

HVS1 111 696
HVS2 26 717
HVS3 62 548
HVS4 82 566
HVS5 45 649
HVS6 78 528
HVS7 60 416
HVS8 53 407
HVS9 68 485
HVS10 87 432
HVS11 70 336
HVS12 70 429
HVS13 125 443
HVS14 112 416
HVS15 85 343
HVS16 90 367

Table 4: Current Catalog of HVSs by Brown et al.(2009) [3]

3 Comparison With Observations

We compare the predicted distributions obtained in Section 2.1 and Section 2.2 with the

most recent catalog of stars published by Brown et al. [3]. This catalog contains 16 HVSs,

most of which are B-type stars found within a range of 25 kpc to 125 kpc from the GC. The

rest frame velocities (vrf) of the HVSs in the Milky Way potential range from 330 km s−1 to

720 km s−1. The HVSs from this catalog, along with their distance from the Galactic Center

(RGC) and vrf , are listed in Table 4.

In Figure 2, we plot the predicted distributions of Rmin and vejec immediately following

ejection. We use the 3289 stars generated in Section 2.1 and Section 2.2 to form these

distributions.

After running these values in the orbit integrators for the three potentials, the number

of HVSs that fit with the observed ranges is greatly reduced. The Bdef potential yields

2935 HVSs, the DB2d 1394 HVSs and the DB4d 753 HVSs. The differences in these data
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Figure 2: Ejection velocity, vejec, and the minimum approach distance, Rmin, distributions
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Figure 3: Distributions of the distance from the GC, RGC, in three Milky Way potentials
(a–c) and in the observations (d)

sets are an indicator of a bug in the code, which we are currently trying to eliminate.

The distributions of RGC and vrf are plotted along with the observed distributions of these

quantities in Figures 3 and 4 respectively. In Figure 5, we plot the relationship between RGC

and vrf .

4 Summary and Discussion

We used numerical simulations to predict the population of HVSs in the Milky Way Galaxy.

We first generated a distribution of the vejec of such HVSs, assuming that they were produced

in an exchange collision of a binary system with Sagittarius A*, the SMBH at the GC. Then,

using the values generated in the first code, we integrated the orbits (RGC and vrf) of the

HVSs in three models of the Milky Way potential over a random time within their stellar
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Figure 4: Distributions of the velocity, vrf , of HVSs in three Milky Way potentials (a–c) and
in the observations (d)
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Figure 5: Distance from the GC,RGC, and velocity, vrf : The red points represent the observed
stars while each line represents a different Milky Way potential. The colors are assigned as
in Figure 3.
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lifetime. We were then able to compare the catalog of synthetic stars created with the current

catalog of 16 HVSs.

Due to the limited time available for this study, we are currently unable to place any

constraints on the nature of the Milky Way Galaxy. We plan to improve the accuracy and

scope of this work in the near future. We have identified a bug in the program used in this

study, which may affect the results. Elimination of this bug would improve accuracy of the

data. We can also optimize the program to allow it to run more quickly. Generation of

a larger number of synthetic stars should provide sufficient data for an accurate statistical

comparison, through use of a 2D Kolmogorov-Smirnov test, of the predicted distributions

with the observations. We were unable to produce this large number of synthetic stars in

this study due to time constraints, but it is possible that an improved statistical analysis will

indicate constraints on the nature of the MW. In addition to the distributions for m2 and a0

used in this simulation, one could use a log-flat mass ratio to find m2 and the distribution

suggested by Duquennoy and Mayor [6] to find a0. The use of different distributions of a0

may also yield constraints on the nature of binaries. One could also investigate the effect

of different ejection mechanisms as Sesana [13] did in 2007. The comparison in this study

would become more accurate statistically if another, more comprehensive catalog of HVSs

were to be released. Better galactic models, including those with non-spherical symmetry,

may also improve the results of the orbit integrators.
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A Derivation of the Equation for the Average Ejection

Velocity

To produce a distribution of the average ejection velocity of hypervelocity stars, we first

derive an equation for the average ejection velocity. We begin by finding the tidal radius

(Rmin) of the binary system. At this location, the force of gravity that holds the binary

system together is equal to the force of gravity on the star by the SMBH and

Gm1m2

(a0)2
=
Gm1mBH

(Rmin)2
. (12)

Since the change in velocity of the star relative to the change in velocity of the binary causes

the perturbation of the orbit, we differentiate both sides of (12) and find that

Rmin = 3

√
mBH

(m1 +m2)
a0. (13)

We recall that energy is conserved in all closed systems, so we use the total energy of the

binary system and, since that the total energy is negligible in comparison to the gravitational

potential, we estimate the velocity of the star before its separation (v0) as

v0 ≈
√

2GmBH

Rmin

. (14)

After tidal separation, the velocity of the star is changed by the amount δv � v0, which is

δv = −1

2

√
2MBHG

R3
min

, (15)
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and the ejection velocity (vejec) is reached.

When the star is ejected, it uses the potential energy of the system to gain kinetic energy,

as it becomes a hypervelocity star. The specific energy, which is the energy per unit mass,

of a star after ejection (Eejec) is

Eejec =
1

2
vejec

2. (16)

To simplify (16), we eliminate all negligible values, substitute Eejec for the expression of

kinetic energy that it represents, and find that

1

2
vejec

2 ≈ v0δv. (17)

We substitute (14) into (17) to find an approximation for the average ejection velocity of

an HVS:

vejec ≈ (1.49× 103km s−1)

(
mBH

106M�

) 1
4
(

1 mpc

Rmin

) 1
4
(

δv

383km s−1

) 1
2

. (18)
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