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Review of Projected Subgradient Descent

P : f ∗ := minimumx f (x)

s.t. x ∈ Q

Assume easy to compute the (Euclidean) projection ΠQ(x) of x onto Q

Projected Subgradient Descent

Given x0 ∈ Q, k ← 0, x0b ← x0, f 0b ← f (x0)
At iteration k :

1 Compute a subgradient of f (·) at xk : gk ∈ ∂f (xk)

2 Perform update : xk+1 ← ΠQ(xk − αkg
k)

f k+1
b ← min{f kb , f (xk+1)}

xk+1
b ← arg min

x∈{xk
b , xk+1}

{f (x)} .
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Computational Guarantee for Subgradient Descent

P : f ∗ := minimumx f (x)

s.t. x ∈ Q

Opt := {x ∈ Q : f (x) = f ∗}

M-Lipschitz continuity : |f (y)− f (x)| ≤ M‖y − x‖ for all x , y ∈ Q

Theorem: Convergence Bound for Subgradient Descent [Polyak,
Nesterov]

Given ε > 0, let us use the step-size sequence αi = ε/‖g i‖2 for all i .
Define:

N :=
M2Dist(x0,Opt)2

ε2
− 1 .

Then for all k ≥ N it holds that f kb ≤ f ∗ + ε.
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Review of Accelerated Gradient Method

P : f ∗ := minimumx f (x)

s.t. x ∈ Q

Lipschitz gradient: ‖∇f (y)−∇f (x)‖ ≤ L‖y − x‖ for all x , y ∈ Q

Accelerated Gradient Method

Given x0 ∈ Q and z0 := x0, and i ← 0 . Define step-size parameters θi ∈ (0, 1]
recursively by θ0 := 1 and θi+1 satisfies 1

θ2i+1
− 1

θi+1
= 1

θ2i
.

At iteration k:

1 Update : y i ← (1− θi )x i + θiz
i

zk+1 ← arg minx∈Q{f (y k) +∇f (y k)T (x − zk) + 1
2
θkL‖x − zk‖2}

xk+1 ← (1− θk)xk + θkz
k+1
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Computational Guarantee for Accelerated Gradient Method

P : f ∗ := minimumx f (x)

s.t. x ∈ Q

Opt := {x ∈ Q : f (x) = f ∗}

Theorem: Convergence Bound for Accelerated Gradient Method
[Nesterov, Tseng]

For all k ≥ 0 it holds that:

f (xk) ≤ f ∗ +
2LDist(x0,Opt)2

(k + 1)2
.
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Quantities in these Analyses

squared distance to the optimal solution set: Dist(x0,Opt)2

M-Lipschitz function : |f (y)− f (x)| ≤ M‖y − x‖ for all x , y ∈ Q

L-Lipschitz gradient : ‖∇f (y)−∇f (x)‖ ≤ L‖y − x‖ for all x , y ∈ Q

absolute optimality accuracy ε : f (xk) ≤ f ∗ + ε
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Renegar’s recent paper

“A Framework for Applying Subgradient Methods to Conic Optimization
Problems” by James Renegar

June, 2015 (earlier versions September 2014, March 2015)

arXiv:1503.02611

the paper considers SDP in conic format and its extensions

here we present the results only stated for LP for ease of
presentation
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Linear Optimization

Given LP data A, b, c

We have the standard linear problem:

z∗ := minimumx cT x
s.t. Ax = b

x ≥ 0

We are also given x̄ for which x̄ > 0 and Ax̄ = b

Herein we (re-)define our linear problem as:

LP : z∗ := minimumx cT x
s.t. Ax = b

cT x < cT x̄
x ≥ 0
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Transformed Problem [≡ Renegar]

LP : z∗ := minimumx cT x

s.t. Ax = b
cT x < cT x̄
x ≥ 0

Notation: X̄ := diag(x̄1, . . . , x̄n)

Given the scalar δ > 0 :

TP : minimumd max
j

(X̄−1d)j

s.t. Ad = 0
cTd = δ
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Transformed Problem, continued

Given the scalar δ > 0 :

LP : minimumx cT x TP : minimumd max
j

(X̄−1d)j

s.t. Ax = b s.t. Ad = 0
cT x < cT x̄ cTd = δ
x ≥ 0

x ← x̄ − d

max
j

(X̄−1d)j
d ← δ(x̄ − x)

cT x̄ − cT x

cT x ← cT x̄ − δ

max
j

(X̄−1d)j
max

j
(X̄−1d)j ←

δ
(
1−minj(X̄

−1x)j
)

cT x̄ − cT x
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The Non-smooth Optimization Problem, continued

TP : minimumd f (d) := max
j

(X̄−1d)j

s.t. Ad = 0
cTd = δ

TP is in an excellent format for solution via a first-order method (FOM):

P : minimumx f (x)

s.t. x ∈ Q

Here Q = {d : Ad = 0, cTd = δ}

Note that f (·) in TP is non-smooth convex with M = max
j
{1/x̄j}
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Aspiration: Compute an ε′-Relative Solution of LP

Aspiration: Compute x feasible for LP that satisfies:

cT x − z∗

cT x̄ − z∗
≤ ε′
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Computing an ε′-Relative Solution of LP via Subgradient
Descent

Algorithm for computing an ε′-relative solution of LP

Given LP for which z∗ is finite .

Given x̄ satisfying Ax̄ = b, x̄ > 0, and ε′ ∈ (0, 1)

Given x0 feasible for LP with corresponding value d0 feasible for TP:

Run the Subgradient Descent method on the transformed problem TP
starting at d0 with a particular step-size sequence {αi}, generating
iterates {d i} for TP with corresponding sequence {x i} of re-transformed
iterates for LP
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Computational Guarantee for the Algorithm

Theorem: A Computational Guarantee [Renegar]

Let the number of Subgradient Descent iterations k satisfy:

k ≥ 8L2Diam2
max

((
1

ε′

)
× 3.5× ln

(
cT x̄ − z∗

cT x̄ − cT x0

)
+

(
1

ε′

)2

+ 1

)
.

Then using a particular step-size rule, the following holds:

cT xk
b − z∗

cT x̄ − z∗
≤ ε′ .

Reneger’s step-size rule is a minor variant of a standard step-size rule for
Subgradient Descent

Level slices: Sliceα := {x : Ax = b, x ≥ 0, cT x = α}

Diam(Sliceα) := max{‖x − y‖ : x , y ∈ Sliceα}

Diammax := max{Diam(Sliceα) : α ∈ [z∗, cT x0]}
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Research Questions

Is this result only specific to LP and/or TP?

Or is this result an instance of a more general theory?

If so, what is the general theory and how does it apply to different
optimization problems solved with FOMs?
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New Theory for First-Order Methods via a Function
Growth Measure

Let us consider the general setting:

P : f ∗ := minimumx f (x)

s.t. x ∈ Q

f (·) is convex on Q

Q is a closed convex set
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Strict Lower Bound fslb

P : f ∗ := minimumx f (x)

s.t. x ∈ Q

Let fslb be a known and given strict lower bound on f ∗, namely: fslb < f ∗

fslb arises naturally in optimizing loss functions in statistics and machine
learning:

fslb = 0 for exponential loss: f (x) = ln
(
1
m

∑m
i=1 e

−Aix
)

+ λ‖x‖rp
fslb = 0 for logistic loss: f (x) = 1

m

∑m
i=1 ln

(
1 + e−Aix

)
+ λ‖x‖rp

fslb = 0 for regularized least-squares loss:
f (β) = 1

2‖y − Xβ‖2 + λ‖β‖rp
fslb = 0 in Renegar’s transformed problem TP, when LP primal has
an optimum
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ε′-Relative Optimal Solution

P : f ∗ := minimumx f (x)

s.t. x ∈ Q

Let ε′ > 0 be given.

Definition: ε′-relative solution of P

An ε′-relative solution of P is a point x ∈ Q that satisfies:

f (x)− f ∗

f ∗ − fslb
≤ ε′ .

In the often-case when fslb = 0, then this becomes:

f (x)

f ∗
≤ 1 + ε′
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Function Growth Constant G

P : f ∗ := minimumx f (x)

s.t. x ∈ Q

Suppose we have a strict lower bound fslb on f ∗, namely fslb < f ∗

Opt := {x ∈ Q : f (x) = f ∗}

Dist(x ,Opt) := miny{‖y − x‖ : y ∈ Opt}

Definition: function growth constant G

G := sup
x∈Q

{
Dist(x ,Opt)

f (x)− fslb

}
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Geometric Picture of G

f(x)	
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Geometric Picture of G
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Geometric Picture of G
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Geometric Picture of G
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Geometric Picture of G
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Geometric Picture of G
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Function Growth Constant G , continued

G := sup
x∈Q

{
Dist(x ,Opt)

f (x)− fslb

}

Then G is the smallest value of Ḡ satisfying:

Dist(x ,Opt) ≤ Ḡ · (f (x)− fslb) for all x ∈ Q

G measures how quickly the distances from the optimal solutions grow
with increasing function values.
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More Interpretation of G

Dist(x ,Opt) ≤ G · (f (x)− fslb) for all x ∈ Q

This rearranges to:

f (x) ≥ f̄ (x) := fslb + G−1Dist(x ,Opt) for all x ∈ Q

The convex function f̄ (·) := fslb + G−1Dist(·,Opt) lies below f (·)
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Q: When is G finite? A: “Almost always.”

ε-optimal level set: Optε := {x ∈ Q : f (x) ≤ f ∗ + ε}

Theorem: Sufficient Conditions for G < +∞
Suppose that for some ε > 0 there exists a bounded set Eε for which
Optε ⊂ Eε + S , where S is the recession cone of Optε. Then for any
given strict lower bound fslb < f ∗, the growth constant G is finite.

Implication:

If Opt is bounded, then G is finite.

If Opt = E + T where E is bounded and T is a subspace, then G is
finite.

An instance where G = +∞: Q := {(x1, x2) : x1 ≥ 1}
f (x1, x2) :=

x2
2

x1
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Non-Smooth Optimization

New Computational Guarantees for Non-smooth Optimization
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New Computational Guarantees for Subgradient Descent

Theorem: Computational Guarantee for Subgradient Descent

Let ε′ > 0 be given, and let the step-sizes for Subgradient Descent Method
applied to solve P be chosen as:

αi :=

(
f ib − fslb
3
√
e‖g i‖2

)(
ε′

1 + ε′

)
,

and suppose that

k ≥ M2G 2

[
16

(
1 + ε′

ε′

)
ln

(
f (x0)− f ∗

f ∗ − fslb

)
+ 11

(
1 + ε′

ε′

)2
]
.

Then:
f (xk

b )− f ∗

f ∗ − fslb
≤ ε′ .

Here e = 2.718...
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Comparison with the Standard Computational Guarantee
for Subgradient Descent

Define: C̄ :=
Dist(x0,Opt)

G (f ∗ − fslb)

New Guarantee

Standard Guarantee for Sub.Descent
≤

16ε′ ln
(
1 + MGC̄

)
C̄ 2

+
11

C̄ 2

This ratio → 0 when Dist(x0,Opt) is sufficiently large

And this is true for any problem instance
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New Computational Guarantees for Subgradient Descent
when f ∗ is known

Theorem: Computational Guarantee for Subgradient Descent when f ∗ is known

Let the step-sizes for Subgradient Descent Method applied to solve P be
chosen as:

αi :=
f (x i )− f ∗

‖g i‖2 ,

and suppose that

k ≥ 2M2G 2

[
1 + 2.9 ln

(
f (x0)− f ∗

f ∗ − fslb

)
+ 2.9 ln

(
1

ε′

)
+ 6.8

(
1

ε′

)
+ 2

(
1

ε′

)2
]
.

Then:
f (xk

b )− f ∗

f ∗ − fslb
≤ ε′ .
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Improving the Guarantee for Non-Smooth Optimization
using (Nesterov-style) Smooth Approximations

Suppose that there is a smoothing technique with the following two
properties:

1 there is a known constant D̄ > 0 such that for any given µ > 0 we
can construct a smooth convex function fµ(·) : Q → R which
satisfies:

f (x) ≤ fµ(x) ≤ f (x) + D̄µ for all x ∈ Q , and

2 fµ(·) has Lipschitz continuous gradient on Q with Lipschitz
constant Lµ ≤ A/µ for some known constant A

Nesterov [2005] showed how to optimize f (·) by instead working with the
smooth function fµ(·) for a well-chosen value of µ



44

Basic FOMs Renegar’s Recent Work New Theory/Growth Constant Non-Smooth Optimization Smooth Optimization Remarks

Smooth Approximations Method

Smooth Approximations Method

Initialize with x0 ∈ Q and ε′ > 0 .
Set x1,0 ← x0 , i ← 1 .

At outer iteration i :

1 Set smoothing parameter. µi ←
ε′ · (f (xi,0)− fslb)

5D̄
.

2 Initialize inner iteration. j ← 0

3 Run inner iterations. At inner iteration j :

If
f (xi,j)− fslb
f (xi,0)− fslb

≥ 0.8 , then:

xi,j+1 ← AGM(fµi (·), xi,0, j + 1) ,

j ← j + 1, and Goto step 3.

Else xi+1,0 ← xi,j , i ← i + 1, and Goto step 1.

“xi,j ← AGM(fµi (·), xi,0, j)” denotes assigning to xi,j the jth iterate of AGM
applied with objective function fµi (·) using the initial point xi,0 ∈ Q
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Computational Guarantee for Smooth Approximations
Method

Complexity Bound for Smooth Approximations Method

Let x0 ∈ Q be the initial point and let the relative accuracy ε′ ∈ (0, 1] be
given, and let xk denote the iterate value of the Smooth Approximations
Method after a total of k inner iterations. If

k ≥ G
√
A
√

D̄

32

 ln
(

1 + f (x0)−f ∗
f ∗−fslb

)
√
ε′

+ 44

[
1

ε′

] ,

then
f (xN)− f ∗

f ∗ − fslb
≤ ε′ .
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Computational Guarantee for Smooth Approximations
Method

Complexity Bound for Smooth Approximations Method

Let x0 ∈ Q be the initial point and let the relative accuracy ε′ ∈ (0, 1] be
given, and let xk denote the iterate value of the Smooth Approximations
Method after a total of k inner iterations. If

k ≥ G
√
A
√

D̄

32

 ln
(

1 + f (x0)−f ∗
f ∗−fslb

)
√
ε′

+ 44

[
1

ε′

] ,

then
f (xN)− f ∗

f ∗ − fslb
≤ ε′ .
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Comparison with the Standard Computational Guarantee
for Smoothing Method

Define: C̄ :=
Dist(x0,Opt)

G (f ∗ − fslb)

Guarantee of New Method

Standard Guarantee for Smoothing
≤

8
√

2
√
ε′ ln

(
1 + MGC̄

)
C̄

+
11
√

2

C̄
.

This ratio → 0 when Dist(x0,Opt) is sufficiently large

And this is true for any problem instance
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Smooth Optimization

New Computational Guarantees for Smooth Optimization
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Accelerated Gradient Method with Simple Restarting

Accelerated Gradient Method with Simple Restarting

Initialize with x0 ∈ Q and ε′ > 0 .
Set x1,0 ← x0 , i ← 1 .

At outer iteration i :

1 Initialize inner iteration. j ← 0

2 Run inner iterations. At inner iteration j :

If
f (xi,j)− fslb
f (xi,0)− fslb

≥ 0.8 , then:

xi,j+1 ← AGM(f (·), xi,0, j + 1) ,

j ← j + 1, and Goto step 2.

Else xi+1,0 ← xi,j , i ← i + 1, and Goto step 1.

“xi,j ← AGM(fµi (·), xi,0, j)” denotes assigning to xi,j the jth iterate of AGM
applied with objective function fµi (·) using the initial point xi,0 ∈ Q
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Computational Guarantee for AGM with Simple Restarting

Complexity Bound for Accelerated Gradient Method with Simple
Restarting

Let x0 ∈ Q be the initial point and let xk denote the iterate value of the
Accelerated Gradient Method with Simple Restarting after a total of k
inner iterations. If

k ≥ G
√
L

(
17

[√
f ∗ − fslb√

ε′

]
+ 22

√
(f (x0)− fslb)

)
,

then
f (xk)− f ∗

f ∗ − fslb
≤ ε′ .



51

Basic FOMs Renegar’s Recent Work New Theory/Growth Constant Non-Smooth Optimization Smooth Optimization Remarks

Computational Guarantee for AGM with Simple Restarting

Complexity Bound for Accelerated Gradient Method with Simple
Restarting

Let x0 ∈ Q be the initial point and let xk denote the iterate value of the
Accelerated Gradient Method with Simple Restarting after a total of k
inner iterations. If

k ≥ G
√
L

(
17

[√
f ∗ − fslb√

ε′

]
+ 22

√
(f (x0)− fslb)

)
,

then
f (xk)− f ∗

f ∗ − fslb
≤ ε′ .
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Comparison with the Standard Accelerated Gradient
Method

Define: C̄ :=
Dist(x0,Opt)

G (f ∗ − fslb)

New Method Guarantee

Std. AGM Guarantee
≤ 8.5

√
2

C̄
+11
√
ε′
√
LG
√

f ∗ − fslb +
11
√
ε′

C̄ 2G
√
L
√
f ∗ − fslb

This ratio → 0 when Dist(x0,Opt) is sufficiently large and ε′ → 0

And this is true for any problem instance
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Improving the Guarantee using Parametric Increased
Smoothing

Suppose that f (·) has the representation:

f (x) = max
λ∈P
{λTAx − d(λ)}

where P is a convex set

d(·) is a σ-strongly convex function on P

minλ∈P d(λ) ≥ 0

Then f (·) is a smooth convex function with L ≤ ‖A‖2/σ [Nesterov2005]
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Parametric Increased Smoothing, continued

f (x) = max
λ∈P
{λTAx − d(λ)}

Define:
fµ(x) = max

λ∈P
{λTAx − (1 + µ)d(λ)}

Then f (·) = f0(·)

fµ(·) has a Lipschitz gradient with constant at most Lµ := L/(1 + µ)

If P is bounded, then D̄ := maxλ∈P{d(λ)} is finite, and:

f (x)− µD̄ ≤ fµ(x) ≤ f (x) for all x



55

Basic FOMs Renegar’s Recent Work New Theory/Growth Constant Non-Smooth Optimization Smooth Optimization Remarks

AGM with Parametric Increased Smoothing

AGM with Parametric Increased Smoothing

Initialize with x0 ∈ Q and ε′ > 0 .
Set x1,0 ← x0 , i ← 1 .

At outer iteration i :

1 Set smoothing parameter. µi ←
ε′ · (f (xi,0)− fslb)

5D̄
.

2 Initialize inner iteration. j ← 0

3 Run inner iterations. At inner iteration j :

If
f (xi,j)− fslb
f (xi,0)− fslb

≥ 0.8 , then:

xi,j+1 ← AGM(fµi (·), xi,0, j + 1) ,

j ← j + 1, and Goto step 3.

Else xi+1,0 ← xi,j , i ← i + 1, and Goto step 1.

“xi,j ← AGM(fµi (·), xi,0, j)” denotes assigning to xi,j the jth iterate of AGM
applied with objective function fµi (·) using the initial point xi,0 ∈ Q
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Computational Guarantee for AGM with Parametric
Increased Smoothing

Complexity Bound for Accelerated Gradient Method with Parametric
Increased Smoothing

Let x0 ∈ Q be the initial point and let the relative accuracy ε′ ∈ (0, 1] be
given, and let xk denote the iterate value of the Accelerated Gradient
Method with Parametric Increased Smoothing after a total of k inner
iterations. If

k ≥ G
√
L

24

[√
f ∗ − fslb√

ε′

]
+ 32

√D̄ ln
(

1 + f (x0)−f ∗
f ∗−fslb

)
√
ε′

 ,

then
f (xN)− f ∗

f ∗ − fslb
≤ ε′ .
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Computational Guarantee for AGM with Parametric
Increased Smoothing

Complexity Bound for Accelerated Gradient Method with Parametric
Increased Smoothing

Let x0 ∈ Q be the initial point and let the relative accuracy ε′ ∈ (0, 1] be
given, and let xk denote the iterate value of the Accelerated Gradient
Method with Parametric Increased Smoothing after a total of k inner
iterations. If

k ≥ G
√
L

24

[√
f ∗ − fslb√

ε′

]
+ 32

√D̄ ln
(

1 + f (x0)−f ∗
f ∗−fslb

)
√
ε′

 ,

then
f (xN)− f ∗

f ∗ − fslb
≤ ε′ .
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Remarks, Extensions, Next Steps

Computational Testing:

Non-smooth Optimization: LASSO, Support Vector Machines (dual
problem)

Smooth Optimization: logistic regression, binary classificaition

Conic Optimization (which engendered Renegar’s research)

Homogeneous self-dual embedding

SDP problems in particular (discussions with Franz Rendl)
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