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Literature on Coordinate Descent

Lots of excellent papers, here are some:

Beck and Tetruashvili, On the convergence of block coordinate descent type
methods

Fercoq and Richtarik, Accelerated, parallel, and proximal coordinate descent

Gurbuzbalaban, Ozdaglar, Parrilo,Vanli, When cyclic coordinate descent
outperforms randomized coordinate descent

Lee and Sidford, Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems

Lin, Mairal, and Harchaoui, A universal catalyst for first-order optimization

Locatello, Raj, Reddy, Rätsch, Schölkopf, Stich, Jaggi, On matching pursuit and
coordinate descent

Lu and Xiao, On the complexity analysis of randomized block-coordinate
descent methods

Nesterov, Efficiency of coordinate descent methods on huge-scale optimization
problems

Nutini, Schmidt, Laradji, Friedlander, and Koepke, Coordinate descent
converges faster with the Gauss-Southwell rule than random selection

Richtarik and Takac, Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function

Wilson, Recht, and Jordan, A Lyapunov analysis of momentum methods in
optimization
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Outline

Accelerated Coordinate Descent Framework

Accelerated Semi-Greedy Coordinate Descent (ASCD)

ASCD under Strong Convexity

Accelerated Greedy Coordinate Descent

Numerical Experiments
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Problem of Interest, and Coordinate-wise L-smoothness

P : f ∗ := minimumx f (x)

s.t. x ∈ Rn

where f (·) is a differentiable convex function

Coordinate-wise L-smoothness

f (·) is coordinate-wise L-smooth for the vector of parameters
L := (L1, L2, . . . , Ln) if for all x ∈ Rn and h ∈ R it holds that:

|∇i f (x + hei )−∇i f (x)| ≤ Li |h| , i = 1, . . . , n ,

where ∇i f (·) denotes the i th coordinate of ∇f (·) and ei is i th unit
coordinate vector, for i = 1, . . . , n.
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Coordinate-wise L-smoothness and L notation

Coordinate-wise L-smoothness

f (·) is coordinate-wise L-smooth for the vector of parameters
L := (L1, L2, . . . , Ln) if for all x ∈ Rn and h ∈ R it holds that:

|∇i f (x + hei )−∇i f (x)| ≤ Li |h| , i = 1, . . . , n ,

where ∇i f (·) denotes the i th coordinate of ∇f (·) and ei is i th unit
coordinate vector, for i = 1, . . . , n.

Define the norm ‖x‖L :=
√∑n

i=1 Lix
2
i

and dual norm ‖v‖L−1 :=
√∑n

i=1 L
−1
i v2

i
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Accelerated Coordinate Descent Framework

Accelerated Coordinate Descent Framework (without Strong Convexity)

Given f (·) with coordinate-wise smoothness parameter L, initial point x0 and
z0 := x0. Define step-size parameters θi ∈ (0, 1] recursively by θ0 := 1 and θi+1

satisfies 1
θ2i+1
− 1

θi+1
= 1

θ2i
.

For k = 1, 2, . . ., do:

Define y k := (1− θk)xk + θkz
k

Choose coordinate j1k (by some rule)

Compute xk+1 := y k − 1
L
j1
k

∇j1
k
f (y k)ej1

k

Choose coordinate j2k (by some rule)

Compute zk+1 := zk − 1
nL

j2
k
θk
∇j2

k
f (y k)ej2

k
.
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Accelerated Randomized Coordinate Descent (ARCD)

Accelerated Randomized Coordinate Descent (ARCD) is the specification:

Accelerated Randomized Coordinate Descent (ARCD) (without Strong
Convexity)

Given f (·) with coordinate-wise smoothness parameter L, initial point x0 and
z0 := x0. Define step-size parameters θi ∈ (0, 1] recursively by θ0 := 1 and θi+1

satisfies 1
θ2i+1
− 1

θi+1
= 1

θ2i
.

For k = 1, 2, . . ., do:

Define y k := (1− θk)xk + θkz
k

Choose coordinate j1k by j1k :∼ U [1, · · · , n]

Compute xk+1 := y k − 1
L
j1
k

∇j1
k
f (y k)ej1

k

Choose coordinate j2k by j2k = j1k

Compute zk+1 := zk − 1
nL

j2
k
θk
∇j2

k
f (y k)ej2

k
.
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On Accelerated Randomized Coordinate Descent (ARCD)

ARCD is well-studied

ARCD updates 1 coordinate per iteration, hence xk is k-sparse

avoids computation of full gradient, which can save computation (or
not) depending on the application

randomization of x-update slows objective function improvement in
practice

Accelerated convergence guarantee (in expectation), for example
[FR2015] :

E
[
f (xk)− f (x∗)

]
≤ 2n2

(k+1)2 ‖x
∗ − x0‖2L ,

where the expectation is on the random variables used to define the
first k iterations
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Accelerated Greedy Coordinate Descent (AGCD)

Accelerated Greedy Coordinate Descent (AGCD) is the specification:

Accelerated Greedy Coordinate Descent (AGCD) (without Strong Convexity)

Given f (·) with coordinate-wise smoothness parameter L, initial point x0 and
z0 := x0. Define step-size parameters θi ∈ (0, 1] recursively by θ0 := 1 and θi+1

satisfies 1
θ2i+1
− 1

θi+1
= 1

θ2i
.

For k = 1, 2, . . ., do:

Define y k := (1− θk)xk + θkz
k

Choose coordinate j1k by j1k := arg maxi
1√
Li
|∇i f (y k)|

Compute xk+1 := y k − 1
L
j1
k

∇j1
k
f (y k)ej1

k

Choose coordinate j2k by j2k = j1k

Compute zk+1 := zk − 1
nL

j2
k
θk
∇j2

k
f (y k)ej2

k
.
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On Accelerated Greedy Coordinate Descent (AGCD)

AGCD has not been studied in the literature (that we are aware of)

AGCD updates 1 coordinate per iteration, hence xk is k-sparse

AGCD computes the full gradient at each iteration, which can be
expensive (or not) depending on the application

the greedy nature of the x-update speeds convergence in practice

no convergence results known for AGCD, in fact we suspect that
there are examples where O(1/k2) convergence fails

we observe O(1/k2) for AGCD in practice

we will argue (later on) why O(1/k2) fails in theory

we will also argue why O(1/k2) is observed in practice
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Accelerated Semi-greedy Coordinate Descent (ASCD)

Accelerated Semi-greedy Coordinate Descent

(ASCD)
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Accelerated Semi-greedy Coordinate Descent (ASCD)

Accelerated Semi-greedy Coordinate Descent (ASCD) is the specification:

Accelerated Semi-greedy Coordinate Descent (ASCD) (without Strong
Convexity)

Given f (·) with coordinate-wise smoothness parameter L, initial point x0 and
z0 := x0. Define step-size parameters θi ∈ (0, 1] recursively by θ0 := 1 and θi+1

satisfies 1
θ2i+1
− 1

θi+1
= 1

θ2i
.

For k = 1, 2, . . ., do:

Define y k := (1− θk)xk + θkz
k

Choose coordinate j1k by j1k := arg maxi
1√
Li
|∇i f (y k)|

Compute xk+1 := y k − 1
L
j1
k

∇j1
k
f (y k)ej1

k

Choose coordinate j2k by j2k :∼ U [1, · · · , n]

Compute zk+1 := zk − 1
nL

j2
k
θk
∇j2

k
f (y k)ej2

k
.
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On Accelerated Semi-greedy Coordinate Descent (ASCD)

ASCD and its complexity analysis is the new theoretical contribution
of this paper

ASCD updates 2 coordinates per iteration, hence xk is 2k-sparse

computes the full gradient at each iteration, which can be expensive
(or not) depending on the application

the greedy nature of the x-update speeds convergence in practice

Accelerated convergence guarantee on next slide . . .
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Computational Guarantee for Accelerated Semi-greedy
Coordinate Descent (ASCD)

At each iteration k of ASCD the random variable j2k is introduced, and
therefore xk depends on the realization of the random variable

ξk := {j20 , . . . , j2k−1}

Theorem: Convergence Bound for Accelerated Semi-greedy Coordinate
Descent (ASCD)

Consider the Accelerated Semi-Greedy Coordinate Descent algorithm. If
f (·) is coordinate-wise L-smooth, it holds for all k ≥ 1 that:

Eξk

[
f (xk)− f (x∗)

]
≤ n2θ2

k−1

2 ‖x∗ − x0‖2L ≤ 2n2

(k+1)2 ‖x
∗ − x0‖2L .
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Accelerated Semi-greedy Coordinate Descent (ASCD)
under Strong Convexity

Accelerated Semi-greedy Coordinate Descent

(ASCD)

under Strong Convexity
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Accelerated Semi-greedy Coordinate Descent (ASCD)
under Strong Convexity

We begin with the definition of strong convexity with respect to ‖ · ‖L
due to [LX2015]:

µ-strong convexity with respect to ‖ · ‖L
f (·) is µ-strongly convex with respect to ‖ · ‖L if for all x , y ∈ Rn it holds
that:

f (y) ≥ f (x) + 〈∇f (x), y − x〉+ µ
2 ‖y − x‖2L .

Note that µ can be viewed as an extension of the condition number of
f (·) in the traditional sense since µ is defined relative to the coordinate
smoothness coefficients through ‖ · ‖L
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Accelerated Coordinate Descent Framework under Strong
Convexity

Accelerated Coordinate Descent Framework (µ-strongly convex case)

Given f (·) with coordinate-wise smoothness parameter L and strong convexity
parameter µ > 0, initial point x0 and z0 := x0. Define the parameters
a =

√
µ

n+
√
µ

and b = µa
n2

.

For k = 1, 2, . . ., do:

Define y k := (1− θk)xk + θkz
k

Choose coordinate j1k (by some rule)

Compute xk+1 := y k − 1
L
j1
k

∇j1
k
f (y k)ej1

k

Compute uk := a2

a2+b
zk + b

a2+b
y k

Choose coordinate j2k (by some rule)

Compute zk+1 = uk − a
a2+b

1
nL

j2
k

∇fj2
k
(y k)ej2

k
.
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Accelerated Semi-Greedy Coordinate Descent under Strong
Convexity

Accelerated Semi-greedy Coordinate Descent (µ-strongly convex case)

Given f (·) with coordinate-wise smoothness parameter L and strong convexity
parameter µ > 0, initial point x0 and z0 := x0. Define the parameters
a =

√
µ

n+
√
µ

and b = µa
n2

.

For k = 1, 2, . . ., do:

Define y k := (1− θk)xk + θkz
k

Choose coordinate j1k by j1k := arg maxi
1√
Li
|∇i f (y k)|

Compute xk+1 := y k − 1
L
j1
k

∇j1
k
f (y k)ej1

k

Compute uk := a2

a2+b
zk + b

a2+b
y k

Choose coordinate j2k by j2k :∼ U [1, · · · , n]

Compute zk+1 = uk − a
a2+b

1
nL

j2
k

∇fj2
k
(y k)ej2

k
.
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Computational Guarantee for Accelerated Semi-greedy
Coordinate Descent (ASCD) under Strong Convexity

Theorem: Convergence Bound for Accelerated Semi-greedy Coordinate
Descent (ASCD) under Strong Convexity

Consider the Accelerated Semi-Greedy Coordinate Descent algorithm in
the strongly convex case. If f (·) is coordinate-wise L-smooth and
µ-strongly convex, it holds for all k ≥ 1 that:

Eξk

[
f (xk )− f ∗ + n2

2
(a2 + b)‖zk − x∗‖2L

]
≤

(
1−

√
µ

n+
√

µ

)k
(
f (x0)− f ∗ + n2

2
(a2 + b)‖x0 − x∗‖2L

)
.

In particular, it holds that:

Eξk

[
f (xk)− f ∗

]
≤
(

1−
√
µ

n+
√
µ

)k (
f (x0)− f ∗ + n2

2 (a2 + b)‖x0 − x∗‖2L
)
.

Observe that this is an accelerated linear convergence rate ≈ (1−
√
u/n)
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Accelerated Greedy Coordinate Descent (AGCD)

Accelerated Greedy Coordinate Descent

(AGCD)
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Accelerated Greedy Coordinate Descent (AGCD) (without
Strong Convexity)

Accelerated Greedy Coordinate Descent (AGCD)

Given f (·) with coordinate-wise smoothness parameter L, initial point x0 and
z0 := x0. Define step-size parameters θi ∈ (0, 1] recursively by θ0 := 1 and θi+1

satisfies 1
θ2i+1
− 1

θi+1
= 1

θ2i
.

For k = 1, 2, . . ., do:

Define y k := (1− θk)xk + θkz
k

Choose coordinate j1k by j1k := arg maxi
1√
Li
|∇i f (y k)|

Compute xk+1 := y k − 1
L
j1
k

∇j1
k
f (y k)ej1

k

Choose coordinate j2k by j2k = j1k

Compute zk+1 := zk − 1
nL

j2
k
θk
∇j2

k
f (y k)ej2

k
.
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Why AGCD fails (in theory)

In the discrete-time setting, one can construct a Lyapunov energy
function of the form:

Ek = Ak(f (xk)− f ∗) + 1
2‖x
∗ − zk‖2L

where Ak is a parameter sequence with Ak ∼ O(k2).

Virtually all proof techniques for acceleration methods can be equivalently
written as showing that Ek is non-increasing in k , thereby yielding:

f (xk)− f ∗ ≤ Ek

Ak
≤ E0

Ak
= O

(
1/k2

)
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Why AGCD fails (in theory), continued

Ek = Ak(f (xk)− f ∗) + 1
2‖x
∗ − zk‖2L

In AGCD the greedy coordinate j1k is chosen to yield the greatest
guaranteed decrease in f (·).

But one needs to prove a decrease in Ek , which is not the same as a
decrease in f (·).

The coordinate j1k is not necessarily the greedy coordinate for Ek due to
the presence of the second term ‖x∗ − zk‖2L.

This explains why the greedy coordinate can fail to decrease Ek , at least
in theory.

Because x∗ is not known when running AGCD, there does not seem to be
any way to find the greedy descent coordinate for the energy function Ek .
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Why AGCD fails (in theory), continued

Ek = Ak(f (xk)− f ∗) + 1
2‖x
∗ − zk‖2L

In ASCD:

we use the greedy coordinate to perform the x-update (which
corresponds to the best coordinate decrease for f (·))

we choose a random coordinate to perform the z-update (which
corresponds to the second term in the energy function)

This tackles the problem of dealing with the second term of the energy
function.
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A concurrent paper with similar notions: [LRRRSSJ2018]

Locatello, Raj, Reddy, Rätsch, Schölkopf, Stich, Jaggi, On matching
pursuit and coordinate descent, ICML 2018

Develops computational theory for matching pursuit algorithms, which
can be viewed as a generalized version of greedy coordinate descent
where the directions do not need to be orthogonal

The paper also develops an accelerated version of the matching pursuit
algorithms, which turns out to be equivalent to ASCD when the chosen
directions are orthogonal

Both works use a decoupling of the coordinate update for the {xk}
sequence (with a greedy rule) and the {zk} sequence (with a randomized
rule)

[LRRRSSJ2018] is consistent with the argument here as to why one
cannot accelerate greedy coordinate descent in general
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How to make AGCD work (in theory)

Consider the following technical condition:

Technical Condition

There exists a positive constant γ and an iteration number K such that
for all k ≥ K it holds that:

1

n

k∑
i=0

1

θi
〈∇f (y i ), z i − x∗〉 ≤

k∑
i=0

γ

θi
∇ji f (y i )(z iji − x∗ji ) ,

where ji = arg maxi
1√
Li
|∇i f (yk)| is the greedy coordinate at iteration i .

We will give some intuition on this in a couple of slides. But first . . .
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Computational Guarantee for Accelerated Greedy
Coordinate Descent (AGCD) under the Technical Condition

Theorem: Convergence Bound for Accelerated Greedy Coordinate
Descent (AGCD)

Consider the Accelerated Greedy Coordinate Descent algorithm. If f (·) is
coordinate-wise L-smooth and satisfies the Technical Condition with
constant γ ≤ 1, then it holds for all k ≥ K that:

f (xk)− f (x∗) ≤ 2n2γ
(k+1)2 ‖x

∗ − x0‖2L .

(The Technical Condition arises from a reverse engineering of the
structure of the acceleration proof.)

Note that if γ < 1 (which we always observe in practice), then AGCD will
have a better convergence guarantee than ASCD or ARCD.
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Why the Technical Condition ought to hold in general

Technical Condition

There exists a positive constant γ and an iteration number K such that for all
k ≥ K it holds that:

1

n

k∑
i=0

1

θi
〈∇f (y i ), z i − x∗〉 ≤

k∑
i=0

γ

θi
∇ji f (y i )(z iji − x∗ji ) ,

where ji = arg maxi
1√
Li
|∇i f (y k)| is the greedy coordinate at iteration i .

The three sequence {xk}, {y k} and {zk} ought to all converge to x∗ .

Thus we can instead consider the inner product 〈∇f (y i ), y i − x∗〉

For any j we have |y i
j − x∗j | ≥ 1

Lj
|∇j f (y i )|, and therefore

|∇j f (y i ) · (y i
j − x∗j )| ≥ 1

Lj
|∇j f (y i )|2.

The greedy coordinate is chosen by ji := arg maxj
1
Lj
|∇j f (y i )|2

It is reasonably likely that in most cases the greedy coordinate will yield a
better product than the average of the components of the inner product.
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Numerical Experiments

Numerical Experiments
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Numerical Experiments

Linear Regression Problems

least squares minimization: minβ
1
2n‖y − Xβ‖22

synthetic instances in order to control condition number
κ(XTX )

n = 200, p = 100

Logistic Regression Problems

logistic loss minimization: minβ
1
n

∑n
i=1 ln(1 + exp(−yiβT xi ))

real problem instances taken from LIBSVM

locally strongly convex with parameter µ, we assigned
parameter µ̄ in the experiments
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Linear Regression Experiments

Linear Regression Experiments
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Prototypical Comparison of ARCD, ASCD, and AGCD on
Linear Regression Problems

0 1 2 3 4 5

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Figure: Plot showing the optimality gap versus run-time (in seconds) for
a synthetic linear regression instance solved by ARCD, ASCD, AGCD.
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Comparing the Methods on Linear Regression Problems
with Different Conditions Numbers κ(XTX )

κ = 102 κ = 103 κ = 104 κ =∞

Algorithm
Framework 1
(non-strongly

convex)
0 1 2 3 4 5
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103
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10−3

10−1

101

103
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10−10

10−8

10−6

10−4

10−2

100

102 ASCD
ARCD
AGCD

Algorithm
Framework 2

(strongly
convex)
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100
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ARCD
AGCD

Plots showing the optimality gap versus run-time (in seconds) for
synthetic linear regression problems solved by ARCD, ASCD, AGCD.
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Logisitic Regression Experiments

Logistic Regression Experiments
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Prototypical Comparison of ARCD, ASCD, and AGCD on
Logistic Regression Problems

0 100 200 300 400 500

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

Figure: Plot showing the optimality gap versus run-time (in seconds) for
the logistic regression instance a1a solved by ARCD, ASCD, AGCD.
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Comparing the Methods on Logistic Regression Problems
with Different Assigned Strong Convexity Parameters µ̄

Dataset µ̄ = 10−3 µ̄ = 10−5 µ̄ = 10−7 µ̄ = 0

w1a
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Plots showing the optimality gap versus run-time (in seconds) for the
logistic regression instances w1a and a1a in LIBSVM, solved by ARCD,
ASCD, AGCD.
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Empirical Values of γ arising from the Technical Condition

Dataset γ
w1a 0.25
a1a 0.17

heart 0.413
madelon 0.24

rcv1 0.016

Largest observed values of γ for five different datasets in LIBSVM for
k ≥ K̄ := 5000.
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Comparing the Algorithms using Running Time and the
Number of Iterations

0 50 100 150 200 250 300 350
running time
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Plots showing the optimality gap versus run-time (in seconds) on the left
and versus the number of iterations on the right, for the logistic
regression instance madelon, solved by ARCD, ASCD, AGCD.
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Conclusions/Remarks

AGCD:

the natural accelerated version of Greedy Coordinate Descent

unlikely that AGCD has an acceleration guarantee (O(1/k2))

exhibits acceleration in practice

extremely effective in practice

Technical Condition “explains” acceleration in practice

ASCD:

new theoretical contribution of this paper

combines salient features of AGCD and ARCD

acceleration guarantee (O(1/k2))

accelerated linear convergence with rate ≈ (1−√µ/n) in strongly convex
case

very effective in practice
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