New Computational Guarantees for Solving Convex
Optimization Problems with First Order Methods,
via a Function Growth Condition Measure

Robert M. Freund and Haihao Lu

MIT

ICCOPT Tokyo, August 2016

Lu, Haihao (Sean)

Outline

Review of Basic First-Order Methods (FOMs)

Motivation: Renegar's Recent Work

Function Growth Constant

New Computational Guarantees for Non-smooth Optimization
New Computational Guarantees for Smooth Optimization

Remarks, Extensions, Next Steps

Basic FOMs R

ation Remarks
@®0000 (o]

Review of Projected Subgradient Descent

P: f*:= minimum, f(x)

st. x€eQ

Assume easy to compute the (Euclidean) projection Mg(x) of x onto Q

Projected Subgradient Descent

Given X% € Q, k + 0, xg +— x0 fbo — f(xo)
At iteration k:

@ Compute a subgradient of f(-) at x*: gk € 9f (x)
@ Perform update : x 1 « Mo(xx — axgk)
i min{fk, f(x**1)}

k+1 .
X < ar min f(x)} .
b gxe{x[;, x"+1}{ ()}

Basic FOMs Renegar's R
©0®000

Computational Guarantee for Subgradient Descent

P: f*:= minimum, f(x)

st. xeQ@

Opt:={xeQ:f(x)="F"}

M-Lipschitz continuity : |f(y) — f(x)] < M|ly — x|| forall x,y € Q

Theorem: Convergence Bound for Subgradient Descent [Polyak,

Nesterov]

Given ¢ > 0, let us use the step-size sequence o; = £/||g'||? for all i.
Define:

_ M?Dist(x%, Opt)?
= 2 _
Then for all k > N it holds that f¥ < f* +¢.

N : 1.

Basic FOMs
©00®00

Review of Accelerated Gradient Method

P: f*:= minimumy f(x)

st. x€Q

Lipschitz gradient: ||Vf(y) — Vf(x)|| < L|ly — x|| for all x,y € Q

Accelerated Gradient Method

Given x° € Q and 2° ,and i+ 0. Deflne step 5|ze parameters 6; € (0, 1]

recursively by 6 :=1 and 9,+1 satisfies =L =1
9 91+1 0

i+1
At iteration k:
@ Update: y' < (1—0)x' +6,2
e arg mineeo {F(Y*) + V() T (x = 2) + 30k L|x — 2¥|*}

XK (1= 0k)x* + 02T

Basic FOMs
000e0

Computational Guarantee for Accelerated Gradient Method

P: f*:= minimum, f(x)

st. xeQ

Opt:={xe Q:f(x)=rF*"}

Theorem: Convergence Bound for Accelerated Gradient Method

[Nesterov, Tseng]
For all kK > 0 it holds that:

2LDist(x°, Opt)?
k < *)
f(x) < + —(k—|—)2

Basic FOMs
ooooe

Quantities in these Analyses

@ squared distance to the optimal solution set: Dist(x?, Opt)?

@ M-Lipschitz function : |f(y) — f(x)] < M|ly — x| for all x,y € Q

@ L-Lipschitz gradient : ||[Vf(y) — VF(x)|| < L|ly —x]| forall x,y € Q

@ absolute optimality accuracy ¢ : f(x¥) < f* +¢

Renegar's Recent Work
©000000000000

Renegar’s recent paper

“A Framework for Applying Subgradient Methods to Conic Optimization
Problems” by James Renegar

June, 2015 (earlier versions September 2014, March 2015)

arXiv:1503.02611

@ the paper considers SDP in conic format and its extensions

@ here we present the results only stated for LP for ease of
presentation

Renegar's Recent Work
0®00000000000

Linear Optimization

Given LP data A, b, ¢

We have the standard linear problem:

z*:= minimum, c¢’x
st. Ax=b
x>0

We are also given X for which x > 0 and Ax=b

Herein we (re-)define our linear problem as:

LP: Zz*:= minimum, c¢'x
st. Ax=b
c’x<c™s
x>0

Renegar's Recent Work
00®0000000000

Transformed Problem [= Renegar]

LP: z*:= minimum, c¢'x
st. Ax=b
cTx<cTx
x>0

Notation: X := diag(%y, ..., %)
Given the scalar 6 > 0 :

TP: minimum, max(X 'd);
J

st. Ad=0
cTd=96

10

Renegar's Recent Work
000®000000000

Transformed Problem, continued

Given the scalar § > 0 :

LP: minimum, c¢’x TP: minimumy max(X 'd);
j
s.t. Ax=b s.t. Ad =0

c’x<c'x c'd=¢
x>0

X X — % d+ M

max(X d)J c'Xx—c'x
J

0
max(X ~'d);
j

) (1 — minj()_(flx)j)
cTx—cTx

c"x+c'x— max(X " 'd);
J

11

Renegar's Recent Work
0000®00000000

The Non-smooth Optimization Problem, continued

TP: minimum, f(d) := max(X'd);
J

st. Ad=0
c’d=46

TP is in an excellent format for solution via a first-order method (FOM):

P: minimum, f(x)

st. x€EQ

Here @ = {d: Ad =0, c"d =6}

Note that f(-) in TP is non-smooth convex with M = max{1/x;} 12
J

Renegar's Recent Work
00000®0000000

Aspiration: Compute an &’-Relative Solution of LP

Aspiration: Compute x feasible for LP that satisfies:

T

*
c'x—z P

cTx —z¢ —

13

Renegar's Recent Work
0000008000000

Computing an &’-Relative Solution of LP via Subgradient

Descent

Algorithm for computing an €’-relative solution of LP
g p g

@ Given LP for which z* is finite .

@ Given X satisfying Ax = b, X >0, and &’ € (0,1)
@ Given x° feasible for LP with corresponding value d° feasible for TP:

@ Run the Subgradient Descent method on the transformed problem TP
starting at d® with a particular step-size sequence {a,} generating
iterates {d'} for TP with corresponding sequence {x'} of re-transformed
iterates for LP

14

Renegar's Recent Work
0000000@00000

Computational Guarantee for the Algorithm

Theorem: A Computational Guarantee [Renegar]

Let the number of Subgradient Descent iterations k satisfy:

k > 8L2Diam2 L nf £X=2" LY’
> 8 iamp,.y = x 3.5 X In P e + - +1| .

Then using a particular step-size rule, the following holds:

chf,‘—z* ,
—_— e .
c'Xx —z*

Reneger’s step-size rule is a minor variant of a standard step-size rule for
Subgradient Descent

Level slices: Sliceq := {x: Ax = b, x >0, ¢’ x = a}
Diam(Sliceq) := max{||x — y|| : x,y € Slicea}

Diammax := max{Diam(Slice.) : a € [z¥, cho]} 15

Renegar's Recent Work
00000000 ®0000

Computational Guarantee for the Algorithm

Theorem: A Computational Guarantee [Renegar]

Let the number of Subgradient Descent iterations k satisfy:

k > 812Diam?2 1 | c’x—z* 1\’
> 8LDiamny: | (5) x35xIn{ o —rg) + (5) +1) -

Then using a particular step-size rule, the following holds:

chf,‘—z* ,
—_— e .
c'Xx —z*

Reneger’s step-size rule is a minor variant of a standard step-size rule for
Subgradient Descent

Level slices: Sliceq := {x: Ax = b, x >0, ¢’ x = a}
Diam(Sliceq) := max{||x — y|| : x,y € Slicea}

Diammax := max{Diam(Slice.) : a € [z¥, cho]} 16

Renegar's Recent Work
000000000e000

Computational Guarantee for the Algorithm

Theorem: A Computational Guarantee [Renegar]

Let the number of Subgradient Descent iterations k satisfy:

k > 812Diam?2 1 | cTx—z* 1\?2
= 8 1aMmax ? x 3.5 X In m + g +1 .

Then using a particular step-size rule, the following holds:

chf,‘—z* ,
—_— e .
c'Xx —z*

Reneger’s step-size rule is a minor variant of a standard step-size rule for
Subgradient Descent

Level slices: Slice, := {x: Ax =b, x>0, c'x = a}
Diam(Sliceq) := max{||x — y|| : x,y € Slices}

Diamumax := max{Diam(Slice,) : o € [z*, c"x"]} 17

Renegar's Recent Work
0000000000800

Computational Guarantee for the Algorithm

Theorem: A Computational Guarantee [Renegar]

Let the number of Subgradient Descent iterations k satisfy:

k > 8[2Diam? L n(£ *=2 LY’
> 8 iamp,.y = x 3.5 x In TR0 + - +1| .

Then using a particular step-size rule, the following holds:

chf,‘—z* ,
—_— e .
c'Xx —z*

Reneger’s step-size rule is a minor variant of a standard step-size rule for
Subgradient Descent

Level slices: Sliceq := {x: Ax = b, x >0, ¢’ x = a}
Diam(Sliceq) := max{||x — y|| : x,y € Slicea}

Diammax := max{Diam(Slice.) : a € [z¥, cho]} 18

Renegar's Recent Work
0000000000080

Computational Guarantee for the Algorithm

Theorem: A Computational Guarantee [Renegar]

Let the number of Subgradient Descent iterations k satisfy:

Dra 2 1 CT)_(—Z* 1 2
k > 8L°Diamj, ., ((s’) x 3.5 x In <m + = +1] .

Then using a particular step-size rule, the following holds:

chf,‘—z* ,
—_— e .
c'Xx —z*

Reneger’s step-size rule is a minor variant of a standard step-size rule for
Subgradient Descent

Level slices: Sliceq := {x: Ax = b, x >0, ¢’ x = a}
Diam(Sliceq) := max{||x — y|| : x,y € Slicea}

Diammax := max{Diam(Slice.) : a € [z¥, cho]} 19

Renegar's Recent Work
000000000000e

Research Questions

@ Is this result only specific to LP and/or TP?

@ Or is this result an instance of a more general theory?

@ If so, what is the general theory and how does it apply to different
optimization problems solved with FOMs?

20

New Theory/Growth Constant
©000000000000

New Theory for First-Order Methods via a Function

Growth Measure

Let us consider the general setting:

P: f*:= minimum, f(x)

st. xe@

f(-) is convex on @

Q is a closed convex set

21

New Theory/Growth Constant
0®00000000000

Strict Lower Bound 7

P: f*:= minimum, f(x)

st. xe@Q

Let fy, be a known and given strict lower bound on f*, namely: fy, < f*

fp arises naturally in optimizing loss functions in statistics and machine
learning:

fp = 0 for exponential loss: £(x) = In (L 37, =) + A||x||7

o fup = 0 for logistic loss: f(x) = L 37 In (1+ =) + A||x||7

T m

@ fgp = 0 for regularized least-squares loss:
f(8) = 3lly — X8> + AlIBll;
@ fgp = 0 in Renegar's transformed problem TP, when LP primal has

an optimum 2

New Theory/Growth Constant
00®0000000000

¢’-Relative Optimal Solution

P: f*:= minimum, f(x)

st. xeQ

Let &/ > 0 be given.

Definition: &’-relative solution of P

An ¢&’-relative solution of P is a point x € Q that satisfies:

f(X)_f* < /
* — fap

In the often-case when fy, = 0, then this becomes:

f(x) /
P < 1l+4¢ 23

New Theory/Growth Constant
000000000000

Function Growth Constant G

P: f*:= minimum, f(x)

st. xeQ

Suppose we have a strict lower bound 7y, on f*, namely gy, < f*
Opt:={xe Q:f(x)=F*"}

Dist(x, Opt) := min,{||y — x|| : y € Opt}

Definition: function growth constant G

Dist(x, Opt)}
G :=s _
xgg{ f(x) = fap

24

New Theory/Growth Constant
0000@00000000

Geometric Picture of G

f(x)

x* X

25

New Theory/Growth Constant
00000@0000000

Geometric Picture of G

f(x)

26

New Theory/Growth Constant
000000e000000

Geometric Picture of G

f(x)

x*

Dist(,0pt) € G o (f(x) -f,5) *
27

New Theory/Growth Constant
0000000®00000

Geometric Picture of G

f(x)

Opt X

28

New Theory/Growth Constant
0000000080000

Geometric Picture of G

fslb

f(x)

__

29

New Theory/Growth Constant
0000000008000

Geometric Picture of G

f(x)

Ot Distix,0pt) G o (f(x)-f,5)

30

New Theory/Growth Constant
0000000000800

Function Growth Constant G, continued

Dist(X,Opt)}
G := —
fgg{ f(x) = fan

Then G is the smallest value of G satisfying:

Dist(x, Opt) < G - (f(x) — fup) forall x € Q

G measures how quickly the distances from the optimal solutions grow
with increasing function values.

31

New Theory/Growth Constant
0000000000080

More Interpretation of G

Dist(x, Opt) < G - (f(x) — fup) for all x € Q J

This rearranges to:

f(x) > f(x):= fup + G 'Dist(x,Opt) forall x € Q J

The convex function f(-) := fy» + G~ !Dist(:, Opt) lies below f(-)

32

New Theory/Growth Constant

000000000000 e

Q: When is G finite? A: “Almost always.”

e-optimal level set: Opt, := {x € Q: f(x) < f* +¢}

Theorem: Sufficient Conditions for G < +oco

Suppose that for some € > 0 there exists a bounded set E. for which
Opt, C E. + S, where S is the recession cone of Opt_. Then for any
given strict lower bound f;, < f*, the growth constant G is finite.

Implication:

@ If Opt is bounded, then G is finite.

@ If Opt = E + T where E is bounded and T is a subspace, then G is
finite.

An instance where G = +o0: Q:={(x1,x):xx > 1}
XZ
flxa, %) =32
33

Non-Smooth Optimization
©0000000000000

Non-Smooth Optimization

New Computational Guarantees for Non-smooth Optimization

34

Constant Non-Smooth Optimization imization Remarks
0®000000000000

New Computational Guarantees for Subgradient Descent

Theorem: Computational Guarantee for Subgradient Descent

Let €/ > 0 be given, and let the step-sizes for Subgradient Descent Method

applied to solve P be chosen as:

- fa — fun e
BCEVANEEY
and suppose that

/ 0y _ f£x I\ 2
k> M6 |16 (LEE i (FOD =Y | gy (Lt
6/ f*_ SIb 5’

fxp) — f*
f* — fap

Then:

/

<eg .

Here e = 2.718...

35

Constant Non-Smooth Optimization imization Remarks
0O®00000000000

New Computational Guarantees for Subgradient Descent

Theorem: Computational Guarantee for Subgradient Descent

Let €/ > 0 be given, and let the step-sizes for Subgradient Descent Method

applied to solve P be chosen as:

- fa — fun e
BCEVANEEY
and suppose that

/ 0y _ f£x I\ 2
k> M6 |16 LEE o (FOOD =Y | gy (Lt
6/ f*_ SIb 5’

fxp) — f*
f* — fap

Then:

/

<eg .

Here e = 2.718...

36

Constant Non-Smooth Optimization imization Remarks
000®0000000000

New Computational Guarantees for Subgradient Descent

Theorem: Computational Guarantee for Subgradient Descent

Let €/ > 0 be given, and let the step-sizes for Subgradient Descent Method

applied to solve P be chosen as:

- fa — fun e
BCEVANEEY
and suppose that

/ 0y _ f£x I\ 2
k> M6 |16 LEE i (FOD =Y | gy (Lt
5/ f*_ SIb 5’

fxp) — f*
f* — fap

Then:

/

<eg .

Here e = 2.718...

37

Constant Non-Smooth Optimization imization Remarks
0000®000000000

New Computational Guarantees for Subgradient Descent

Theorem: Computational Guarantee for Subgradient Descent

Let €/ > 0 be given, and let the step-sizes for Subgradient Descent Method

applied to solve P be chosen as:

- fa — fun e
BCEVANEEY
and suppose that

/ 0\ _ r* I\ 2
k> M6 |16 LEE Y in (FOD =Y | gy (Lt
5/ f*_ Slb 5’

fxp) — f*
f* — fap

Then:

/

<eg .

Here e = 2.718...

38

Non-Smooth Optimization
00000®00000000

Comparison with the Standard Computational Guarantee

for Subgradient Descent

Dist(x?, Opt)

Define: €= ——— >~~~/
G(f* — fop)

New Guarantee _ 16e'n (1+ MGC) 11

Standard Guarantee for Sub.Descent — C2 C2

This ratio — 0 when Dist(x°, Opt) is sufficiently large

And this is true for any problem instance

39

Non-Smooth Optimization
000000®0000000

New Computational Guarantees for Subgradient Descent

when f* is known

Theorem: Computational Guarantee for Subgradient Descent when f* is known

Let the step-sizes for Subgradient Descent Method applied to solve P be
chosen as:)
A2
0= f(x),- 2f
&l

’

and suppose that

0 _fx 2
k> om26? |1 20m (FO =Y Logm (2 tes(L) 2(L)].
f*_fslb el el el
Then: .
f(Xb)_f* /
— < .
f* — fap =€

40

Non-Smooth Optimization
0000000e000000

New Computational Guarantees for Subgradient Descent

when f* is known

Theorem: Computational Guarantee for Subgradient Descent when f* is known

Let the step-sizes for Subgradient Descent Method applied to solve P be
chosen as:)
A2
0= f(x),- 2f
&l

’

and suppose that

0 _fx 2
k> om26? 120 (O =Y Logm (2 tes(L) 2(L)].
f*_fslb el el el
Then: .
f(Xb)_f* /
— < .
f* — fap =€

41

Non-Smooth Optimization
00000000e00000

New Computational Guarantees for Subgradient Descent

when f* is known

Theorem: Computational Guarantee for Subgradient Descent when f* is known

Let the step-sizes for Subgradient Descent Method applied to solve P be
chosen as:)
A2
0= f(x),- 2f
&l

’

and suppose that

0y _ o+ 2
k> om26? 1120 (O = oo (L) ves (L) ea(1) |,
f*_fs/b e’ & e/
Then: .
f(Xb)_f* /
<
f* — fap =€

42

Non-Smooth Optimization
0000000008000

Improving the Guarantee for Non-Smooth Optimization

using (Nesterov-style) Smooth Approximations

Suppose that there is a smoothing technique with the following two
properties:

@ there is a known constant D > 0 such that for any given ;1 > 0 we
can construct a smooth convex function f,(-) : Q — R which
satisfies:

f(x) < fu(x) < f(x)+ Duforall x € @, and

@ £,(-) has Lipschitz continuous gradient on Q with Lipschitz
constant L, < A/ for some known constant A

Nesterov [2005] showed how to optimize f(-) by instead working with the
smooth function f,(-) for a well-chosen value of 1

43

stant Non-Smooth Optimization Srr
0000000000800

Smooth Approximations Method

Smooth Approximations Method

Initialize with x° € Q and ¢/ > 0 .
SetX1,0<—x° i1

At outer iteration i:
" - (f(xi0) — fan)

@ Set smoothing parameter. ; < =5

@ |Initialize inner iteration. j + 0

© Run inner iterations. At inner iteration J:

if F) = S g8 then:
f(xi,0) — fep

Xij1 < AGM(f,(-), xi0, j+1),
Jj < Jj+1, and Goto step 3.

Else xj11,0 < Xi,j, i < i+ 1, and Goto step 1.

“xij + AGM(f,,(+), Xio0, j)" denotes assigning to x;; the jth iterate of AGM

applied with objective function f,;(-) using the initial point xj0 € Q 44

Non-Smooth Optimization
0000000000080

Computational Guarantee for Smooth Approximations
Method

Complexity Bound for Smooth Approximations Method

Let x° € @ be the initial point and let the relative accuracy ¢’ € (0,1] be
given, and let x* denote the iterate value of the Smooth Approximations
Method after a total of k inner iterations. If

i in (14 2250 1
k> GVAVD 32 # + 44 [?} 7
€

then N
f(X) —f* < ¢
f*—fgp

45

Non-Smooth Optimization
0000000000080

Computational Guarantee for Smooth Approximations
Method

Complexity Bound for Smooth Approximations Method

Let x° € @ be the initial point and let the relative accuracy ¢’ € (0,1] be
given, and let x* denote the iterate value of the Smooth Approximations
Method after a total of k inner iterations. If

= n (1+ %250 1
k> GVAVD 32 7 + 44 [;} 7
€

then N
f(X) —f* < ¢
f*—fgp

46

Non-Smooth Optimization
0000000000000e

Comparison with the Standard Computational Guarantee

for Smoothing Method

Dist(x?, Opt)

Define: C :=
G(f* — fop)

Guarantee of New Method < 8v2Ve'In (1+ MGC) n 11v2
Standard Guarantee for Smoothing — C c

This ratio — 0 when Dist(x?, Opt) is sufficiently large

And this is true for any problem instance

47

Smooth Optimization
©000000000

Smooth Optimization

New Computational Guarantees for Smooth Optimization

48

Constant N i ion Smooth Optimization F»rnm;
0®00000000

Accelerated Gradient Method W|th Simple Restarting

Accelerated Gradient Method with Simple Restarting

Initialize with xX°> € Q and ¢’ > 0 .
Setx1,o<—x° i1

At outer iteration i:

@ Initialize inner iteration. j < 0
@ Run inner iterations. At inner iteration j:
f
M > 0.8, then:
f(xi,0) — fstb .
Xi j+1 < AG'\/I(f-()7 Xi0, J + 1) ,
j < j+1, and Goto step 2.

Else Xjt+1,0 ¢ xij, i < i+ 1, and Goto step 1.

“xjj < AGM(f,,(+), Xio0, j)" denotes assigning to x;; the jth iterate of AGM
applied with objective function f,;(-) using the initial point xj0 € Q
49

ion Smooth Optimization F emarks
00®0000000

Computatlonal Guarantee for AGM with Slmple Restartlng

Complexity Bound for Accelerated Gradient Method with Simple
Restarting

Let x° € Q be the initial point and let x* denote the iterate value of the
Accelerated Gradient Method with Simple Restarting after a total of k
inner iterations. If

€ > VL (1 [—W;] + 20—)

then .
f(x)—f* < /.
f* —fap

50

ion Smooth Optimization F emarks
©00®000000

Computatlonal Guarantee for AGM with Slmple Restartlng

Complexity Bound for Accelerated Gradient Method with Simple
Restarting

Let x° € Q be the initial point and let x* denote the iterate value of the
Accelerated Gradient Method with Simple Restarting after a total of k
inner iterations. If

k > GVL <17 {%] + 22/(f(x°) — slb)> -

then .
f(x)—f* < /.
f* —fap

51

Smooth Optimization
0000®00000

Comparison with the Standard Accelerated Gradient

Method

Dist(x?, Opt)

Define: C :=
! G(f* — fap)

New Method Guarantee _ 8.5v/2 11ve!
< —= 11Ve' VLGN f* — £ -
Std. AGM Guarantee — C +HI1VEVL (s C2GVILVF — fap

This ratio — 0 when Dist(x°, Opt) is sufficiently large and &’ — 0
And this is true for any problem instance

52

Smooth Optimization
00000e0000

Improving the Guarantee using Parametric Increased

Smoothing

Suppose that f(-) has the representation:

f(x) = Té:"/):'({ATAX —d(\)} J

where P is a convex set
d(+) is a o-strongly convex function on P
min)\ep d()\) Z 0

Then £(-) is a smooth convex function with L < ||A||?/o [Nesterov2005]

53

Smooth Optimization
©00000e000

Parametric Increased Smoothing, continued

f(x) = max{AT Ax — d(A)} J

Define:
fu(x) = max{AT Ax — (1+ p)d(A)}
€
Then f(:) = ()
f.(-) has a Lipschitz gradient with constant at most L, := L/(1 + p)

If P is bounded, then D := maxycp{d(\)} is finite, and:

f(x) — uD < f,(x) < f(x) for all x

54

ion Smooth Optimization
0000000e00

AGM with Parametric Increased Smoothing

AGM with Parametric Increased Smoothing

Initialize with x° € Q and ¢/ > 0 .
SetX1,0<—x° i1

At outer iteration i:

g (F(xi,0) — fem) _

@ Set smoothing parameter. pu; <)

@ Initialize inner iteration. j < 0

© Run inner iterations. At inner iteration j:

f(xij) — fem
If =22 °2 > 0.8, then:
f(xi0) — fap — "

Xij+1 = AGM(fy, (), xio, j+1),
Jj <+ j+1, and Goto step 3.

Else Xj+1,0 < xij, i < i+ 1, and Goto step 1.

“xi,j — AGM(f,,(-), xi0, j)" denotes assigning to x; ; the jth iterate of AGM 55
applied with objective function f,,.(-) using the initial point xjo € Q

i *:m on - Smooth Optimization F»rnm

00000000e0

Computatlonal Guarantee for AGM W|th Parametnc
Increased Smoothing

Complexity Bound for Accelerated Gradient Method with Parametric
Increased Smoothing

Let x° € Q be the initial point and let the relative accuracy ¢’ € (0, 1] be
given, and let x* denote the iterate value of the Accelerated Gradient
Method with Parametric Increased Smoothing after a total of k inner

iterations. If
= F(x0)—F*
[F*— fup VDln (1—1— S)
k > GVL |24 |Y——=P] 13 :

then N
f(X) —f* < /
* — fap

56

i *:m on - Smooth Optimization F»rnm

000000000 e

Computatlonal Guarantee for AGM W|th Parametnc
Increased Smoothing

Complexity Bound for Accelerated Gradient Method with Parametric
Increased Smoothing

Let x° € Q be the initial point and let the relative accuracy ¢’ € (0, 1] be
given, and let x* denote the iterate value of the Accelerated Gradient
Method with Parametric Increased Smoothing after a total of k inner
iterations. If

VDin (1 (f*_;/2*>
N)

k > GVL |24 [—Vf_f"’

|3

then N
f(X) —f* < /
* — fap

57

Remarks
°

Remarks, Extensions, Next Steps

Computational Testing:

@ Non-smooth Optimization: LASSO, Support Vector Machines (dual
problem)

@ Smooth Optimization: logistic regression, binary classificaition

@ Conic Optimization (which engendered Renegar’s research)

e Homogeneous self-dual embedding

o SDP problems in particular (discussions with Franz Rendl)

58

	Basic FOMs
	Renegar's Recent Work
	New Theory/Growth Constant
	Non-Smooth Optimization
	Smooth Optimization
	Remarks

