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Abstract

The cause of the accelerating expansion of the universe has drawn much speculation in

recent years. Dark energy is the most popular explanation for this phenomenon. Using

data from Type Ia Supernovae, models of a universe with and without dark energy are

contrasted to determine which explanation is more accurate. While universes with dark

energy model the data more closely than ones without, the possibility for viable alternatives

through modifications to general relativity remains strong.



1 Introduction

One of the more intriguing behaviors of the universe is that its expansion is presently acceler-

ating contrary to Newtonian physics and the Newtonian gravity [3]. One possible explanation

for this is that a mysterious “dark energy” which drives the galaxies apart [8]. However,

dark energy may not be the only possible explanation.

The basis of the theory of dark energy begins with redshift. The expansion of the universe

is detected through the distortion of the light emitted by the receding galaxies [3]. Due

to Doppler shifts, wavelengths received from galaxies moving away from the Milky Way

are elongated and contain less energy. The observed redshift indicates that most galaxies

are moving away from the Milky Way. Comparison of galaxies’ luminosity and apparent

brightness to those of standard candles (galaxies of known luminosity and class) allows

redshift to be related to the distance from the galaxy to Earth. In 1929, Hubble used

these relationships to discover that a galaxy’s recession velocity increase with its distance

from Earth, thus establishing the expansion of the universe [4]. Nearly seventy years passed,

though, until in 1998 astronomers were able to relate time, distance and velocity to determine

that the expansion accelerates with time [8]. Not impossible within the context of General

Relativity, this recent relevation has created a flurry of new theories in attempts to model

our expanding and accelerating universe.

In a Newtonian world, matter attracts matter as related by Newton’s Gravitational Law.

When gravitational acceleration is applied to the scale of the universe, the Gravitational

Law becomes:

d2a

dt2
= −4Gπ

3
ρa , (1)

where G is the gravitational constant, ρ is the density of the universe and a is the an

arbitrary and dimensionless measure of the expansion rate of the universe [8]. Assuming

that the density of the universe ρ is positive, all possible predictions for the acceleration of
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expansion of the universe d2a/dt2 are negative, indicating the universe should be decelerating.

Contrary to Newton, cosmologists have established that the universe is instead accelerating.

For this reason among others, Einstein’s theory of General Relativity is accepted as the

correct theory of gravity in the universe.

The general relativistic equation of gravity is expressed as

d2a

dt2
= −4

3
πGa

(
ρ+

3P

c2

)
, (2)

where P represents the total pressure present in the universe[8]. Published in 1916, this

equation incorporated pressure as a primary determinant of acceleration. Should the pressure

of the universe be positive, the acceleration would be negative, predicting deceleration of

the universe and eventually recolapse. However, when cosmologists observed acceleration

instead, they could only conclude that an undiscovered source of massive negative pressure,

a source so large as to overwhelm the attraction of matter, existed [7]. These sources of

negative pressure are called dark energy.

The idea of dark energy, defined as any substance with negative pressure, was created

by cosmologists to explain acceleration. As a substance that neither interacts with light nor

affects objects on small scales yet is present homogeneously throughout space, dark energy

is thought to contribute at least two-thirds of the mass-energy density of the universe [2].

Its tremendous negative pressure would cause it to repel galaxies rather than attract them.

However, definitive observation of dark energy has proved elusive thus far. That the only

evidence for the existence of dark energy comes from observational cosmology has contributed

to speculation that dark energy may not be neither the best nor correct explanation [8].

Alternative views and models may provide a better model for the universe holistically.

This paper uses the data of standard candles to assess the accuracy of dark energy as

the source of repulsive gravity. A modification of general relativity will also be proposed and
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assessed to test the applicability of General Relativity at large length scales. From these

tests, our models of the universe may be revised and strengthened to create a more accurate

depiction of the universe.

In Section 2, we first examine the theoretical basis of dark energy theories, including

redshift, luminosity distance, radial distance, space curvature and time. Section 3 uses the

Friedmann equation to interpret data from standard candles as well as establish a model

of a universe of dark energy. The data and analysis of the dark energy model is presented

in Section 4. A modified theory of general relativity is postulated in Section 5 to model a

universe without dark energy. Our conclusions are presented in Section 6.

2 Theoretical Background

In order to test dark energy, a relationship between redshift, cosmic expansion, distance

and time must first be established. The Friedmann equation for acceleration can then be

manipulated to model data taken from standard candles to determine the effectiveness of

dark energy as a model of the universe.

2.1 Redshift

The first essential concept in models of dark energy is redshift. We follow the presentation

of John Hawley [3] in its discussion. Redshift itself is the stretching of light emitted from

galaxies due to the emitting object’s recession. Cosmic expansion, denoted by a, cause the

distances to increase, so if the ratio of the emitted wavelength λ to the observed wavelength

is directly related to the ratio of cosmic expansion at the time when the light was emitted

(tem) to when it was observed (tobs), then

1 + z =
λobs

λem

=
a(tobs)

a(tem)
, (3)
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where z represents redshift. Define tobs = t0, the subscript “0” indicating today’s time after

the Big Bang, at which t = 0 and consider a(t0) = 1, then cosmic expansion can be expressed

as a function of redshift:

1 + z =
1

a(tem)
. (4)

2.2 Space Curvature k and Radial Distance χ

The second important concept is distance and shape in spacetime. Distance in the universe

depends upon the curvature k of space. In a flat space k = 0, in a hyperbolic space k < 0, and

in a spherical space k > 0. Current measurements from the Wilkinson Microwave Anisotropy

Probe (WMAP) favor a k value of zero [2]. We will assume this to be true. A proper metric

for distance can now be derived.

Assuming flat spacetime with no gravity, the Minkowski metric for distance ds in four

dimensions (x, y, z, and t) is given by

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (5)

In a static universe, this form of the metric would adequately describe the distance between

stars. However, the universe is expanding. As in a balloon, the coordinates x, y, z in the

universe remain constant; however, as more “air” is added to the balloon, the distance

increases proportional to the expansion factor a. The metric becomes

ds2 = −c2dt2 + a2(t)
[
dx2 + dy2 + dz2

]
. (6)

In spherical coordinates, this becomes

ds2 = −c2dt2 + a2(t)
[
dχ2 + r2(χ)(dθ2 + sin2 θdφ2)

]
, (7)
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where r(χ) is the radial distance to a point whose polar and azimuthal angles are given by

θ and φ, respectively. This metric is known as the Robertson-Walker metric. The definition

of r(χ) varies with the value of the curvature of space k [3]. In this paper, k = 0; for this

value of k, the term r(χ) simply reduces to χ in the metric.

For the radial path of a photon moving toward the origin along a light ray, the metric

reduces to

ds2 = 0 = −c2dt2 + a2(t)dχ2 . (8)

As the speed of light is c, then along the light ray, dχ = −cdt/a(t). By integrating this

speed, ∫ χem

0

dχ = −c

∫ tem

t0

dt

a(t)
, (9)

the distance χ can be written as a function of absolute time t, measured since the beginning

of the universe and time.

2.3 Luminosity Distance dL

The luminosity of a galaxy, a measure proportional to the radial distance, is normally the

only way to experimentally measure distance. This is important for interpreting the data

given by the standard candles. Flux is inversely proportional to the distance the light traveled

squared and directly related to the luminosity of the galaxy. So, the flux is

S =
L

4πd2
L

, (10)

where dL is the luminosity distance and L is the luminosity of the object. Cosmological

redshift reduces the energy of the emitted photons by a factor of a, or 1/(1+z), as expansion

increases the distance the photons travel. Furthermore, as the emitting source moves away

from the point of observation, the frequency of the photons is also decreased by a factor of
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a. Therefore, adjusted for cosmological redshift,

S =
L

4πr2(χem)(1 + z)2
, (11)

where dL = (1 + z) · r(χem) = (1 + z) · χem.

2.4 Absolute and Conformal Time

Time is essential to the discussion of acceleration. However, determining the rate of accel-

erating a as a function of tem, as written in equation (9) is not feasible with the current

knowledge and measurements of the universe. Astronomers cannot measure the time when

objects emitted their light; they can only measure redshift and luminosity distance. An

indirect method known as conformal time, a measure of time relative to the age of the uni-

verse instead of absolute t since the Big Bang, allows us to remove the barrier presented by

unknown absolute times. Once conformal time is substituted for the absolute measure, we

will be able to model the acceleration of the universe and test dark energy.

Define conformal time τ as τ(t) =
∫ t

0
a−1dt. Utilization of this definition in equation

(11),transforms it into

χem = c(τ0 − τem) . (12)

Now, through use of conformal time, redshift, and the Robertson-Walker metric, the radial

distance χ can be expressed as a function of time, allowing models of the accelerating universe

to be formed.

3 The Friedmann Equation and Dark Energy

In general relativity, the acceleration of the universe follows the Friedmann equation. It can

be derived from both Newtonian physics and general relativity. For the universe, the general
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relativistic form of the Friedmann equation is given by [8]

(
1

a

da

dt

)2

=
8π

3
Gρ− k

a2
. (13)

As neither τ nor t can be measured by astronomers, if we can use redshift and changes in

the scale factor a as relative measures of time, thereby replacing τ , then we can test the

equation and thereby test general relativity and dark energy as a model of the accelerating

universe.

Written in terms of conformal time, equation (13) becomes

(
1

a2

da

dτ

)2

=
8π

3
Gρ− k

a2
. (14)

The derivative of equation (14), taken with respect to conformal time, is equal to equation

(2). Solving equation (14) for τ yields the equation

τ =

∫ a

0

da√
8π
3
Gρa4 − ka2

. (15)

The total density of the universe is ρ = ρM + ρΛ. The amount of matter in the universe

is a constant. As the volume of space in the universe increases, the mean density of matter

(denoted by subscript “M”) decreases proportional to expansion, so ρ ≡ ρM,0a
−3. The

density of the dark energy, though, is a constant [8]. The symbol Λ has been introduced to

represent dark energy; it is also known as the cosmological constant or vacuum energy.

The ratios of matter and dark energy in the universe to the critical density, which deter-

mines curvature, are respectively given by

ΩM =
8π

3

GρM,0

H2
0

, ΩΛ =
8π

3

GρΛ

H2
0

. (16)
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Assuming space is flat, ΩM + ΩΛ = 1. Then, if 8π
3
Gρa4 = H2

0 (ΩMa+ ΩΛa
4), where the

Hubble Constant H0 = 71 km s−1 Mpc−1 [3], substitution of χ for τ results in

χ =
c

H0

∫ 1

a

da√
ΩMa+ ΩΛa4

. (17)

Equation (17), depending upon the amount of matter and dark matter in the universe,

expresses the radial distance to an object. The goal of the dark energy model in this paper

is to compute the values of ΩM and ΩΛ which most accurately model the data from Type Ia

Supernovae.

4 Supernovae Data

The redshift and luminosity distance of 231 Type Ia Supernovae, collected and published in

April, 2003 [7], plot H0χ versus a.

Two of the possible models resulting from the integral in equation (17) for χ, one with

ΩM = 1 and the other with ΩM = 0.27 (the value favored by the WMAP observations

[2]), are also plotted on Figure 1. The supernovae data, binned with respect to ∆a = .05

beginning at a = 0, are plotted together with their error bars.

To find the optimal value of ΩM in equation (17), a χ2 statistical test for goodness of fit

was performed. The equation for a standard χ2 test is

χ2 =
∑ (

xobs − xpredicted

)2

variance
. (18)

However, for the supernova data, a correction to the variance must be made to account

for peculiar motion. Peculiar motion is the gravity-induced velocity of a galaxy due to

the attraction of matter. The velocity, included in the measurements, changes the redshift

of a supernova from the value it would have in a homogeneous and isotropic expanding
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universe. By adding 500 km s−1 to the variance, typical of peculiar motions [9], the variance

will account for this extra motion in assessing the fit of the model. Also, as the original

measurements instead of the ones from the equations are thought to have an approximately

Gaussian distribution, the χ2 test shall be performed using the observed log(H0dL) values.

After adjusting for peculiar motion and the transformation to logs, the test becomes

χ2 =
∑ [

log(H0dL)
obs − log

(
H0χ

a

)]2

variance +
(

500
c·z·ln(10)

)2 , (19)

where the variance refers to log10(H0dL) and χ(a) is computed from equation (17).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

a

H
o

*C
h

i
(k

m
/s

)

OmegaM=.30
SNE Error
SNE Data
OmegaM=1

Figure 1: The binned supernovae data plot observed H0χ versus a alongside the theoretical
models, one with ΩM = .27 and the other with ΩM = 1.

Supernova which had a redshift of z < .01 were excluded to eliminate systematic errors.
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At such small redshift, the peculiar motion is too great in comparison to the corresponding

low recession velocity. Also, the reddening value indicates how much dimming of the super-

nova’s emitted light is caused by dust, which artificially increases the estimated distance.

To prevent inclusion of data overly affected by reddening, supernovae with reddening values

AV > 0.5 were also excluded. After the exclusion of these supernovae, there are n = 172

supernovae left to test.

When the χ2 test statistic is plotted against ΩM , Figure 2 results. The χ2 value should
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Figure 2: The χ2 curve. The minimum occurs at ΩM = .30. The 68% confidence level is
+/− .04 and the 95% confidence level is +/− .08.

equal the number of degrees of freedom (n − 1) if the model is correct. Each data point

should ideally have an average χ2 contribution of one, which indicates the model predicts a

value which is one standard deviation away from the observed. This measure of differences
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between observed and predicted are how χ2 show goodness of fit. Should the model be

incorrect, though, the value of χ2 increases. The minimum of χ2 also indicates model which

gives values the closest to the observed data; therefore, where χ2 is smallest, that value of

ΩM is optimal. In Figure 2, the minimum of χ2 occurs at ΩM = .30 where χ2 = 175.76. This

minimum is also consistent with the expected value for χ2, indicating the model is a good

fit overall.

The uncertainty in the parameters obtained from the χ2 uses the maximum likelihood

method[1]. At a 68% confidence level, the uncertainty in ΩM is 0.04. The uncertainty is 0.08

at the 95% confidence level.

The value of ΩM favored by the WMAP observations is 0.27, with an uncertainty of

0.04 [2]. The minimum of χ2 obtained from our model is within one standard deviation

of the WMAP values, which indicates that the model is reasonable, as 34% of the WMAP

predictions would lie within one standard deviation above its value of 0.27. Yet another

calculation released in March of 2003 estimated that ΩM = 0.28, with an error bar of 0.05

[9]. However, both this paper and the Tonry paper used the same data and exclusions in

calculating ΩM , yet arrived at different conclusions. The difference could have arisen if the

Tonry paper calculated χ2 using H0dL instead of log(H0dL).

The value ΩM = .30 means that 70% of the mass-energy in the universe is in the form

of dark energy. If dark energy accounts for that much of the mass-energy of the universe,

it is difficult to accept that dark energy has not been physically observed yet. Indeed, dark

energy may not be the correct theory. In the next section of this paper, we consider an

alternative model of the universe in which dark energy does not exist.
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5 Another Theory of Gravity

In the months following Einstein’s publication of general relativity, a mathematician named

Hilbert formulated a concise derivation of the theory; it was called the least-action princi-

ple of gravity. The least-action principle requires one to minimize
∫ L√−g d4x, with the

Lagrangian L = R · 16πG where R is the Ricci scalar, defined later in this section.

The modifications to the General Theory of Relativity here are postulated in a natural

way by replacing R in the Lagragian by an abitrary function f(R). In doing so, the original

theory can be recovered in the event that there is no feasible alternative model by setting

f(R) = R. The changes yield the following two equations:

−3

(
df

dR

)
d

dτ

(
1

a

da

dτ

)
+

1

2
a2f = 8πGa2ρ , (20)

df

dR

[
d

dτ

(
1

a

da

dτ

)
+ 2

(
1

a

da

dτ

)2

+ 2k

]
− 1

2
a2f = 8πGa2P

c2
. (21)

The Ricci scalar for the Robertson-Walker metric is given by

R ≡ 6

a2

[
d

dτ

(
1

a

da

dτ

)
+

(
1

a

da

dτ

)2

+ k

]
. (22)

In these modifications, f(R) is function which has units of [H2
0 ], or equivalently, 1/τ

2. It

is arbitrary because we don’t know of any certain alternatives to dark energy in the universe.

We assume that P = 0 as dark energy is the only reason why P < 0 in the universe. We

also assume ρ = ρM as ρΛ = 0 if there is no dark energy in the universe. The function f(R)

must, though, have the property limf→∞ = R in order to recover Newtonian gravity. Two

possible models for f(R) which will be used in this paper are

f = R +R0 , (23)
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and

f = R +
R1

R
, (24)

where R0 and R1 are constants.

Next we consider the consequences and potential of each of these models to see how

feasible a universe without dark energy is.

5.1 Alternative One

Let us first consider the equation (23). Substitution into equations (20) and (21) transform

those equations into

−3
d

dτ

(
1

a

da

dτ

)
+

1

2
a2 (R0 +R) = 8πGa2ρ , (25)

and [
d

dτ

(
1

a

da

dτ

)
+

(
1

a

da

dτ

)2

+ 2k

]
− 1

2
a2 (R0 +R) = 8πGa2P

c2
. (26)

Using the definition of the Ricci scalar, equation (25) becomes

(
1

a

da

dτ

)2

=
8π

3
G2a2ρ− k − 1

6
a2R0 . (27)

Equation (26) becomes

−2
d

dτ

(
1

a

da

dτ

)
−

(
1

a

da

dτ

)2

= 8πGa2P

c2
+ k +

1

2
a2R0 (28)

We know from observations that the acceleration of the universe today is positive. If

P = 0, as it does in a universe without dark energy, then the only way to achieve positive

acceleration in equation (27) is if R0 < 0. However, this solution is not distinguishable from

the Friedmann equation with dark energy.
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By factoring equation (27), we get

(
1

a

da

dτ

)2

=
8π

3
G2

(
ρ− R0

16πGa2

)
− k . (29)

If ρ = ρM + ρΛ, then in the term ρ − R0/(16πG), ρΛ corresponds to −R0/(16πG). If we

substitute this into equation (27),

−2
d

dτ

(
1

a

da

dτ

)
−

(
1

a

da

dτ

)2

= 8πGa2

(
P

c2
+−ρΛ

)
+ k (30)

The term p/c2 − ρΛ is equivalent to vacuum energy which has PΛ = −ρΛc
2. We conclude

that R0 is indistinguishable from dark energy. Instead, alternative two may provide a model

without dark energy.

5.2 Alternative Two

Alternative two is quite different than alternative one. In this model, recall

f = R +
R1

R
, therefore

df

dR
= −R1

R2
+ 1 . (31)

Substitution of these equations into equation (20) then gives

(−R1

R2
+ 1

) [
d

dτ

(
1

a

da

dτ

)
+ 2

(
1

a2

da

dτ

)2
]
= 0 , (32)

assuming k = P = 0. We let

α = 2H2
0 = 2

(
1

a2

da

dτ

)2

. (33)

Then equation (21) becomes

R3 − 3αR2 + 2R1R + 3R1α = 0 . (34)
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The shape of a cubic formula is given by δ2 = (b2−3ac)(9a2) [5]. For δ2 > 0, the maxima

and minima are distinct; for δ2 = 0 they coincide, and for δ2 < 0 the graph contains no

turning points. The point of inflection or symmetry is given by xn = −b/(3a). As α is a

function dependent on time and R1 is a constant, the sign of δ2 changes with time. Also,

as the universe was decelerating in the past, the value of H was also larger in the past

than at the present. Research in the solutions and shape of equation (34) was not finished,

unfortunately; however, it remains an intriguing possibility for modeling the universe.

6 Conclusion

The data collected from the Type Ia supernovae indicate that the theory of dark energy,

despite its lack of physical proof, provides a very accurate model of the universe when 70%

of the mass-energy density of the universe is dark energy. Although our first alternative

model to dark energy was indistinguishable from dark energy, dozens of other possibilities

such as the second alternative posed here remain to be explored and analyzed. Continued

exploration into the nature of R1 and other functions of f(R) will reveal more about the use

of dark energy and general relativity in modeling the universe.
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