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Abstract
In deep learning, depth, as well as nonlinearity, create non-convex loss surfaces.1

Then, does depth alone create bad local minima? In this paper, we prove that2

without nonlinearity, depth alone does not create bad local minima, although it3

induces non-convex loss surface. Using this insight, we greatly simplify a recently4

proposed proof to show that all of the local minima of feedforward deep linear5

neural networks are global minima. Our theoretical results generalize previous6

results with fewer assumptions, and this analysis provides a method to show similar7

results beyond square loss in deep linear models.8

1 Introduction9

Deep learning has recently had a profound impact on the machine learning, computer vision, and10

artificial intelligence communities. In addition to its practical successes, previous studies have11

revealed several reasons why deep learning has been successful from the viewpoint of its model12

classes. An (over-)simplified explanation is the harmony of its great expressivity and big data:13

because of its great expressivity, deep learning can have less bias, while a large training dataset leads14

to less variance. The great expressivity can be seen from an aspect of representation learning as well:15

whereas traditional machine learning makes use of features designed by human users or experts as a16

type of prior, deep learning tries to learn features from the data as well. More accurately, a key aspect17

of the model classes in deep learning is the generalization property; despite its great expressivity,18

deep learning model classes can maintain great generalization properties (Livni et al., 2014; Mhaskar19

et al., 2016; Poggio et al., 2016). This would distinguish deep learning from other possibly too20

flexible methods, such as shallow neural networks with too many hidden units, and traditional kernel21

methods with a too powerful kernel. Therefore, the practical success of deep learning seems to be22

supported by the great quality of its model classes.23

However, having a great model class is not so useful if we cannot find a good model in the model24

class via training. Training a deep model is typically framed as non-convex optimization. Because of25

its non-convexity and high dimensionality, it has been unclear whether we can efficiently train a deep26

model. Note that the difficulty comes from the combination of non-convexity and high dimensionality27

in weight parameters. If we can reformulate the training problem into several decoupled training28

problems, with each having a small number of weight parameters, we can effectively train a model29

via non-convex optimization as theoretically shown in Bayesian optimization and global optimization30

literatures (Kawaguchi et al., 2015; Wang et al., 2016; Kawaguchi et al., 2016). As a result of31

non-convexity and high-dimensionality, it was shown that training a general neural network model is32

NP-hard (Blum & Rivest, 1992). However, such a hardness-result in a worst case analysis would not33

tightly capture what is going on in practice, as we seem to be able to efficiently train deep models in34

practice.35

To understand its practical success beyond worst case analysis, theoretical and practical investi-36

gations on the training of deep models have recently become an active research area (Saxe et al.,37

2014; Dauphin et al., 2014; Choromanska et al., 2015; Haeffele & Vidal, 2015; Shamir, 2016;38
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Kawaguchi, 2016; Swirszcz et al., 2016; Arora et al., 2016; Freeman & Bruna, 2016; Soudry &39

Hoffer, 2017).40

An important property of a deep model is that the non-convexity comes from depth, as well as41

nonlinearity: indeed, depth by itself creates highly non-convex optimization problems. One way to42

see a property of the non-convexity induced by depth is the non-uniqueness owing to weight–space43

symmetries (Krkova & Kainen, 1994): the model represents the same function mapping from the input44

to the output with different distinct settings in the weight space. Accordingly, there are many distinct45

globally optimal points and many distinct points with the same loss values due to weight–space46

symmetries, which would result in a non-convex epigraph (i.e., non-convex function) as well as47

non-convex sublevel sets (i.e., non-quasiconvex function). Thus, it has been unclear whether depth by48

itself can create a difficult non-convex loss surface. The recent work (Kawaguchi, 2016) indirectly49

showed, as a consequence of its main theoretical results, that depth does not create bad local minima50

of deep linear model with Frobenius norm although it creates potentially bad saddle points.51

In this paper, we directly prove that all local minima of deep linear model corresponds to local minima52

of shallow model. Building upon this new theoretical insight, we propose a simpler proof for one53

of the main results in the recent work (Kawaguchi, 2016); all of the local minima of feedforward54

deep linear neural networks with Frobenius norm are global minima. The power of this proof can go55

beyond Frobenius norm: as long as the loss function satisfies Theorem 3.2, all local minima of deep56

linear model corresponds to local minimum of shallow model.57

2 Main Result58

To examine the effect of depth alone, we consider the following optimization problem of feedforward59

deep linear neural networks with the square error loss:60

minimize
W

L(W ) =
1

2
‖WHWH−1 · · ·W1X − Y ‖2F , (1)

where Wi ∈ Rdi×di−1 is the weight matrix, X ∈ Rd0×m is the input training data, and Y ∈ RdH×m61

is the target training data. Let p = arg min0≤i≤H di be the index corresponding to the smallest width.62

Note that for any W , we have rank(WHWH−1 · · ·W1) ≤ dp. To analyze optimization problem63

(1), we also consider the following optimization problem with a “shallow” linear model, which is64

equivalent to problem (1) in terms of the global minimum value:65

minimize
R

F (R) = ‖RX − Y ‖2F s.t. rank(R) ≤ dp, (2)

where R ∈ RdH×d0 . Note that problem (2) is non-convex, unless dp = min(dH , d0), whereas66

problem (1) is non-convex, even when dp ≥ min(dH , d0) with H > 1. In other words, deep67

parameterization creates a non-convex loss surface even without nonlinearity.68

Though we only consider the Frobenius loss here, the proof holds for general cases. As long as69

the loss function satisfies Theorem 3.2, all local minima of deep linear model corresponds to local70

minimum of shallow model.71

Our first main result states that even though deep parameterization creates a non-convex loss surface,72

it does not create new bad local minima. In other words, every local minimum in problem (1)73

corresponds to a local minimum in problem (2).74

Theorem 2.1. (Depth creates no new bad local minima) Assume that X and Y have full row rank. If75

W̄ = {W̄1, . . . , W̄H} is a local minimum of problem (1), then R̄ = W̄HW̄H−1 · · · W̄1 achieves the76

value of a local minimum of problem (2).77

Therefore, we can deduce the property of the local minima in problem (1) from those in problem (2).78

Accordingly, we first analyze the local minima in problem (2), and obtain the following statement.79

80

Theorem 2.2. (No bad local minima for rank restricted shallow model) If X has full row rank, all81

local minima of optimization problem (2) are global minima.82
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By combining Theorems 2.1 and 2.2, we conclude that every local minimum is a global minimum for83

feedforward deep linear networks with a square error loss.84

Theorem 2.3. (No bad local minima for deep linear neural networks) If X and Y have full row rank,85

then all local minima of problem (1) are global minima.86

Theorem 2.3 generalizes one of the main results in (Kawaguchi, 2016) with fewer assumptions.87

Following the theoretical work with a random matrix theory (Dauphin et al., 2014; Choromanska88

et al., 2015), the recent work (Kawaguchi, 2016) showed that under some strong assumptions, all of89

the local minima are global minima for a class of nonlinear deep networks. Furthermore, the recent90

work (Kawaguchi, 2016) proved the following properties for a class of general deep linear networks91

with arbitrary depth and width: 1) the objective function is non-convex and non-concave; 2) all of the92

local minima are global minima; 3) every other critical point is a saddle point; and 4) there is no saddle93

point with the Hessian having no negative eigenvalue for shallow networks with one hidden layer,94

whereas such saddle points exist for deeper networks. Theorem 2.3 generalizes the second statement95

with fewer assumptions; the previous papers (Baldi, 1989; Kawaguchi, 2016) assume that the data96

matrix Y XT (XXT )−1XY T has distinct eigenvalues, whereas we do not assume that.97

3 Proof98

In this section, we provide the proofs of Theorems 2.1, 2.2, and 2.3.99

3.1 Proof of Theorem 2.1100

In order to deduce the proof of Theorem 2.1, we need some fundamental facts in linear algebra. The101

next two lemmas recall some basic facts of perturbation theory for singular value decomposition102

(SVD).103

Let M and M̄ be two m× n (m ≥ n) matrices with SVDs104

B = UΣV T = (U1, U2)

(
Σ1

Σ2

)(
V T1
V T2

)

B̄ = Ū Σ̄V̄ T = (Ū1, Ū2)

 Σ̄1

Σ̄2

( V̄ T1
V̄ T2

)
,

where Σ1 = diag(σ1, · · · , σk), Σ2 = diag(σk+1, · · · , σn), Σ1 = diag(σ̄1, · · · , σ̄k), Σ2 =105

diag(σ̄k+1, · · · , σ̄n), U , V , Ū and V̄ are orthogonal matrices.106

Lemma 3.1. Continuity of Singular Value The singular value σi of a matrix is a continuous map107

of entries of the matrix.108

Lemma 3.2. (Wedin, 1972) Continuity of Singular Space109

If

ρ := min

{
min

1≤i≤k,1≤j≤n−k
|σi − σ̄k+j |, min

1≤i≤k
σi

}
> 0,

then:110 √
‖ sin(U1, Ū1)‖2F + ‖ sin(V1, V̄1)‖2F ≤

√
‖
(
M̄ −M

)
V1‖2F + ‖

(
M̄∗ −M∗

)
U1‖2F

ρ
.

For a fixed matrix B, we say “matrix A is a perturbation of matrix B” if ‖A−B‖∞ is o(1), which111

means that the difference between A and B is much smaller than any non-zero number in matrix112

B.113

Lemma 3.2 implies that any SVD for a perturbed matrix is a perturbation of some SVD for the114

original matrix under full rank condition. More formally:115
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Lemma 3.3. Let M̄ be a full-rank matrix with singular value decomposition M̄ = Ū Σ̄V̄ T . M is a116

perturbation of M̄ . Then, there exists one SVD of M , M = UΣV T , such that U is a perturbation of117

Ū , Σ is a perturbation of Σ̄ and V is a perturbation of V̄ .(Notice that SVD of a matrix may not be118

unique due to rotation of the eigen-space corresponding to the same eigenvalue)119

Proof: With the small perturbation of matrix M̄ , Lemma 3.1 shows that the singular values does not120

change much. Thus, if ‖M̄ −M‖∞ is small enough, |σi − σ̄i| is also small for all i. Remember that121

all singular values of M̄ are positive. By letting Σ1 contain only the singular value σi (which may be122

multiple, and hence U1 and V1 are the singular spaces corresponding to the singular value σi), we123

have ρ > 0 in Lemma 3.2, thus Lemma 3.2 implies that the singular space of the perturbed matrix124

corresponding to singular value σi in the initial matrix does not change much. The statement of the125

lemma follows by combining this result for the different singular values together (i.e., consider each126

index i for different σi in the above argument).127

We say that W satisfies the rank condition, if rank(WH · · ·W1) = dp. Any perturbation of the128

products of matrices is the product of the perturbed matrices, when the original matrix satisfies the129

rank constraint. More formally:130

Theorem 3.1. Let R̄ = W̄HW̄H−1 · · · W̄1 with rank(R̄) = dp. Then, for any R, such that R is a131

perturbation of R̄ and rank(R) ≤ dp, there exists {W1,W2, . . . ,WH}, such that Wi is perturbation132

of W̄i for all i ∈ {1, . . . ,H} and R = WHWH−1 · · ·W1.133

We will prove the theorem by induction. WhenH = 2, we can easily show that the perturbation of the134

product of two matrices is the product of one matrix and the perturbation of the other matrix. When135

H = k >= 3, we let M be the product of two specific matrices, and by induction the perturbation of136

the product (R) is the product of a perturbation of M and perturbations of the other H − 2 matrix.137

And a perturbation of M is also the product of perturbations of those two specific matrices, which138

proves the statement when H = k.139

Proof: The case with H = 1 holds by setting W1 = R. We prove the lemma with H ≥ 2 by140

induction.141

We first consider the base case where H = 2 with R̄ = W̄2W̄1.142

Let R̄ = Ū Σ̄V̄ T be the SVD of R̄. It follows Lemma 3.3 that there exists an SVD of R, R = UΣV T ,143

such that U is a perturbation of Ū , Σ is a perturbation of ¯Sigma and V is a perturbation of V̄ .144

Because rank(R̄) = dp, with a small perturbation, the positive singular values remain strictly positive,145

whereby, rank(R) ≥ dp. Together with the assumption rank(R) ≤ dp, we have rank(R) = dp. Let146

S̄2 = ŪT W̄2 and S̄1 = W̄1V̄ . Note that Ū Σ̄V̄ T = R̄ = W̄2W̄1. Hence, S̄2S̄1 = Σ̄ is a diagonal147

matrix. Remember Σ is a perturbation of Σ̄, thus there is an S2, which is a perturbation of S̄2 (each148

row of S2 is a scale of the corresponding row of S̄2), such that S2S̄1 = Σ. Let W2 = US2 and149

W1 = S̄1V . Then, W1 is a perturbation of W̄1, W2 is a perturbation of W̄2, and W1W2 = R, which150

proves the case when H = 2.151

For the inductive step, given that the lemma holds for the case with H = k ≥ 2, let us consider152

the case when H = k + 1 ≥ 3 with R̄ = W̄k+1W̄k · · · W̄1. Let I be an index set defined as153

I = {p, p − 1} if p ≥ 2, I = {p + 2, p + 1} if p = 0 or p = 1. We denote the i-th element of a154

set I by Ii. Then, M̄ = W̄I2W̄I1 exists as k + 1 ≥ 3. Note that R̄ can be written as a product of155

k matrices with M̄ (for example, R̄ = W̄H · · · W̄I1+1M̄W̄I2−1 · · · W̄1). Thus, from the inductive156

hypothesis, for any R, such that R is a perturbation of R̄ and rank(R) ≤ dp, there exists a set of157

desired k matrices M and Wi for i ∈ {1, . . . , k + 1} \ I, such that Wi is perturbation of W̄i for all158

i ∈ {1, . . . , k + 1} \ I, M is perturbation of M̄ , and the product is equal to R. Meanwhile, because159

M̄ is either a dp by dp−2 matrix or a dp+2 by dp matrix, we have rank(M̄) ≤ dp and rank(M) ≤ dp,160

and it follows rank(R̄) = dp that rank(M̄) = dp. Thus, by setting R̄← M̄ and R ←M (note that161

dp in R̄ = W̄k+1W̄k · · · W̄1 is equal to dp in M̄ = W̄I2W̄I1 ), we can apply the proof for the case of162

H = 2 to conclude: there exists {WI2 ,WI1}, such that Wi is perturbation of W̄i for all i ∈ I, and163

M = WI2WI1 . Combined with the above statement from the inductive hypothesis, this implies the164

lemma with H = k + 1, whereby we finish the proof by induction.165

The next two theorems show that, for any local minimum of L(·), there is another local minimum of166

L(·), whose function value is the same as the original and it satisfies the rank constraint.167
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Theorem 3.2. Let W = {W1, · · · ,WH} be a local minimum of problem (1) and R ,168

WHWH−1 · · ·W1. If Wi is not of full rank, then there exists a W̄i, such that W̄i is of full rank,169

W̄i is a perturbation of Wi, W̄ = {W1, · · · ,Wi−1, W̄i,Wi+1, · · · ,WH} is a local minimum of170

problem (1), and L(W ) = L(W̄ ).171

The idea of the proof is that if we just change one weight Wi and keep all other weights, it becomes a172

convex least square problem. Then we are able to perturb Wi to maintain the objective value as well173

as the perturbation is full rank.174

Proof of Theorem 3.2 For notational convenience, let A = Wi−1 · · ·W1X and B = Wi+1 · · ·WH ,175

and let Li(Wi) = 1
2‖B

TWiA− Y ‖2F . Because W is a local minimum of L, Wi is a local minimum176

of Li. Let A = UT1 D1V1 and B = UT2 D2V2 are the SVDs of A and B, respectively, where Di is a177

diagonal matrix with the first si terms being strictly positive, i = 1, 2. Minimizing Li over Wi is a178

least square problem, and the normal equation is179

BBTWiAA
T = BY AT , (3)

hence180

Wi ∈ (BBT )+BY AT (AAT )+ +
{
M |BBTMAAT = 0

}
= U2D

+
2 V

T
2 Y V1D

+
1 U

T
1 +

{
U2KU

T
1 |K1:s2,1:s1 = 0

}
,

where (·)+ is a Moore–Penrose pseudo-inverse and K is a matrix with suitable dimension with the181

entries in the top left s2 × s1 rectangular being 0.182

Since V T2 Y V1 is of full rank,183

rank(D+
2 V

T
2 Y V1D

+
1 ) ≥ max {0, s2 + s1 −max{di, di−1}}

Thus, we can choose a properK (which contains di+di−1−s2−s1 1s at proper positions with all other184

terms being 0s) such thatD+
2 V

T
2 Y V1D

+
1 +K is of full rank, whereby U2

(
D+

2 V
T
2 Y V1D

+
1 +K

)
UT1185

is of full rank. Therefore, there is a full rank Ŵi that satisfies the normal equation (3).186

Let W̄i(µ) = Wi + µ
(
Ŵi −Wi

)
. Then, W̄i(µ) also satisfies the normal equation, and L(W̄ (µ)) =187

Li(W̄i(µ)) = Li(Wi) = L(W ), for any µ > 0.188

Note that W is a local minimum of L(W ). Thus, there exists a δ > 0, such that for any W 0 satisfying
‖W 0 −W‖∞ ≤ δ, we have L(W 0) ≥ L(W ). It follows from Ŵi being full rank that there exists a
small enough µ, such that W̄i(µ) is full rank and ‖W̄i(µ)−Wi‖∞ is arbitrarily small (in particular,
‖W̄i(µ) −Wi‖∞ ≤ δ

2 ), because the non-full-rank matrices are discrete on the line of W̄i(µ) with
parameter µ > 0 by considering the determine of WT

i (µ)Wi(µ) or Wi(µ)WT
i (µ) as a polynomial

of λ. Therefore, for any W 0, such that ‖W 0 − W̄ (µ)‖∞ ≤ δ
2 , we have

‖W 0 −W‖∞ ≤ ‖W 0 − W̄ (µ)‖∞ + ‖W̄i(µ)−Wi‖∞ ≤ δ ,

whereby
L(W 0) ≥ L(W ) = L(W̄ (µ)) .

This shows that W̄ (µ) =
{
W1, · · · ,Wi−1, W̄i(µ),Wi+1, · · · ,WH

}
is also a local minimum of189

problem (1) for some small enough µ.190

Lemma 3.4. Let R = AB for two given matrices A ∈ Rd1×d2 and B ∈ Rd2×d3 . If d1 ≤ d2,191

d1 ≤ d3 and rank(A) = d1, then any perturbation of R is the product of A and perturbation of B.192

Proof: Let A = UDV T be the SVD of A, then, R = UDV TB. Let R̄ be a perturbation of R and193

let B̄ = B+V D+UT (R̄−R). Then, B̄ is a perturbation of B and AB̄ = R̄ by noticing DD+ = I ,194

as A has full row rank.195

Theorem 3.3. If W̄ = {W̄1, · · · , W̄H} is a local minimum with W̄i being full rank, then, there exists196

Ŵ =
{
Ŵ1, · · · , ŴH

}
, such that Ŵi is a perturbation of W̄i for all i ∈ {1, . . . ,H}, Ŵ is a local197

minimum, L(Ŵ ) = L(W̄ ), and rank(ŴHŴH−1 · · · Ŵ1) = dp.198
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In the proof of Theorem 3.3, we will use Theorem 3.2 and Lemma 3.4 to show that we can perturb199

W̄p−1, W̄p−2 . . . , W̄1 in sequence to make sure the perturbed weight is still the optimal solution200

and rank(ŴpŴp−1) = dp. Similar strategy can make sure rank(ŴHŴH−1 · · · Ŵp+1) = dp, which201

then proves the whole theorem.202

Proof of Theorem 3.3 : If p 6= 1, consider

L1(T ) := ‖W̄H · · · W̄p+1TW̄p−2 · · · W̄1X − Y ‖2F .

Then, it follows from Lemma 3.4 and W̄ is a local minimum ofL(W ) that T̄ is a local minimum ofL1,203

where T̄ = W̄pW̄p−1. It follows from Theorem 3.2 that there exists T̂ , such that T̂ is close enough to204

T̄ , T̂ is a local minimum of L1(T ), L1(T̂ ) = L1(T̄ ), and rank(T̂ ) = dp. Note T̂ is a perturbation205

of T̄ , whereby, from Lemma 3.4, there exists Ŵp, Ŵp−1, which are perturbations of W̄p and W̄p−1,206

respectively, such that ŴpŴp−1 = T̂ . Thus, Ŵ 0 =
(
W̄H , · · · , W̄p+1, Ŵp, Ŵp−1, W̄p−2 · · · , W̄1

)
207

is a local minimum of L(W ), L(Ŵ ) = L(W̄ ) and rank(ŴpŴp−1) = dp.208

By that analogy, we can find Ŵp · · · Ŵ1, such that Ŵ 1 =
(
W̄H , · · · , W̄p+1, Ŵp, Ŵp−1, · · · , Ŵ1

)
209

is a local minimum of L(W ), Ŵi is a perturbation of W̄i for i = 1, · · · , p, L(Ŵ 1) = L(W̄ ) and210

rank(ŴpŴp−1 · · · Ŵ1) = dp.211

Similarly, we can find ŴH · · · Ŵp+1, such that Ŵ 2 =
(
ŴH , · · · , Ŵp+1, Ŵp, Ŵp−1, · · · , Ŵ1

)
is a212

local minimum of L(W ), Ŵi is a perturbation of W̄i for i = p + 1, · · · , H , L(Ŵ 2) = L(Ŵ 1) =213

L(W̄ ) and rank(ŴHŴH−1 · · · Ŵp+1) = dp.214

Noticing that215

rank(ŴH · · · Ŵ1) ≥ rank(ŴHŴH−1 · · · Ŵp+1) + rank(ŴpŴp−1 · · · Ŵ1)− dp = dp

and rank(ŴH · · · Ŵ1) ≤ mini=0,...,H di = dp, we have rank(ŴH · · · Ŵ1) = dp, which completes216

the proof.217

Proof of Theorem 2.1: It follows from Theorem 3.2 and Theorem 3.3 that there exists another local
minimum Ŵ = Ŵ =

{
Ŵ1, · · · , ŴH

}
, such that L(Ŵ ) = L(W̄ ) and rank(ŴHŴH−1 · · · Ŵ1) =

dp. Remember that R̂ = ŴHŴH−1 · · · Ŵ1. It then follows from Theorem 3.1 that for any R, such
that R is a perturbation of R̂ and rank(R) ≤ dp, we have R = WHWH−1 · · ·W1, where Wi is a
perturbation of Ŵi. Therefore, by noticing Ŵ is a local minimum of (1), we have

F (R) = L(W ) ≥ L(Ŵ ) = F (R̂) ,

which shows that R̂ is a local minimum of (2).218

In the proof of Theorem 2.2, we at first show that we just need to consider the case where X is an219

identity matrix and Y is a diagonal matrix by noticing rotation is invariant under Frobenius norm.220

Then we show that the local minimum must be a block diagonal and symmetric matrix, and each block221

term is a projection matrix on the space corresponding to the same eigenvalue of the diagonal matrix222

Y . Finally, we show that those projection matrices must be onto the eigenspace of Y corresponding223

to the as large as possible eigenvalues, which then shows that the local minimum shares the same224

function value.225

3.2 Proof of Theorem 2.2226

Let X = U1Σ1V
T
1 be the SVD decomposition of X , where Σ1 is a diagonal matrix with full row227

rank. Then,228

F (R) = ‖RU1Σ1V
T
1 − Y ‖2F = ‖RU1Σ1 − Y V1‖2F

= ‖(RU1)(Σ1)1:d1,1:d1 − (Y V1)1:d2,1:d1‖2F + Const,
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where Const is a constant in R and (·)t1:t2,t3:t4 is a submatrix of (·), which contains the t1 to t2 row229

and t3 to t4 column of (·). If R is a local minimum of (2), then S = RU1 is a local minimum of230

231

minS G(S) = ‖SΣ̂1 − Ŷ ‖2F
s.t. rank(S) ≤ k , (4)

where Σ̂1 := (Σ1)1:d1,1:d1 , Ŷ := (Y V1)1:d2,1:d1 and the difference of objective function values of
(2) and (4) is a constant. Let Ŷ := U2Σ2V

T
2 be the SVD of Ŷ , then

G(S) = ‖SΣ̂1 − U2Σ2V
T
2 ‖2F = ‖UT2 SΣ̂1V2 − Σ̂2‖2F ,

and if S is a local minimum of G(S), we have T := UT2 SΣ̂1V2 is a local minimum of232

minT H(T ) = ‖T − Σ2‖2F
s.t. rank(T ) ≤ k , (5)

and the objective function values of (4) and (5) are the same at corresponding points. Let Σ2 have233

r distinct positive diagonal terms λ1 > · · · > λr ≥ 0 with multiplicities m1, · · · ,mr. Let T ∗ be a234

local minimum of (5), and235

T ∗ = U∗Σ∗V ∗T = [U∗SU
∗
N ]

[
Σ∗S 0
0 0

] [
V ∗TS
V ∗TN

]
be the SVD of T , where Σ∗S are positive singular values. Let PL := U∗S

(
U∗TS U∗S

)−1
U∗TS and236

PR := V ∗S (V ∗TS V ∗S )−1V ∗TS be the projection matrix to the space spanned by U∗S and V ∗S , respectively.237

Note that {T |PLT = T} ⊆ {T |rank(T ) ≤ k}, thus, T ∗ is also a local minimum of238

min‖T − Σ2‖2F (6)
s.t.PLT = T,

which is a convex problem, and it can be shown by the first order optimality condition that the only239

local minimum of (6) is T ∗ = PLΣ2. Similarly, we have T ∗ = Σ2PR. Then, D := Σ2ΣT2 is a240

diagonal matrix, with r distinct non-zero diagonal terms λ2
1 > · · · > λ2

r > 0 with multiplicities241

m1, · · · ,mr. Therefore,242

PLDPL = PLΣ2ΣT2 P
T
L = T ∗T ∗T = Σ2PRP

T
RΣT2

= Σ2PRΣT2 = Σ2T
∗T = Σ2ΣT2 P

T
L = DPL.

Note that the left hand is a symmetric matrix, thus, DPL is also a symmetric matrix. Meanwhile, PL243

is a symmetric matrix, whereby PL is a r-block diagonal matrix with each block corresponding to244

the same diagonal terms of D. Therefore, T ∗ = PLΣ2 is also a r-block diagonal matrix.245

Let246

T ∗ =


T ∗1

. . .
T ∗r

0

 ,
where T ∗i is a mi ×mi matrix, then T ∗T ∗T = Σ2T

∗T implies T ∗i T
∗T
i = λiT

∗T
i . Thus, T ∗i is a247

symmetric matrix and T∗
i

λi
is a projection matrix. Let rank(T ∗i ) = dpi , then,

∑r
i=1 dpi ≤ p and248

tr(T ∗i ) = λidpi , whereby,249

H(T ∗) =

r∑
i=1

‖T ∗i − λiImi
‖2F

=
r∑
i=1

tr(T 2
i )− 2λitr(Ti) +miλ

2
i

=

r∑
i=1

(mi − dpi)λ2
i .
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Let j be the largest number that
∑j
i=1mi < dp. Then, it is easy to find that the global minima of (6)250

satisfy dpi = mi for i ≤ j, dpj+1
= dp −

∑j
i=1mi and dpi = 0 for i > j + 1 which gives all of the251

global minima.252

Now, let us show that all local minima must be global minima. As local minima T ∗ is a block253

diagonal matrix, thus, we can assume without loss of generality that both Σ2 and T ∗ are square254

matrices, because the all 0 rows and columns in Σ2 and T do not change anything. Thus, it follows255

T ∗i is symmetric that T ∗ is a symmetric matrix. Remember that T
∗
i

λi
is a projection matrix, thus the256

eigenvalues of T ∗i are either 0 or λi, whereby257

T ∗ =

r∑
i=1

dpi∑
j=1

λiuiju
T
ij ,

where uij is the jth normalized orthogonal eigen-vector of T ∗ corresponding to eigenvalue λi.258

It is easy to see that, at a local minimum, we have
∑r
i=1 dpi = dp, otherwise, there is a descent259

direction by adding a rank 1 matrix to T ∗ corresponding to one positive eigenvalue. If there exists260

i1, i2, such that i1 < i2, dpi1 < mi1 , and dpi2 ≥ 1, then, there exists ūi1 , such that ūi1 ⊥ ui1j for261

j = 1, · · · dpi1 . Let262

T (θ) :=T ∗ − λi2ui21u
T
i21 +

(
λi1 sin2 θ + λi2 cos2 θ

)
(ui21 cos θ + ūi1 sin θ) (ui21 cos θ + ūi1 sin θ)T .

Then, rank(T (θ)) = rank(T ∗) = dp, T (0) = T ∗ and

H(T (θ)) = H(T ∗) + λ2
1 + λ2

2 −
(
λ1 sin2 θ + λ2 cos2 θ

)2
.

It is easy to check that H(T (θ)) is monotonically decreasing with θ, which gives a descent direction263

at T ∗, contradicting with that T ∗ is a local minimum. Therefore, there is no such i1 and i2, which264

shows that T ∗ is a global minimum.265

3.3 Proof of Theorem 2.3266

The statement follows from Theorem 2.1 and 2.2.267

4 Conclusion268

We have proven that, even though depth creates a non-convex loss surface, it does not create new bad269

local minima. Based on this new insight, we have successfully proposed a new simple proof for the270

fact that all of the local minima of feedforward deep linear neural networks are global minima as a271

corollary.272

The benefits of this new results are not limited to the simplification of the previous proof. For273

example, our results apply to problems beyond square loss. Let us consider the shallow prob-274

lem (S) minimizeL(R) s.t. rank(R) ≤ dp, and and the deep parameterization counterpart (D)275

minimizeL(WHWH−1 · · ·W1). Our analysis shows that for any function L, as long as L satisfies276

Theorem 3.2, any local minimum of (D) corresponds to a local minimum of (S). This is not limited to277

when L is least square loss, and this is why we say depth creates no bad local minima.278

In addition, our analysis can directly apply to matrix completion unlike previous results. Ge et al.279

(2016) show that local minima of the symmetric matrix completion problem are global with high280

probability. This should be able to extend to asymmetric case. Denote f(W ) :=
∑
i,j∈Ω(Y −281

W2W1)i,j , then local minimum of f(W ) is global with high probability, where Ω is the observed282

entries. Then, our analysis here can directly show that the result can be extended for deep linear283

parameterization: for h(W ) :=
∑
i,j∈Ω(Y −WHWH−1 · · ·W1)i,j , any local minimum of h(W ) is284

global with high probability.285
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