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Problem of Interest

The problem of interest is

P: min
β

P(β) :=
1

n

n∑
j=1

lj(x
T
j β) + R(β) ,

lj(·) is a univariate loss function

R(·) is a regularizer and/or an indicator function of a feasible region
Q and/or a penalty term, coupling constraints, etc.

In standard Frank-Wolfe setting, R(·) is an indicator function
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Assuptions

Assumptions

1 For j = 1, . . . , n, the univariate function lj(·) is strictly convex and
γ-smooth, namely for all a and b,

|l̇j(a)− l̇j(b)| ≤ γ|a− b|

2 domR(·) is bounded, and the subproblem

min
β

cTβ + R(β)

attains its optimum and can be easily solved for any c

3 0 ∈ domR(·)
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Examples in Statistical and Machine Learning

LASSO
minβ

1
2n

∑n
j=1(yj − xT

j β)
2

s.t. ‖β‖1 ≤ δ ,

where lj(·) = 1
2
(yj − ·)2 and R(β) := I{‖β‖1≤δ}(β)

(Here IQ(·) is the indicator function on the set Q.)

Sparse Logistic Regression

minβ
1
n

∑n
j=1 ln(1 + exp(−yjxT

j β)) + λ‖β‖1 ,

where lj(·) = ln(1 + exp(−yj ·)), R(β) = λ‖β‖1 + I{‖β‖1≤ln(2)/λ}(β)

Matrix Completion

minβ∈Rn×p
1

2|Ω|
∑

(i,j)∈Ω(Mi,j − βi,j)2

s.t. ‖β‖∗ ≤ δ ,

where l(i,j)(·) = 1
2
(· −Mi,j)

2 and R(β) = I{‖β‖∗≤δ}(β)

More examples can be found in [Jaggi 2013].
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Frank-Wolfe and Generalized Frank-Wolfe

In the traditional Frank-Wolfe setting R(·) is an indicator function of a
bounded set Q, and the Frank-Wolfe update is:

Traditional Frank-Wolfe Method

β̃i ∈ arg minβ∈Q
{
∇f (βi )Tβ

}
and βi+1 = (1− αi )β

i + αi β̃
i

In the generalized Frank-Wolfe setting where R(·) can be any convex
function, the Generalized Frank-Wolfe update is:

Generalized Frank-Wolfe Method

β̃i ∈ arg min
{
∇f (βi )Tβ + R(β)

}
and βi+1 = (1− αi )β

i + αi β̃
i
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Stochastic Frank-Wolfe Method

In the stochastic setting, we can only compute an unbiased estimator g̃ i

of the gradient ∇f (βi ), and the update is

Stochastic Frank-Wolfe Method

β̃i ∈ arg minβ∈Q
{

(g̃ i )Tβ
}

and βi+1 = (1− αi )β
i + αi β̃

i
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Stochastic Frank-Wolfe Method

Algorithm Number of Number of Number of
and Exact Stochastic Linear Optimization

Reference Gradient Calls Gradient Calls Oracle Calls
FW∗ O( 1

ε ) 0 O( 1
ε )

SFW∗∗ 0 O( 1
ε3 ) O( 1

ε )
Online-FW∗∗∗ 0 O( 1

ε4 ) O( 1
ε4 )

SCGS∗∗∗∗ 0 O( 1
ε2 ) O( 1

ε )
SVRFW∗∗ O(ln 1

ε ) O( 1
ε2 ) O( 1

ε )
STORC∗∗ O(ln 1

ε ) O( 1
ε1.5 ) O( 1

ε )
This work 1 O( 1

ε ) O( 1
ε )

∗[Frank, Wolfe 1956], ∗∗[Hazan, Luo 2016], ∗∗∗[Hazan, Kale 2012], ∗∗∗∗[Lan, Zhou

2016]
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Conjugate Function

Recall the definition of the conjugate of a function f (·):

f ∗(y) := sup
x∈domf (·)

{yT x − f (x)} .

Proposition: Conjugate Functions

If f (·) is a closed convex function, then f ∗∗(·) = f (·). Furthermore:

1 f (·) is γ-smooth with domain Rp with respect to the norm ‖ · ‖ if
and only if f ∗(·) is 1/γ-strongly convex with respect to the (dual)
norm ‖ · ‖∗ .

2 If f (·) is differentiable and strictly convex, then the following three
conditions are equivalent:

y = ∇f (x)
x = ∇f ∗(y), and
xT y = f (x) + f ∗(y) .
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Primal-Dual Structure

The original problem is

P: min
β

P(β) := 1
n

n∑
j=1

lj(x
T
j β) + R(β) .

Denote X := [xT1 ; xT2 ; . . . ; xTn ]. Then the corresponding dual problem is

D: max
w

D(w) := −R∗
(
− 1

nX
Tw
)
− 1

n

n∑
j=1

l∗j (wj) .

Define the convex/concave saddle-function φ(·, ·):

φ(β,w) := 1
nw

TXβ − 1
n

n∑
i=1

l∗i (wi ) + R(β) .

We can write P and D in saddlepoint minimax format as:

P: min
β

max
w

φ(β,w) and D: max
w

min
β
φ(β,w) .
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SGFW and RDCM

Stochastic Generalized Frank-Wolfe

and

Randomized Dual Coordinate Mirror Descent
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“Substitute” Gradient

The problem of interest is

P: min
β

P(β) :=
1

n

n∑
j=1

lj(x
T
j β) + R(β) .

The gradient of the first term is

1
n

n∑
j=1

l̇j(x
T
j β)xj = 1

n

n∑
j=1

l̇j(sj)xj where sj = xTj β

It is too expensive to update xTj β for all j = 1, . . . , n in each iteration
when n is large. “Substitute” gradient d is computed by

d = 1
n

n∑
j=1

l̇j(sj)xj , j = 1, . . . , n .

We will only update one sj in each iteration

As a result d will not in general be an unbiased estimator of the
gradient
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Stochastic Generalized Frank-Wolfe Method with
Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient(SGFW)

Initialize with β̄−1 = 0, s0 = 0, and substitute gradient
d0 = 1

nX
T∇L(s0), with step-size sequences {αi} ∈ (0, 1], {ηi} ∈ (0, 1].

For iterations i = 0, 1, . . . , do:

Solve l.o.o. subproblem: Compute β̃i ∈ arg minβ
{(

d i
)T
β + R(β)

}
Choose random index: Choose ji ∈ U [1, . . . , n]
Update s value: s i+1

ji
← (1− ηi )s iji + ηi (x

T
ji
β̃i ), and s i+1

j ← s ij for j 6= ji

Update substitute gradient:

d i+1 = 1
nX

T∇L(s i+1) = d i + 1
n

(
l̇ji (s

i+1
ji

)− l̇ji (s
i
ji
)
)
xji

Update primal variable: β̄i ← (1− αi )β̄
i−1 + αi β̃

i .

(Optional Accounting:) w i+1 ← ∇L(s i+1)
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Stochastic Generalized Frank-Wolfe Method with
Substitute Gradient

Remarks

SGFW takes place completely in the primal space

We used two step-size sequences:

{ηi} is used to update the sji values

{αi} is used to update the β̄i values
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Randomized Dual Coordinate Mirror Descent

The Dual Problem

max
w

D(w) := −R∗
(
− 1

nX
Tw
)
− 1

n

n∑
j=1

l∗j (wj) .

D(w) may not be differentiable, but it is strongly convex.

Let us define L∗(w) :=
∑n

j=1 l
∗
j (wj) and

β̃i ∈ arg min
β

{(
1
n (w i )TXβ + R(β)

)}
,

then it turns out

g i :=
1

n

(
X β̃i −∇L∗(w i )

)
∈ ∂D(w i ) .

Therefore

g̃ i ← 1

n

(
xTji β̃

i − l̇∗ji (w
i
ji )
)
eji

is a coordinate of a subgradient of D(w) at w i .
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Randomized Dual Coordinate Mirror Descent

Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function h(w) := 1
n

∑n
j=1 l

∗
j (wj). Initialize with

w0 = arg minw
1
n

∑n
j=1 l

∗
j (wj) and step-size sequences {αi} ∈ (0, 1] and

{ηi} ∈ (0, 1]. (Optional: set β̄−1 = 0.)

For iterations i = 0, 1, . . .
Compute Randomized Coordinate of Subgradient of D(·) at w i

Compute β̃i ∈ arg minβ
{(

1
n (w i )TXβ + R(β)

)}
Choose random index. Choose ji ∈ U [1, . . . , n]

Compute subgradient coordinate vector: g̃ i ← 1
n

(
xTji β̃

i − l̇∗ji (w
i
ji
)
)
eji

Update dual variable: Compute
w i+1 = arg minw

{〈
−ηi g̃ i ,w − w i

〉
+ Dh(w ,w i )

}
(Optional Accounting:) β̄i ← (1− αi )β̄

i−1 + αi β̃
i .
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n
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Randomized Dual Coordinate Mirror Descent
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i .
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Recall the Bregman Distance

Dh(w ,w i ) := h(w)− h(w i )−
〈
∇h(w i ),w − w i

〉
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Randomized Dual Coordinate Mirror Descent
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Randomized Dual Coordinate Mirror Descent

Remarks

RDCMD takes place completely in the dual space.

We also used two step-size sequences:

{ηi} is used in the prox subproblem updates of w i

{αi} is used in the optional accounting to update the β̄i values
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Equivalence Lemma

Equivalence Lemma

GSFW and RDCMD are equivalent as follows: the iterate sequence of
either algorithm exactly corresponds to an iterate sequences of the other.

In the deterministic case, [Bach 2015] showed that the Frank-Wolfe
method for the primal problem is equivalent to mirror descent
algorithm for the dual problem under some assumptions

This provides a new primal interpretation of a randomized dual
coordinate descent type of algorithm first introduced in
[Shalev-Shwartz, Zhang 2013].
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Computational Guarantees

Computational Guarantees
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First, Some New Metrics

Let
M := max

β∈domR(·)
max

j=1,...,n
{|xTj β|} ,

then M < +∞ if domR(·) is bounded. Moreover, when ‖xj‖ is
bounded for any j , M is independent of n.

Let W ⊂ Rn be the set of “optimal w responses” to values
β ∈ domR(·) in the saddle-function φ(β,w), namely:

W := {ŵ ∈ Rn : ŵ ∈ arg max
w

φ(β̂,w) for some β̂ ∈ domR(·)} .

Let Dmax be any upper bound on Dh(ŵ ,w0) as ŵ ranges over all
values in W:

Dh(ŵ ,w0) ≤ Dmax for all ŵ ∈ W .
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An Upper Bound on Dmax

Proposition: Upper bound on Dmax

It holds that
Dmax ≤ γM2 .

However, a much smaller value of Dmax can often be easily derived
based on the structure of lj(·). For example, in logistic regression we
have simply that Dmax = ln(2).
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Convergence Guarantees when R(·) is not Strongly Convex

Theorem: Convergence Guarantees when R(·) is not Strongly Convex

Consider SGFW (or RDCMD) with step-size sequences αi = 2(2n+i)
(i+1)(4n+i)

and ηi = 2n
2n+i+1 for i = 0, 1, . . .. Denote

w̄k =
2

(4n + k)(k + 1)

k∑
i=0

(2n + i)w i .

It holds for all k ≥ 0 that

E
[
P(β̄k)− D(w̄k)

]
≤ 8nγM2

(4n + k)
+

2n(2n − 1)Dmax

(4n + k)(k + 1)
.

We prove this theorem through the dual lens.
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Convergence Guarantees when R(·) is not Strongly Convex
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(i+1)(4n+i)

and ηi = 2n
2n+i+1 for i = 0, 1, . . .. Denote
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Randomized Dual Coordinate Mirror Descent

Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function h(w) := 1
n

∑n
i=1 l

∗
i (wi ). Initialize with

w0 = arg minw
1
n

∑n
i=1 l

∗
i (wi ) and step-size sequences {αi} ∈ (0, 1] and

{ηi} ∈ (0, 1]. (Optional: set β̄−1 = 0.)

For iterations i = 0, 1, . . .
Compute Randomized Coordinate of Subgradient of D(·) at w i

Compute β̃i ∈ arg minβ
{(

1
n (w i )TXβ + R(β)

)}
Choose random index. Choose ji ∈ U [1, . . . , n]

Compute subgradient coordinate vector: g̃ i ← 1
n

(
xTji β̃

i − l̇∗ji (w
i
ji
)
)
eji

Update dual variable: Compute
w i+1 = arg minw

{〈
−ηi g̃ i ,w − w i

〉
+ Dh(w ,w i )

}
(Optional Accounting:) β̄i ← (1− αi )β̄

i−1 + αi β̃
i .
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Proof Technique: First-Order Methods (FOM) Naturally
Reduce the Primal-Dual Gap Bound

Previous work on dual coordinate methods need extra assumptions
(such as R(·) is strongly convex) and extra mechanics to obtain
primal certificates.

However, first-order methods (stochastic or deterministic,
accelerated or non-accelerated, mirror descent or dual averaging)
should naturally reduce the primal-dual gap bound, and it is a
matter of seeing where this is manifest.
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Proof Technique: First-Order Methods (FOM) Naturally
Minimize the Primal-Dual Gap Bound, continued

In standard proof for FOM, one always ends up with

D(w)−D(w̄k) ≤
k∑

i=0

γi (D(w)−D(w i )) ≤
k∑

i=0

γi 〈g i ,w−w i 〉 ≤ · · · .

Actually we have

k∑
i=0

γi 〈g i ,w − w i 〉 =
k∑

i=0

γi 〈∇wφ(β̃i ,w i ),w − w i 〉

≥
k∑

i=0

γi

(
φ(β̃i ,w)− D(w i )

)
≥ φ(β̄k ,w)− D(w̄k) ,

Choosing w = arg minw φ(β̄k ,w), the right-hand-side becomes
P(β̄k)− D(w̄k).
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Proof Technique: Randomized Coordinate Mirror Descent
for Non-smooth Function

There are many results on randomized coordinate descent types of
methods for smooth optimization, but not for non-smooth
optimization due to the lack of smoothness (used to upper-bound
the function).

One can think of a randomized coordinate of a subgradient as an
unbiased estimator of an exact subgradient (up to a scalar multiple).

Recall that
g̃ i ← 1

n

(
xTji β̃

i − l̇∗ji (w
i
ji )
)
eji ,

whereby
n · E[g̃ i ] = g i ∈ ∂D(w i ) .

We use the new analysis for stochastic mirror descent algorithm for
non-smooth optimization in [Lu 2017].
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Convergence Guarantees when R(·) is not Strongly Convex

Theorem: Convergence Guarantees when R(·) is not Strongly Convex

Consider SGFW (or RDCMD) with step-size sequences αi = 2(2n+i)
(i+1)(4n+i)

and ηi = 2n
2n+i+1 for i = 0, 1, . . .. Denote

w̄k =
2

(4n + k)(k + 1)

k∑
i=0

(2n + i)w i .

It holds for all k ≥ 0 that

E
[
P(β̄k)− D(w̄k)
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≤ 8nγM2

(4n + k)
+

2n(2n − 1)Dmax

(4n + k)(k + 1)
.

We prove the theorem through the dual lens.
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Relative Strong Convexity

Definition: Relative Strong Convexity [Lu, Freund, Nesterov 2018]

f (·) is µ-strongly convex relative to h(·) if for any x , y , there is a scalar µ
for which

f (y) ≥ f (x) + 〈∇f (x), y − x〉+ µDh(y , x).

This is a stronger definition than h(·) is strongly convex with respect
to a norm and f (·) is strongly convex with respect to that norm.

But it is only with this stronger definition that we have a linear
convergence result for the mirror descent algorithm ([Lu, Freund,
Nesterov 2018]), but see also [Hanzely and Richtarik 2018].
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Coordinate-Wise Relative Smoothness

Definition: Coordinate-Wise Relative Smoothness (Adapted from
[Hanzely and Richtarik 2018])

f (·) is coordinate-wise σ-smooth relative to a separable convex reference
function h(·) if there is a scalar σ such that for any x , scalar t and
coordinate j and y = x + tej we have

f (y) ≤ f (x) + 〈∇f (x), y − x〉+ σDh(y , x).
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Convergence Guarantees when R(·) is Strongly Convex

Theorem: Convergence Guarantees when R(·) is Strongly Convex

Assume D(w) is σ coordinate-wise smooth relative to h(w). Consider the
Randomized Dual Coordinate Mirror Descent method with step-size

ηi = 1
σ and αi = σi

σi+1−(σ−1/n)i+1 . Denote

w̄k ← 1∑k
i=0

(
nσ

nσ−1

)i k∑
i=0

(
nσ

nσ − 1

)i

w i ,

then we have

E
[
P(β̄k)− D(w̄k)

]
≤ Dmax(

1 + 1
nσ−1

)k
− 1

≤ γM2(
1 + 1

nσ−1

)k
− 1

.

A simpler (but looser) bound is simply

Dh(x,x0)

(1+ 1
nσ−1 )k−1

≤ nσ
(
1− 1

nσ

)k
Dh(x , x0) .
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Convergence Guarantees when R(·) is Strongly Convex

Corollary

(1) If R(·) is not separable, let σ = λmax(XXT )
nµγ + 1, then the Theorem

implies

E
[
P(β̄k)− D(w̄k)

]
≤ M2λmax(XXT )

µ

(
1− λmax(XXT )

µγ

)k

.

(2) If R(·) is separable, let σ =
maxj ‖Xj‖2

2

nµγ + 1, then the Theorem implies

E
[
P(β̄k)− D(w̄k)

]
≤ M2 maxj ‖Xj‖2

2

µ

(
1− maxj ‖Xj‖2

2

µγ

)k

.
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Some Discussions/Extensions

Both the algorithm and the analysis can be easily extended to the
mini-batch setting.

We can also generalize the algorithm and analysis to non-uniform
sampling.

When R(·) is strongly convex, we can also achieve accelerated linear
convergence by utilizing the technique developed in [Lin, Lu, Xiao
2015].

The unaccelerated version of [Lin, Lu, Xiao 2015] can be viewed as
randomized dual coordinate mirror descent with the reference
function h(w) = 1

n

∑n
j=1 l

∗
j (wj) + λ

2 ‖w‖
2 for some λ, while we here

use randomized dual coordinate mirror descent with reference
function h(w) = 1

n

∑n
j=1 l

∗
j (wj).
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Contribution/Summary

Contribution/Summary:

Stochastic Generalized Frank-Wolfe Method with Substitute
Gradient

Randomized Dual Coordinate Mirror Descent Algorithm

Equivalence of SGFW and RDCMD, which leads to new primal
interpretations of dual coordinate methods

O( 1
ε ) Stochastic Frank-Wolfe Method

Linear convergence result when R(·) is strongly convex

We show that these FOMs inherently reduce the primal-dual gap
bound

Computational guarantees for randomized coordinate descent for
minimizing non-smooth functions
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