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Abstract

The fate of the universe depends largely on its energy density relative to the critical energy

density. This energy density consists of both matter energy and vacuum energy (also known

as dark energy). Experimental data from Type Ia supernovae and from cosmic microwave

background anisotropy measurements, when plotted on the Omega diagram as a graph of

ΩΛ versus Ωm, conveniently constrains the values of the two Ω parameters to ΩΛ ≈ 2Ωm ≈

2/3. This paper presents a physical explanation to elucidate the relative positions of these

constraints and their uncertainties.



1 Introduction

Two types of energy are thought to fill the universe today. The first is non-relativistic matter

energy, which consists of both baryonic matter (the well-known type of matter composed

of protons, neutrons and electrons) and non-baryonic dark matter. The second is vacuum

energy, the cosmological constant that uniformly pervades all space and is marked by its

negative pressure.

The densities of these two forms of energy define two cosmological parameters that de-

termine, in large, the structure and fate of the universe: Ωm = ρm/ρc, the ratio of the mean

mass density to the critical density required for a flat universe, and ΩΛ = ρΛ/ρc, the ratio of

vacuum energy density to the critical density. If Ωm + ΩΛ = 1, then the universe has a flat

spatial geometry. If Ωm + ΩΛ > 1 or Ωm + ΩΛ < 1, then the universe has a closed or open

spatial geometry, respectively. If ΩΛ = 0, then a closed universe will eventually recollapse

while flat and an open one will expand forever. If ΩΛ > 0, then a closed universe may expand

forever [1, 2]. Figure 1 diagrams these facts.

Prior to the recent measurements of the cosmic microwave background and Type Ia

supernovae, constraints on the omegas had already been established. Gravitational mass

measurements in galaxies and galaxy clusters constrain Ωm to 0.4± 0.2 [3], and a variety of

constraints, including gravitational lens tests, fix ΩΛ ≤ 1 [4].

Recent developments have placed even tighter constraints on the possible values of Ωm

and ΩΛ. Two groups of astronomers have used the magnitude-redshift relation of Type

Ia supernovae (SNe Ia) to conclude that the cosmic expansion is speeding up, requiring

Ωm+2ΩΛ > 0 [1]. The contributions of Ωm and ΩΛ were also constrained to Ωm ≈ 1−ΩΛ by

cosmic microwave background (CMB) anisotropy observations from the cosmic photosphere

made by the Maxima [5], Boomerang [6], and DASI [7] experiments. The results of both the

CMB anisotropy and SNe Ia projects, when plotted together, produce Figure 1.

In Figure 1, it can be seen that the two plots intersect nearly orthogonally. The inter-
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Figure 1: The Omega Diagram: Ωm vs. ΩΛ error ellipses for constraints from CMB
anisotropy (labeled CBR anisotropy here) and Type Ia supernovae. The line for Ωtot = 1
has been plotted. It should be noted that all three constraints are satisfied when Ωm and
ΩΛ have values in the checkered region. This figure also shows how different values of Ωm
and ΩΛ will affect the structure and fate of the universe. (Diagram from [8])
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section of the major axes of the error ellipses for the two plots occurs at Ωm ≈ 1/3 and

ΩΛ ≈ 2/3, indicating that vacuum energy contributes 2/3 of the total energy in the universe.

Furthermore, the orthogonality of the uncertainties results in a small region of error for

these values of Ωm and ΩΛ. These measurements give the strongest evidence thus far that

the universe will expand forever, and that the rate of expansion is increasing [1].

This paper will provide a physical and mathematical argument that explains the results

of the SNe Ia and CMB projects in Figure 1. This will be done by first developing two tools,

the Friedmann Equation and the Robertson-Walker metric, and then subsequently using

them to explain the orientation of uncertainties in Figure 1.

2 The Friedmann Equation and its Implications

This section will sketch a derivation of the Friedmann equation following an outline similar

to that presented in [10]. Four assumptions will be made. First, it will be assumed that

Newton’s Laws are valid on scales much smaller than the Hubble length. Second, it will be

assumed that mass is conserved and that vacuum energy and radiation are negligible. Third,

it will be assumed that the universe is both homogeneous and isotropic. Finally, it will be

assumed that the expansion of the universe is uniform, i.e. r1(t)/r2(t) = constant where

r1(t) and r2(t) are distances of two test particles from an arbitrarily chosen center of the

expansion. We will treat a small portion of the universe as a sphere with uniform density

and fixed mass.

Consider a test particle, at distance r(t) on the outside of the sphere. The particle’s

equation of motion is given by

mr̈(t) =
−GMm

r2(t)
, (1)

where G is the gravitational constant, M is the mass enclosed by the sphere, and m is the

mass of the test particle. Multiplying both sides of equation (1) by ṙ(t)/m, taking the time
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integral, and using the fact that M = 4
3
πr3(t)ρ(t) is a constant yields

ṙ2(t)

2
=

4

3
πGr2(t)ρ(t)−

κ

2
, (2)

where κ is an integration constant and −κ/2 corresponds to the energy per unit mass of the

test particle.

Now let a(t), the cosmic scale factor, be defined as a(t) ≡ r(t)/r0. (Subscript 0’s denote

present values.) This a(t) provides an overall scaling for the separation between all objects

in a uniformly expanding universe. Let the curvature, k, be defined as k = κ/r20, and let the

Hubble parameter H(t) be defined as H(t) ≡ ȧ(t)/a(t). By substituting these parameters,

we can eliminate explicit dependance on r0 and generalize the argument from a test particle

to the entire universe. Dividing equation (2) by r2(t) and using the above definitions yield

H2(t) =

[
ȧ(t)

a(t)

]2
=

8πG

3
ρ(t)−

k

a2(t)
. (3)

Equation (3), known as the Friedmann equation, is a statement about cosmic expansion,

as it describes the relative motion of all bodies on large scales. It shows how the density (ρ)

and curvature (k) of the universe affect its size and fate. If a(t) → 0 at any time, then the

the universe collapses in a big crunch. If a(t)→∞ as t→∞, then the universe will expand

without bound. The observable universe is thought to have begun expansion about 14 Gyrs

ago at time t = 0 when a = 0.

Remarkably, although the above derivation uses only non-relativistic physics, equation (3)

is still valid in general relativity and for all types of matter and energy [10]. In a relativistic

universe, there are three contributions to ρ. Thus, ρ can be separated into ρtot = ρm+ρΛ+ρr,

where ρm is the matter density, and ρr and ρΛ are the radiation energy density and vacuum

energy densities respectively, both multiplied by c−2. This factor of c−2 will always be

assumed for the remainder of this paper to maintain the correct units of mass/volume for ρ.
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Now define

Ωm,Λ,r(t) ≡
8πG

3H2(t)
ρm,Λ,r(t) (4)

Ωk(t) ≡ −
k

a2(t)H2(t)
. (5)

Using the above definitions, the Friedmann equation can be rewritten as

1 = Ωm(t) + ΩΛ(t) + Ωr(t) + Ωk(t). (6)

At late times, Ωr is negligible. We therefore see that for a flat (k = 0) universe, Ωm+ΩΛ = 1.

This reference line is plotted on Figure 1.

To simplify calculations later on, another alternate form of equation (3) will be presented.

It is obtained simply by changing variables from the proper time variable t to the conformal

time variable τ , where dt = a(t(τ)) dτ ≡ a(τ) dτ :

H2(τ) =

(
1

a2
da

dτ

)2
=

8πG

3
ρ(τ)−

k

a2(τ)
. (7)

Because matter density is inversely proportional to volume with a scale factor of a−3,

vacuum energy density is constant, and radiation density is inversely proportional to a4, the

total energy density is

ρ(τ) =
3H20
8πG

[
Ωma

−3(t) + ΩΛ + Ωra
−4(t)

]
, (8)

where Ωi = Ωi(τ0) and a = a(τ). One can now rewrite equation (7) as

(
da

dτ

)2
= H20

(
Ωma+ ΩΛa

4 + Ωr −
ka2

H20

)
(9)

By convention, a0 ≡ 1, so one can make the substitution −k/H20 = Ωk(t0) = Ωk =
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1− Ωm − ΩΛ − Ωr. Making this substitution and subsequently solving for H0τ(a) yields:

H0τ(a) =

∫ a
0

dx√
Ωmx+ ΩΛx4 + (Ωrh2)h−2 − Ωkx2

, (10)

To simplify things later on, we have introduced the dimensionless Hubble constant h ≡

H0/(100 km s−1 Mpc−1). Equation (10) will be central to the discussion of both cosmic

microwave background and supernovae in later sections.

3 The Robertson-Walker Metric

The other tool that will be necessary to analyze the results of the SNe Ia and CMB mea-

surements is the Robertson-Walker spacetime metric.

We begin with the metric for flat spacetime, which, in rectangular coordinates, is given

by

ds2 ≡ −(c dt)2 + dx2 + dy2 + dz2. (11)

This metric assumes that the effect of gravity is negligible.

In an expanding universe, galaxies that remain at constant values of x, y, and z in a proper

reference frame will have constant separation. This is not the case, as Hubble’s Law implies

that the separation of galaxies at fixed (x, y, z) will increase proportionally to a(t). Thus,

to make a metric which is valid for a spatially flat universe, we replace (dx2 + dy2 + dz2)

with a2(t)(dx2 + dy2 + dz2). Converting to spherical coordinates (with χ as the radial

distance, θ as the polar angle, and φ as the azimuthal angle) makes calculations easier, as

cosmic measurements are made in terms of χ and these angles. Making the appropriate

substitutions into equation (11) yields the following metric:

ds2 = −(c dt)2 + a2(t)[dχ2 + χ2(dθ2 + sin2 θ dφ2)] (12)
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To account for a curved (k �= 0) isotropic and homogeneous universe, χ must be replaced

with r(χ), where [11]

r(χ) ≡




ck−1/2 sin
(
k1/2χ
c

)
, k > 0;

c(−k)−1/2 sinh
[
(−k)1/2χ
c

]
, k < 0;

χ, k = 0.

(13)

Replacing dt with a(τ)dτ produces the final form of the Robertson-Walker metric that

will be used:

ds2 = a2(τ)[−c2dτ 2 + dχ2 + r2(χ)(dθ2 + sin2 θ dφ2)] (14)

Now consider the path of a photon emitted from (τem, χem, θem, φem) that follows a path

of constant θ and φ (a radial path) to (τ0, 0, θem, φem). For light, ds2 = 0 along any path.

Also, for the light rays coming to the observer at χ = 0 from distant sources, dθ = dφ = 0.

Equation (14), for these conditions, reduces to

dχ = ±c dτ (15)

Because χ is decreasing and τ is increasing, the minus sign must be used. Integrating both

sides of (15) over the path of the photon yields:

χem = c(τobs − τem) (16)

Equation (16), the light cone condition, provides a simple method for determining χem for

an event given its ∆τ . This result that will be used later.
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4 Cosmic Microwave Background Constraints

The cosmic microwave background (CMB) is blackbody radiation whose spectrum peaks

in the microwave region. The anisotropy in CMB measurements is essentially a result of

three phenomena. Two of them, namely the Doppler shift due to the Earth’s motion and

the foreground emission from the Milky Way, can be subtracted from the measurements to

reveal the third source — residual fluctuations produced in the early universe.

Define τrec as the time after the big bang at which free electrons combined with protons

to form the neutral hydrogen that fills the present universe. Because of the ionized gas that

was present prior to τrec, photons were scattered. This scattering created an opaque surface

on our backward light cone. (Everything we see when we look out across space is a part

of our backward light cone.) Because of this surface, which we will refer to as the cosmic

photosphere, events occurring at times before τrec cannot be observed.

If the cosmic photosphere were completely uniform, the CMB data (after subtraction)

would be isotropic. However, the data still shows a lack of homogeneity arising from vari-

ations in temperature in the early universe. These variations result from fluctuations that

occurred prior to τrec so no direct visual record of them can be obtained. However, the

disturbances did give off sound waves, which traveled at a speed of approximately c/2 in

the photon-baryon plasma without being scattered. These sound waves propagated to the

intersection of the acoustic sphere and our backward light cone and left imprints (rings) in

the CMB that can be measured. The acoustic sphere is the region around the source of a

perturbation where sound waves from the perturbation can be found at a given time.

Consider two imprints made at time τrec on the cosmic photosphere (events A and B in

Figure 2) caused by the same quantum perturbation (event E at time τ = 0) and consider

the spatial separation between them, LCMB. Because the events are simultaneous, ∆τ = 0

between them. Because the cosmic photosphere is at a fixed χ, ∆χ = 0. Choosing an

appropriate orientation for our reference frame, we can set ∆φ = 0. Finally, because χrec 	
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∆θ

Backward Light Cone

Acoustic Sphere

χ
rec

E
A B

Cosmic Photosphere

CMBL

O

Figure 2: CMB measurements: (not to scale — in reality, χrec 	 LCMB) The acoustic sphere
for an event E that occurs at τ = 0 intersects with the backwards light cone on the cosmic
photosphere at time τrec (events A and B). An observer with the shown light cone is at
O. Event E actually occurs outside the cosmic photosphere, but this can’t be seen in the
diagram because of the lack of a time axis.

LCMB, we know ∆θ 
 1, and from equation (14) we have

LCMB = ∆s ≈ a(τrec) r(χrec) ∆θ (17)

The acoustic diameter LCMB can also be measured in spherical coordinates with an origin

at one of the events (assume it to be at event A). In this frame, dθ = dφ = 0 between A

and B; dτ = 0 as well because the events are still simultaneous. Sound travels at a speed of

≈ c/2 in the photon-baryon plasma and both events were caused by a perturbation exactly

half way between them at time τ = 0, so their spatial separation is D(A,B) = 2D(E,A) =

2 c
2
(τA − τE) = cτrec. Therefore,

LCMB = ∆s = a(τrec)∆χ = c a(τrec) τrec (18)
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Setting equation (17) equal to equation (18) yields

cτrec = r(χrec)∆θ (19)

Hence,

cτrec
r(χrec)

= ∆θ (20)

This ∆θ is what cosmologists are effectively able to measure from the location of the first

acoustic peak in the angular power spectrum [5].

To determine a theoretical value of ∆θ, we first introduce a dimensionless function F ≡

H0r(χrec)/c. Initially, we will consider only an open universe (Ωm+ΩΛ < 1). Equation (13)

for k < 0 becomes:

F ≡
H0r(χrec)

c
= H0(−k)

−1/2 sinh

[(
−k

H20

)1/2
H0χrec

c

]
(21)

Making the substitution Ωk = −k/H20 into equation (21) yields:

F =
1
√
Ωk

sinh

[√
Ωk
H0χrec

c

]
(22)

From equations (16) and (10),

H0χrec

c
= (H0τobs −H0τrec) =

∫ 1
arec

dx√
Ωmx+ ΩΛx4 + (Ωrh2)h−2 − Ωkx2

(23)

Substituting equation (23) forH0χrec/c in equation (22) and using the fact that arec = 1/1100

[12] yields:

F =
1
√
Ωk

sinh

[√
Ωk

∫ 1
1/1100

dx√
Ωmx+ ΩΛx4 + (Ωrh2)h−2 − Ωkx2

]
, (24)

Similar derivations can be used for closed and flat universes to define F when Ωm+ΩΛ ≥ 1.
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From equation (10), we also know

H0τrec = H0τ(arec) =

∫ 1/1100
0

dx√
Ωmx+ ΩΛx4 + (Ωrh2)h−2 − Ωkx2

(25)

From equation (6) we know Ωk = 1−Ωm−ΩΛ− (Ωrh
2)h−2. We know Ωγh

2 = 2.4937×10−5,

where Ωγ is the photon density parameter. The value of Ωγh
2 value can be calculated

from physical constants which are very precisely known and the accurately measured CMB

temperature. To include neutrinos in the radiation density we use Ωr = 1.68Ωγ [10], so

the present value of the radiation parameter, which includes both photons and neutrinos,

is constrained to Ωrh
2 = 4.1894× 10−5. Substituting this into equations (24) and (25) and

using h = 0.7m, currently the best approximation [13], leaves F and H0τrec as functions of

Ωm and ΩΛ only. Using equation (20) we can now define ∆θ, too, as a function of Ωm and

ΩΛ.

∆θ = G(Ωm,ΩΛ) ≡
cτ(arec)

r(χrec)
=
H0τrec
F

, (26)

where τrec is given by equation (25) and F is given by equation (24).

Figure 3 shows level curves of G(Ωm, ΩΛ). Comparing the contours of Figure 3 with

the orientation of the error region for CMB anisotropy data in figure (1) suggests that G

accurately explains the orientation of the region, whose center is along the line Ωm+ΩΛ = 1.

Furthermore, using the estimates Ωm ≈
1
3
and ΩΛ ≈

2
3
, we can calculate G(1

3
, 2
3
) = ∆θ =

.0206 = 1.18◦. This agrees with the experimental value (∆θ ≈ 1.2◦).

5 Simplified Model for CMB Constraints

Consider equation (24). Plotting the integrand using approximate values for the omegas

(Ωm ≈
1
3
and ΩΛ ≈

2
3
) shows that its greatest contributions come from small values of x.

Because the contribution of ΩΛx
4 + (Ωrh

2)h−2 − Ωkx
2 in the radical is small relative to Ωm

for small values of x, these terms can be dropped to make an approximate calculation. The
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Figure 3: Level curves of G(Ωm, ΩΛ) = ∆θ: Note that the slope of the contours is negative
throughout the region. Values of ∆θ are provided in degrees. Also, in the region of Ωm+ΩΛ =
1, note that the slope m ≈ −1.

contribution of (Ωrh
2)h−2 to Ωk is also relatively small (compared to contributions of Ωm and

ΩΛ). Similarly, in equation (25) ΩΛx
4 − Ωkx

2 can be ignored because it contributes much

less to the radical than Ωm + (Ωrh
2)h−2 (on the order of 10−3). Eliminating these terms

makes it possible to analytically evaluate the integrals and produce a more concise formula

for ∆θ, albeit an approximation.

Using these simplifications for equations (24) and (25), define

∆θ ≈ Gs(Ωm,ΩΛ) ≡
2
√
Ωk(
√

Ωm/1100 + Ωr −
√
Ωr)

Ωm sinh
[√

Ωk

(
2√
Ωm
− 2
√

1
1100Ωm

)] , Ωm + ΩΛ < 1 (27)

This equation, like (24), is only valid for open universes, but similar equations can easily

be derived for closed and flat universes. For ΩΛ = 2
3
and Ωm = 1

3
, G = 0.0216349 and

Gs = 0.0204033 — a 5.7% difference. Similar percent differences can be found on the rest

of the Ωm - ΩΛ plane as long as Ωm is not near 0. Though it is not clean, equation (27)

provides a good approximation of ∆θ using only elementary functions and arithmetic.
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Figure 4: Level curves of Gs(Ωm,ΩΛ) Note that the approximation matches less with Figure
(3) at low values of Ωm.

6 Constraints from Type Ia Supernovae

Now we turn our attention to the constraints obtained from measurements of Type Ia super-

novae (SNe Ia). SNe Ia are the most luminous and homogeneous of all supernova types, and

are therefore excellent standard candles that can be used for measurements. The calculations

here will be similar to those made in the CMB section, but now we will be looking at ratios

of different F ’s instead of ratios of τ to F .

Because all SNe Ia are believed to have almost the same peak power, when corrected

for the shape of the light curve [2], we can consider two supernovae with the same emitted

power (P1 = P2) at aem = a1 and aem = a2. The measured luminosity flux of each supernova

is related to the power, time, and distance of emission as follows:

Φ =
Pema

2
em

4πr2(χem)
, (28)
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The ratio of the fluxes of the two supernovae is therefore

Φ2
Φ1

=
P2

P1

(
a2

a1

)2
r2(χ1)

r2(χ2)
≈

(
a2

a1

)2
r2(χ1)

r2(χ2)
. (29)

Though Φ1 and Φ2 themselves are not precisely known, the ratio between them, Φ2/Φ1

can be measured. All the uncertainty in supernova calculations arises from the assumption

P1 = P2, which is only accurate to within 10-20% [2].

Consider equations (22) and (23) with χrec, arec, and τrec replaced with χ1,2, a1,2, and

τ1,2. With these substitutions, the flux ratio becomes

Φ2
Φ1

=

[
F (Ωm,ΩΛ, a1)

F (Ωm,ΩΛ, a2)

]2(
a2

a1

)2
. (30)

Now define

f(Ωm,ΩΛ) ≡ ln

(
Φ2
Φ1

)
, (31)

for a given a1 and a2. Figures (5) through (9) show level curves of f for different values of

a1 and a2. The contours in these figures are spaced so that an interval of plus or minus one

contour corresponds to the error from a 10% uncertainty in flux calibration (denser contours

correspond to less uncertainty).

From the figures, we see that greater values of ∆a, such as those found in Figures 5,

8, and 9 correspond to less uncertainty. Analyzing the contributions to f(Ωm,ΩΛ) can also

show this. Figures 6 and 7 closely model and explain the orientation of the error ellipse for

SNe Ia in Figure 1. This is due to the fact that the experimental data from [1] and [2] dealt

with supernovae at redshifts 0.16 ≤ z ≤ 0.86, which, using the fact that z = (1/a) − 1,

corresponds to 0.54 ≤ a ≤ 0.86.

Note that no simplified model can easily be constructed because the relatively large values

of aem used here result in all the terms in integrals having relatively equal importance over

the region of integration.
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Figure 5: Level curves of f(Ωm,ΩΛ) for a1 = .9 and a2 = .5 (One near and one distant
supernova).
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Figure 6: Level curves of f(Ωm,ΩΛ) for a1 = .8 and a2 = .7 (Two supernovae with relatively
small ∆τ between them).
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Figure 7: Level curves of f(Ωm,ΩΛ) for a1 = .99 and a2 = .8 (a1 = .99 corresponds to a
supernova closer than any used in [1] and [2].)
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Figure 8: Level curves of f(Ωm,ΩΛ) for a1 = .99 and a2 = .4. The supernova at a = .4
(z ≈ 1.7) corresponds to the furthest measured supernova to date. [14]
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Figure 9: Level curves of f(Ωm,ΩΛ) for a1 = .99 and a2 = .25. Finding a supernova at
a = .25 would help increase the constraints on Ωm and ΩΛ) by a significant amount.

7 Conclusion

The level curves of the functions G and f accurately explain the plotted error curves ob-

tained from data. This suggests that the derived equations, namely equations (26) and (30),

accurately describe the physical phenomena of cosmic microwave background and supernova

luminosity flux and are capable of reproducing the results of the SNe Ia and CMB projects

(Figure 1). These equations can now be used to predict how possible future observations will

affect constraints on Ωm and ΩΛ. Discovery of a high-redshift supernova (large z, small a)

would create constraints with error ellipses having major axes in the direction of the contours

in in Figures 8 and 9, which are nearly vertical and have much less error compared to the

contours in Figures 5, 6, and 7. This could feasibly allow Ωm and ΩΛ to be constrained to a

small area with SNe Ia data alone, because this new narrow vertical ellipse would intersect

the oblique ellipse for SNe Ia in Figure 1. Also, if improvements are made on the measured

value of ∆θ for cosmic microwave background data, equation (26) would predict the effect
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of the change on Ωm and ΩΛ.
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