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Abstract

When the Laser Interferometry Space Antenna is launched, compact binaries in globular

clusters will be particularly interesting objects of study. The purpose of this project was to

model the orbits of compact binaries in globular clusters when they are perturbed by third

body stars. The models were used to calculate the trajectories, gravitational wave luminosity

as a function of time, and the strain tensor h̄ij as a function of time. Three situations were

analyzed: when the binary is perturbed but remains stable, when the binary is completely

scattered, and when one of the original bodies in the binary is ejected while the other two

bodies enter a stable orbit.



1 Introduction

In Einstein’s general theory of relativity, the spacetime continuum is a manifold combining

the three dimensions of space with time as the fourth dimension. According to general

relativity, a given stress-energy tensor, which describes the density and flux of energy in

spacetime, determines the metric tensor of spacetime via the Einstein field equations. Thus,

a distribution of various forms of energy—mass, momentum, pressure, and stress—causes the

geometry of spacetime to be curved and non-Euclidean. The Newtonian concept of gravity

describes a linearly directed force between bodies with mass. In general relativity, gravity is

not treated as a true force but as a consequence of the geometry of spacetime: energy curves

spacetime, which affects the geodesic and thus the motion of some body. General relativity

predicts that light is affected by gravity in the same way that matter is, a phenomenon which

has been verified by gravitational lensing.

A gravitational wave is a radiating change in spacetime curvature which propagates when

the second time derivative of the quadrupole moment of a system’s stress-energy tensor is

non-zero. The strongest evidence to date for the existence of gravitational waves comes from

Joseph Taylor’s observations of binary pulsar PSR B1913+16 from 1974 to 1982. Stars in

such an orbit should lose energy through the emission of gravitational waves, inspiralling

and drawing closer to each other. By timing radio emissions from the pulsar, Taylor con-

cluded that the binary was inspiralling at within 0.2 percent of the rate predicted by general

relativity [1].

Gravitational waves are important because they may enable observations of black holes,

binaries with compact components, the universe right after the Big Bang, and quantum fields

in the early universe, all of which are impossible to detect with any form of electromagnetic

radiation [2]. Their existence will also confirm parts of the theory of general relativity.

The ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO) was es-
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tablished to directly confirm the existence of gravitational waves and started operating in

2002. The Laser Interferometer Space Antenna (LISA) is a planned space-based observatory

for gravitational waves sensitive to a lower frequency band (0.1 to 0.0001 Hz) than LIGO.

Specifically, it will detect gravitational waves generated by the coalescence of massive black

holes at the centers of merging galaxies, radiation from ultra-compact binaries, and the in-

fall of small black holes, neutron stars, and white dwarfs into massive black holes at galactic

centers [3]. Its launch is currently planned for 2015.

Compact binaries with short periods (less than one hour) in globular clusters, which are

spherical formations of stars around a galactic core, are also projected observational targets

for LISA. Compact binaries are systems in which two compact objects, such as white dwarfs

or neutron stars, orbit a common center. Though less than 50 accreting compact binaries

are known today, LISA will likely make it possible to detect several thousand new compact

binaries. The LISA measurements will provide information about the phases of binary

formation and evolution that is very different from what can be deduced from observations

of electromagnetic radiation. The population of compact binaries in globular clusters is

conjectured to be high relative to the number found in the rest of the universe. Thus, LISA

will probe the rate of production of accreting compact binaries with white dwarf components

in globular clusters by determining the number of such binaries [3].

To take advantage of LISA’s observational abilities, predictions of the gravitational wave

signatures of specific events of interest are useful. This paper analyzes the trajectories, strain

tensor as seen along various axes, and the gravitational wave luminosity as a function of time

when a compact binary with white dwarf components in a globular cluster is perturbed by

a third star.
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2 Background

2.1 Equations

Einstein summation convention is used here; it is covered in Appendix A. The formulas

presented in this paper are in geometrized units with G = c = 1.

Einstein’s field equation

Gαβ = 8πTαβ (1)

expresses the Einstein tensor Gαβ, which describes the curvature of spacetime, as a function

of the stress-energy tensor Tαβ. Assuming that waves produced by the source Tαβ are weak,

the corresponding space-time metric gαβ can be written as a perturbation of the metric of

flat spacetime, ηαβ = diag(-1,1,1,1):

gαβ(x) = ηαβ + hαβ(x) (2)

where hαβ is the strain tensor with |hαβ| � 1 for all α, β. ηαβ is known as the Minkowski

metric.

It is useful to define the trace-reversed perturbation h̄αβ:

h̄αβ ≡ hαβ −
1

2
ηαβh (3)

where h is simply the trace. Gravitational waves are linearly polarized in two directions:

h+ and h×. In order to calculate the radiation propagating in direction xi, the transverse

traceless gauge of h̄ij is taken by making all xi components in h̄ij zero and subtracting out

the trace.

Assuming that the source Tαβ is moving at non-relativistic speeds, if the characteristic

dimension of the source is much smaller than the wavelength of the propagating wave, and
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that observations are made a large distance r away from the source, the strain tensor becomes

h̄ij(t, ~x) =
2

r
Ï ij(t− r) (4)

where I ij(t) is defined as the second mass moment:

I ij(t) ≡
∫

d3xµ(t, ~x)xixj (5)

where 1 ≤ i, j ≤ 3. We now define the mass quadrupole moment I ij:

I ij ≡ I ij − 1

3
δijI (6)

where δij = 1 is the Kronecker delta, and where I is the trace of the second mass moment.

The formula for luminosity, or total power loss through gravitational radiation,is

LGW =
1

5
〈
...
I ij

...
I

ij〉 (7)

where the brackets indicate time average. By definition we have

Iij = giαgjβIαβ (8)

= (ηiα + hiα)(ηjβ + hjβ)Iαβ (9)

But since we are assuming that |hαβ| � 1, we may neglect all first-order terms and above

that contain h. Therefore,

Iij ≈ ηiαηjβIαβ (10)

and

LGW =
1

5

3∑
i=1

3∑
j=1

...
I ij

...
I

ij
(11)
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We now have all the necessary equations to proceed with numerical analysis of the strain

tensor and luminosity, given a binary-single star system.

2.2 A Circular Binary

Expressions for the strain tensor and luminosity are analytically derived for a binary system

with components of equal mass M in circular orbits with orbital frequency ω = 2π
T

where T

is the period.

We place the two bodies on the xy-plane. We let the trajectory of the first mass be

(Rcos(ωt), Rsin(ωt), 0). The other mass then has trajectory (−Rcos(ωt),−Rsin(ωt), 0).

From Equation 5, we get for the binary system

I11 = MR2[1 + cos(2ωt)]

I12 = I21 = MR2sin(2ωt)

I22 = MR2[1− cos(2ωt)]

I13 = I31 = I23 = I32 = I33 = 0

Now from Equation 4,

h̄ij = −8ω2MR2

r


cos[2ω(t− r)] sin[2ω(t− r)] 0

sin[2ω(t− r)] −cos[2ω(t− r)] 0

0 0 0

 . (12)

We can see from the strain tensor that the frequency of the emitted radiation is twice

the orbital frequency. This result is expected because of the symmetry: when the two

components have equal masses in a circular orbit, the fundamental period of the binary
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Figure 1: The effect of the h+ polarization.

Figure 2: The effect of the h× polarization.

becomes T
2
. This representation of h̄ij is already in transverse traceless gauge for propagation

in the z direction. We get that the h+ polarization varies as cos[2ω(t − r)] and the h×

polarization varies as sin[2ω(t− r)]. Physically, the h+ polarization indicates a wave which

affects spacetime such that if propagating along the axis of a ring of test particles, the

particles would be affected as in Figure 1. The h× polarization would affect the same ring

as in Figure 2.

Next, from Equation 7, we get that the luminosity, or power loss, is constant:

LGW =
128

5
M2R4ω6 (13)

This is only if we assume that power loss through gravitational radiation is negligible, which,

over short periods of time, is true. This result seems reasonable because of the symmetry of
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circular binaries; there is no reason why the luminosity would vary with time.

Unfortunately, analytical calculations are impossible for more complex situations, which

is why we turn to numerical calculations and models.

3 Methods

3.1 Initial Parameters and Assumptions

First, gravitational effects are the dominating forces in compact binary star systems. Also,

the effects due to the finite sizes of the bodies are small. Furthermore, at the low frequencies

in the LISA band, the gravitational wave spectrum is dominated by detached and semide-

tached double white dwarfs [5]. Therefore, mass exchange and tidal interactions may be ne-

glected. Secondly, because gravitational radiation tends to circularize binary orbits rapidly,

the orbits of most such compact binaries can be treated as circular [5]. Thus, a model of a

compact binary as having a circular orbit with point mass components is sufficient.

The typical globular cluster is about 10 kpc away from Earth, so r is taken to be 1020

meters [5]. However, LISA will be capable of resolving individual binaries up to 100 kpc

away. The period of the compact binaries relevant to the problem is taken to be about 2000

seconds, producing gravitational radiation at 0.001 Hz which falls within LISA’s frequency

band of 10−1 to 10−4 Hz. Stars in globular clusters have a typical velocity of 104 meters

per second and average separation in the middle region of globular clusters is on the order

of 1015 meters, though separation can be on the order of 1014 in the dense core and beyond

1016 when sufficiently far from the core [5]. Because trajectories of the three bodies were

modelled with initial separation between the binary and the third body on the order of 1011

meters, the energy gain due to decrease in gravitational potential was taken into account

when calculating initial parameters.
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3.2 Numerical Analysis

To model the trajectories of 3 bodies interacting in 3 dimensions under the force of gravity

alone, a fourth-order Runge-Kutta integrator was used to solve a system of 18 differential

equations given initial parameters of positions, velocities, and masses. A relative tolerance

of 10−5 was used for the integrator. The code can be found in appendix B.

To calculate the strain tensor and luminosity, the second and third time derivatives of the

second mass moment were computed by fitting cubic splines to each element of the tensor.

4 Results

Three cases are considered. In case 1, the binary is perturbed by a third body. In case 2,

an exchange interaction between the binary and third body takes place. In case 3, the third

body completely scatters the binary.

In the trajectory plots, a blue trajectory denotes body 1, a green trajectory denotes body

2, and a red trajectory denotes body 3. Body 3 is always the third body, and bodies 1 and

2 are the components of the compact binary.

Given the period T of a binary and masses m1 and m2 of the two components, a program

was used to calculate the diameter of the circular orbit (2R) and the velocities of both

bodies (±v). Bodies 1 and 2 were always set to initial positions of (R, 0, 0) and (−R, 0, 0)

respectively, with initial velocities (0, v, 0) and (0,−v, 0) respectively.

The initial parameters can be found in Table 1. Mass is expressed in solar masses,

distance in meters, and time in seconds. m3 is the mass of the third body, ~x3 is its initial

position and ~v3 is its initial velocity.
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Case m1 m2 m3 T ~x3 ~v3

1 1.4 1.4 1 1500 (0, 1000R, 0, 0) (0, 0,−5 · 105)
2 1 1 1 1500 (0, 0, 200R) (0, 104,−6 · 104)
3 .6 .6 .8 2000 (400R, 0, 0) (−2 · 106, 100, 0)

Table 1: Initial parameters for the three cases.

4.1 Case 1

In case one, the third star interacts with the binary and exits the system. The binary is

perturbed but the components remain in a stable, although more eccentric, orbit.

In this example, the third body approaches at an angle from above the binary (Figure 3).

As body 3 and the binary converge, body 3 enters a brief stable orbit with body 2 (Figure

4), ejecting the more massive body 1 from the binary. However, body 3 quickly falls out of

the binary, and eventually the original binary reemerges with an eccentric orbit.

Before the 3-body interaction takes place, the luminosity is almost constant because it is

dominated by the power generated from the binary (Figure 5). Small oscillations are present

in the luminosity because as body 3 approaches, the binary gains linear momentum and

due to the asymmetry of body 3’s velocity, becomes slightly perturbed. The fairly periodic

luminosity from 1.43 · 105 seconds to 1.47 · 105 seconds reflects the brief stable orbit between

bodies 2 and 3. Eventually, as the binary emerges in an eccentric orbit, the luminosity once

again becomes periodic.

Similar patterns are observed in the strain tensor plots as a function of time. In both

the x and z directions, the strain before the 3-body interaction is dominated by the binary’s

gravitational radiation (Figures 6 and 7). The strain in direction y has not been depicted

because the initial conditions are almost symmetric for x and y. Periodic strain variations

from 1.43 · 105 seconds to 1.47 · 105 are also apparent, due to the orbit between body 3 and

body 2. Periodic strain amplitudes are reestablished after the original binary and body 3

diverge.
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Another type of interaction which can perturb a binary is when a third body passes

by closely, but not close enough to interact with the individual components of the binary

(Figure 8). In this case, a “slingshot” effect is often seen in which body 3 initially has

enough momentum to shoot just past the binary; as the distance between the binary and

third body decreases, the gravitational force is strong enough to cause the bodies to shoot

back towards each other. It was observed that in such cases, often the binary would emerge

only slightly perturbed. The resulting gravitational signal was not very informative, so it

has not been included. However, because this type of interaction occurs with a very wide

range of parameters, it should be the most common binary-star interaction to occur.

4.2 Case 2

A second possibility is for the third body to interact with the binary in such a way that one

of the binary components is ejected, and the third body enters a stable orbit with the other

star in the binary. In the example below, this scenario actually occurs twice—a rare event.

Approaching from above, body 3 undergoes complicated interactions with the binary

(Figure 9). Initially, body 2 is ejected from the binary while bodies 1 and 3 enter a stable

orbit (Figure 10). The new binary and body 2 meet once again and interact. The second

time, body 1 is ejected and bodies 2 and 3 enter a stable orbit (Figure 11). During this

interaction, bodies 1 and 2 re-enter a binary orbit for some time before body 1 is ejected.

The plot of luminosity versus time reveals exchange events at the times where either

of the bodies are ejected (Figure 12). As expected, the initial and final luminosities are

dominated by the constant gravitational radiation from the stable initial and final binaries.

A general idea of the strain tensor in the z and x directions can be seen in Figures

13 and 16. Before the first exchange interaction, the strain tensor plot is dominated by

the binary gravitational radiation (Figures 14 and 15). After the first exchange, the strain

tensor forms a far more erratic pattern. During the second exchange event, when bodies 1
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and 2 reestablish a stable orbit from 2.01 · 106 to 2.11 · 106 seconds, the strain amplitudes

oscillate periodically in a pattern resembling that of binary radiation (Figures 15 and 18).

As the exchange event ends and a new stable orbit is formed, the strain tensor plot remains

oscillating and periodic, but in a different pattern corresponding to the properties of the

final binary.

4.3 Case 3

The third possibility is that the third star completely scatters the binary, not entering a

stable orbit with either of the components.

In this example, body 3 approaches the stable binary at a high velocity, completely

scattering bodies 1 and 2 (Figure 19). Body 2 escapes from the binary because of the strong

gravitational force from body 3 as it approaches. After body 2 escapes, body 1 shoots off

linearly (Figure 20).

The luminosity as a function of time is initially dominated by the constant gravitational

radiation from the binary, as expected (Figure 21). The luminosity peaks as the third body

interacts extremely quickly with the binary, scattering it. The luminosity then drops to a

lower value than before, as expected, because the stars slow down as they move away from

each other after the scattering event.

The scattering events and resulting energy loss are also evident in the strain tensor versus

time plots (Figures 22 and 23). In the z-direction, the strain tensor oscillates sinusoidally

due to the dominating binary interaction. The h+ component is an almost constant value

higher than the h× component due to the motion of body 3. In the x direction, the h×

component has amplitude 0 as expected, while the h+ component oscillates. After the

binary is scattered, the oscillating pattern characteristic of binaries is gone: the amplitudes

flatten out, as expected for three bodies in approximately linear motion.
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5 Conclusion

Under the assumptions of long wavelengths, weak space-time curvature, and large separation

from radiation sources, approximations of the Einstein field equations with linearized gravity

were used to calculate the strain tensor and gravitational wave luminosity as a function of

time from single star encounters with compact binaries in globular clusters. The binaries

were modelled as point masses with circular orbits. Because of time constraints, parameters

were chosen carefully to see what interesting 3-body interactions would result. However,

because the properties of the stars and encounters are inherently stochastic, it would be

desirable to use Monte Carlo simulations to test for a broad range of situations and initial

parameters.

To calculate the frequency of such encounters, work done by Steinn Sigurdsson and E.S.

Phinney could be extended. In 1994, they ran simulations of globular clusters with a wide

range of initial parameters to tabulate the number of binary-single star exchange interactions

over a period of time [6].

At a gravitational wave frequency of about 0.001 Hz, LISA’s strain sensitivity is about

10−22. The amplitude of the strain for the various cases has been shown to vary anywhere

from on the order of 10−23 to 10−21, depending on which polarization is being detected and

on the orientation of the detector relative to the system. The strain amplitude will also be

dependent on the masses of the interacting bodies, as well as how far away the source is;

although r was taken to be 1020 meters, LISA will be able to resolve binaries in globular

clusters up to 1021 meters away, a range which encompasses globular clusters in galaxies

beyond the Milky Way.
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Figure 3: The trajectory for an interaction between a third body and a binary which leaves
the binary perturbed.
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Figure 4: Close-up on the trajectory in figure 3. The binary eventually emerges in an
eccentric orbit.

15



Figure 5: Luminosity versus time is shown on a logarithmic scale.

16



Figure 6: Strain tensor as a function of time in the x direction.
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Figure 7: Strain tensor as a function of time in the z direction.
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Figure 8: Trajectory of a ”slingshot” interaction.
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Figure 9: The trajectory for an interaction with 2 exchange/scattering events.
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Figure 10: The first exchange interaction.
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Figure 11: The second exchange interaction.
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Figure 12: Luminosity versus time is shown.
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Figure 13: Strain tensor versus time for is shown. The solid color of the graph is due to the
large time scale of the plot. The amplitudes are actually rapidly oscillating up and down;
picture a sin curve being horizontally compressed into what looks like a rectangle. The same
thing is happening here.
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Figure 14: A closeup of the strain tensor plot versus time (see figure 13) during the first
exchange event.
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Figure 15: A closeup of the strain tensor plot versus time (see figure 13) during the second
exchange event.
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Figure 16: Strain tensor versus time in the x direction is shown.
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Figure 17: A closeup of the strain tensor plot versus time (see figure 16) during the first
exchange event.
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Figure 18: A closeup of the strain tensor plot versus time (see figure 16) during the second
exchange event.
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Figure 19: Body 3 passes near the binary with a high velocity, completely scattering bodies
1 and 2.
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Figure 20: A close up of the scattering event.
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Figure 21: Luminosity as a function of time with a logarithmic scale.
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Figure 22: The components of the strain tensor as a function of time, as seen from the z-axis.
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Figure 23: The components of the strain tensor as a function of time, as seen from the x-axis.
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A Index Notation and Summation Convention

In a 3-D coordinate system, standard notation is:

~x ≡ x, y, z ≡ xi

where i runs from 1 to 3 and xi denotes the i-th dimension. Thus, x1 denotes x, x2 denotes

y, and x3 denotes z. Spacetime coordinates use a similar system:

xµ ≡ t, x, y, z

where 0 ≤ µ ≤ 3 and x0 denotes time.

Indices can either be above, as in xµ or below, as in the strain tensor Tαβ; the two positions

have different physical interpretations. For example, xµ is a four-vector in spacetime whereas

xµ is called a dual vector and roughly represents planes orthogonal to xµ. The two are related

by:

xα ≡
3∑

α=0

gαβxβ

xα ≡
3∑

β=0

gαβxα

where gαβ is the inverse of gαβ.

In Einstein’s summation convention, repeated indices indicate summations. The above

equations can be rewritten as

xα = gαβxβ

xα = gαβxβ
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So, in order to calculate Iij from I ij,

Iij = giαgjβIαβ

Thanks to Phillip Zukin, whose notes provided a basis for this section.

B Integrator

Input was of the form [x1 y1 z1 x2 y2 z2 x3 y3 z3 ẋ1 ẏ1 ż1 ẋ2 ẏ2 ż2 ẋ3 ẏ3 ż3 m1 m2 m3]

function dc = orbit33(t,c);

dc = zeros(21,1);

G = 6.673*10^(-11);

d12 = ((c(1)-c(4))^2+(c(2)-c(5))^2+(c(3)-c(6))^2)^.5;

d13 = ((c(1)-c(7))^2+(c(2)-c(8))^2+(c(3)-c(9))^2)^.5;

d23 = ((c(4)-c(7))^2+(c(5)-c(8))^2+(c(6)-c(9))^2)^.5;

m1 = c(19);

m2 = c(20);

m3 = c(21);

for i = 1:9

dc(i) = c(i+9);

end

dc(10) = G*m2/(d12^3)*(c(4)-c(1))+G*m3/(d13^3)*(c(7)-c(1));

dc(11) = G*m2/(d12^3)*(c(5)-c(2))+G*m3/(d13^3)*(c(8)-c(2));

dc(12) = G*m2/(d12^3)*(c(6)-c(3))+G*m3/(d13^3)*(c(9)-c(3));

dc(13) = G*m1/(d12^3)*(c(1)-c(4))+G*m3/(d23^3)*(c(7)-c(4));
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dc(14) = G*m1/(d12^3)*(c(2)-c(5))+G*m3/(d23^3)*(c(8)-c(5));

dc(15) = G*m1/(d12^3)*(c(3)-c(6))+G*m3/(d23^3)*(c(9)-c(6));

dc(16) = G*m1/(d13^3)*(c(1)-c(7))+G*m2/(d23^3)*(c(4)-c(7));

dc(17) = G*m1/(d13^3)*(c(2)-c(8))+G*m2/(d23^3)*(c(5)-c(8));

dc(18) = G*m1/(d13^3)*(c(3)-c(9))+G*m2/(d23^3)*(c(6)-c(9));

dc(19) = 0;

dc(20) = 0;

dc(21) = 0;

38


