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Benjamin Grimmer, Haihao Lu, Pratik Worah, Vahab Mirrokni. “Limiting
Behaviors of Nonconvex-Nonconcave Minimax Optimization via
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Discrete-Time Algorithms and Ordinary Differential

Equations

@ Discrete-Time Algorithms (DTA):

zt =g(z,9)

@ Ordinary Differential Equations (ODE):
7 =0G(2)

@ Comparisons between DTA and ODE

e DTA is easy to be computed numerically
o ODE is easy to be analyzed theoretically



Numerical ODE and ODE for DTA

Numerical ODE:

[ 00 | == [ o | == [ o0E

This work:

o (008 = [0
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Using ODEs to Understand Optimization Methods

@ History

e There is a history of using ODE to understand optimization
method [Schropp and Singer, 2000]

o Renewed spark recently [Su, Boyd, Candes, 2014]

e Hundreds of papers on this topic in the past six years

@ Two fundamental open question:

e How to obtain a suitable ODE from a DTA?
o What is the connection between the convergence of the ODE
and the convergence of the DTA?
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Three Major Steps

Step 1: Step 3:
Obtain Extend
an ODE results
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Step 2:
Analyze
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Motivating Example

@ Unconstrained minimax problem

min max L(x
x€R" yeR™ ( 7y)

@ Goal: Find a first-order Nash Equilibrium (x*, y*)
Vil(x*,y*)=0and V,L(x*,y*) =0
@ New notations
z=(x,y) €R™" and F(z) = [ViL(x,y),—V,L(x,y)] € R™™"

@ Applications: game theory, generative adversarial networks (GANs),
robust optimization/robust machine learning
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Classic DTAs for Minimax Problems

@ Gradient Method (GM):

zp =z —sF(2)
@ Proximal Point Method (PPM):

zp =z —sF(z})

@ Extra-Gradient Method (EGM) (it is a also special case of Mirror
Prox Algorithm):

2=z—-5F(z),z =z—sF(2)

@ When s — 0, all above three algorithms converge to gradient flow:

7 =—F(2)
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Behaviors of Different Algorithms

J IR - —Y
(a) The trajectories of GM, PPM, EGM and GF

for solving min, max, %1,‘2 +xy — %yQ with step-size
s = 0.3 and initial solution (1,1).

4
‘/_\ -
— PPM

— EaM
—_—

< 2 0 2 O

(b) The trajectories of GM, PPM, EGM and GF
for solving min, max, zy with step-size s = 0.3 and
initial solution (1,1).
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Under What Conditions does PPM/EGM Have Linear

Convergence?

Problem of interest:

min max L(x
x€ER" yeRM (xy)

Previous works show that PPM/EGM appear linear convergence when
@ L(x,y) is strongly convex-strongly concave, or
@ L(x,y) = xTBy is a bilinear function

Question:

@ Is there a unified or more fundamental condition and how to obtain
it?

@ How about nonconvex-nonconcave minimax problems?

10
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Three Major Steps

Step 1: Step 3:
Obtain Extend
an ODE results
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Analyze
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Step 1: Obtain an ODE from a DTA

@ Question: How to obtain a suitable ODE from a DTA?

@ Previous works:

o Mostly let step-size s go to 0
o Exception [Shi et al, 2018]: high-order resolution ODE to
distinguish heavy ball method and accelerated method

@ However:

o Step-size s is never 0 in practice

e The solution path of a DTA and 0-step-size ODE can be
topologically different

o Different DTAs may collapse to one ODE

@ This work:

o An O(s")-resolution ODE framework:
A framework to obtain the unique ODE with certain order of
accuracy in normal form

12
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Step 2: Analyze the Convergent Properties of the ODEs

@ Previous works:

e Given the class of problems and an ODE, identify a decaying
energy function

@ However:

e It may not always be easy to identify a perfect energy function
for this class of problems

@ This work:

o Given the ODE and a reasonable energy fuction, identify the
class of problems that the energy function decays

13
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Ste

p 3: Extend the Results from ODEs to DTAs

Question: What is the connection between the convergence of the ODE
and the convergence of the DTA?

@ Previous works:

e Prove independently the energy function still decays for the
DTA

@ However:

e Some modification of the energy function may be needed
e Such proof can be highly non-trivial and independent from the
proofs for ODEs

@ This work:

e Propose the properness of an energy function
e Show that the DTAs have linear convergence whenever the
O(s")-resolution ODEs have linear convergence w.r.t. a proper
energy function
14



Step 1: Obtain ODEs

The O(s")-Resolution ODE of a DTA

Step 1: Obtain a “good” ODE from a DTA:
The O(s")-Resolution ODE of a DTA

15
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Generic DTAs

We consider a generic DTA with iterate update:

+ :g(Z,S) 3

z
where

@ z is the iterate input

@ z" is the iterate output

@ s is the step-size of the algorithm

g(z,s) is sufficiently differentiable in z,s

g(z,0) ==z

16
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Definition of the O(s")-Resolution ODE

Definition: The O(s")-Resolution ODE of a DTA

We say an ODE system with the following normal form
Z=rfU)N2Z,s):=K(Z)+sA(Z2)+ -+ s F(2)

the O(s")-resolution ODE of the discrete-time algorithm with iterate
update zT = g(z, s) if it satisfies that for any z that

1Z(s) =zl = o(s"™")  (or O(s™2)), ()

where Z(s) is the solution obtained at t = s following the above ODE
with initial solution Z(0) = z.

Summar

@ There can be multiple ODEs satisfying (x), but the one of the
normal form is unique.

17
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Deflnltlon of O(s")-Resolution ODE, continued

Definition: O(s")-Resolution ODE

We say an ODE system with the following normal form
Z="f"NZ,s):=f(Z) +sA(Z) + -+ £(2)

the O(s")-resolution ODE of the discrete-time algorithm with iterate
update zT = g(z, s) if it satisfies that for any z that

1Z(s) = 2" = o(s™"")  (or O(s"*%)),  (x)

where Z(s) is the solution obtained at t = s following the above ODE
with initial solution Z(0) = z.

@ There can be multiple ODEs satisfying (x), but the one of the
normal form is unique.

18
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Definition of O(s")-Resolution ODE, continued

Definition: O(s")-Resolution ODE

We say an ODE system with the following normal form
Z="f"NZ,s):=f(Z) +sA(Z) + -+ £(2)

the O(s")-resolution ODE of the discrete-time algorithm with iterate
update zT = g(z, s) if it satisfies that for any z that

1Z(s) =zl = o(s"™")  (or O(s™2)), ()

where Z(s) is the solution obtained at t = s following the above ODE
with initial solution Z(0) = z.

@ There can be multiple ODEs satisfying (x), but the one of the
normal form is unique.

19
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How to Obtain the O(s")-Resolution ODE?

Theorem: Obtaining the O(s")-resolution ODE from g(z, s)

Consider a discrete-time algorithm with iterate update z; = g(z,s), where g(z,0) = z
and g(z,s) is (r + 1)-th order differentiable over s for any z. Then the i-th coefficient
function in the O(s")-resolution ODE can be obtained recursively by
i+1
1 .
fi(2) =gi(Z) - ~hiiti—i(Z), fori=0,1,....r,
= /!

where g;(z) is the i-th Taylor's expansion of g(z,s):
r+1
g(z,5) = _g(2)s +o(s)

Jj=0

hy,iv1—i(Z) is a function of f5(Z), ..., f,_1(Z) defined as the coefficient function of s’

in the expansion of 4 7.

dtj <
dj r+1 .
2= > hii(Z)s'+ o(s™).
i=0

20
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How to Obtain the O(s")-Resolution ODE?

Theorem: Obtaining the O(s")-resolution ODE from g(z, s)

Consider a discrete-time algorithm with iterate update z; = g(z,s), where g(z,0) = z
and g(z,s) is (r + 1)-th order differentiable over s for any z. Then the i-th coefficient
function in the O(s")-resolution ODE can be obtained recursively by
i+1
i(Z) = gi+1(Z) — /22: ﬁhl,H—l—l(Z) , fori=0,1,...,r,

where g;(z) is the i-th Taylor's expansion of g(z,s):
r+1

(z,s) = Zg, z)s’ + o(s"t1h)

i=0

hiiz1—1(Z) is a function of fo(Z),...,fi_1(Z) defined as the coefficient function of s’
in the expansion of & FiEi Z:

di r+1

—Z =Y hii(2)s 1y,
a0 2 i(Z)s' +o(s"7)

21
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How to Obtain the O(s")-Resolution ODE?

Theorem: Obtaining the O(s")-resolution ODE from g(z, s)

Consider a discrete-time algorithm with iterate update z; = g(z,s), where g(z,0) = z
and g(z,s) is (r + 1)-th order differentiable over s for any z. Then the i-th coefficient
function in the O(s")-resolution ODE can be obtained recursively by
i1y
fi(Z) = gi+1(2) = Y whiis1—i(2) , fori=0,1,....r,
= !

where gj(z) is the i-th Taylor's expansion of g(z,s):

r+1
g(z.5) = >_g(2)s +o(s"™)
j=0
hyiv1—1(Z) is a function of fo(Z), ..., fi_1(Z) defined as the coefficient function of si
. g & .
in the expansion of @Z.
dJ r+1 .
52 =2 hi(@s + (s
i=0

22
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The Logic Flow of Computing the O(s")-Resolution ODEs

Given fy, g1, 82, &3, --.

hs 1
h )
fo=hio —— hap —— fi=h11 — {hz,; — fo=h1g —— {hz,z —_ ..

| [

9 92 g3

@ O(s")-resolution ODE gives the first r terms of the O(s"*1)-
resolution ODE

@ How to determine r? Try it out!
23
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Going Back to Minimax Problems

Corollary: O(1)-resolution and O(s)-resolution ODE of GM, PPM and

EGM
(i) The O(1)-resolution ODEs of GM, PPM and EGM are the same, that
is, GF: _

Z=-F(2).

(ii) The O(s)-resolution ODE of GM is
Z=-F(Z)- EVF(Z)F(Z) .

(iii) The O(s)-resolution ODEs of PPM and of EGM are the same:

Z=—F(2)+VF(2)F(2).

24
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Behaviors of Different Algorithms

J IR - —Y
(a) The trajectories of GM, PPM, EGM and GF

for solving min, max, %1,‘2 +xy — %yQ with step-size
s = 0.3 and initial solution (1,1).

4
‘/_\ -
— PPM

— EaM
—_—

< 2 0 2 O

(b) The trajectories of GM, PPM, EGM and GF
for solving min, max, zy with step-size s = 0.3 and
initial solution (1,1).

25
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Toy Example L(x,y) = xy with z* = (0, 0)

@ GF circles:

26



Step 1: Obtain ODEs
000000000000e0

Toy Example L(x, y) = xy with z* = (0,0), continued

3 e 2 o B 0 d M5 Ao 05 oo 05 1o 15 M5 Ao 05 oo 05 1o 15

(a) The trajectories of GM and  (b) The trajectories of PPM and  (c) The trajectories of EGM and
its corresponding ODEs. its corresponding ODEs. its corresponding ODEs.

@ The higher the order of resolution, the closer the trajectoris between
the DTA and the ODE

@ PPM and EGM are different in their O(s?) terms

27
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Extensions to Bilinear Minimax Problem L(x,y) = x By

@ The O(s)-resolution ODE of PPM and EGM is a linear ODE

-3887 B ],
BT  —3B'B

@ After changing basis, it leads to independent evolving 2-d ODE with
close form solution:

%(t) = cie™ Nt cos(\it + 67)

9i(t) = e N tsin(\it + 6;)

@ Explains the Linear convergence rate of PPM and EGM

@ Similarly, the O(s)-resolution ODE of GM diverges linearly

@ PPM/EGM is superior to GM for solving minimax problems
28



Step 2: O(s") Linear Convergence Condition

Step 2: Analyze the O(s")-Resolution ODE:

The O(s") Linear Convergence Condition

29



Step 2: Analyze the ODEs
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The Standard Steps to Show Linear Convergence

The standard steps to show linear convergence of a dynamic:
@ Identify an energy function E such that E(z*) =0 and E(z) >0

@ Continuous-time dynamic:
d
SE(Z) = —p(s)E(2)

@ Discrete-time algorithm:

B(zM) < (1 - sp(s))E(z")

30
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The O(s") Linear Convergence Condition of a DTA

Definition: O(s") Linear Convergence Condition of a Discrete-Time
Algorithm w.r.t. an Energy Function E

We say a condition the O(s") linear convergence condition of a
discrete-time algorithm w.r.t. an energy function E following the
dynamic of its O(s")-resolution ODE decays linearly:

2 B(2) < ~p(s)B(2)

@ p(s) is usually lower-bounded by a r-th order polynomial of s

31
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Linear Convergence Condition of PPM, EGM and GM

We choose the energy function E(z) = 1||F(2)|?
@ E(z) = 0iff z is an optimal minimax solution

Let us introduce new notations:

A= VxxL(XaY)a B = vaL(X’y)’ C= —Vny(x,y)

32
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O(1) Linear Convergence Condition of PPM, EGM and GM

Proposition: O(1) linear convergence condition

The O(1) linear convergence condition of PPM, EGM and GM w.r.t.
E(z)is

| F2)2 SoiF@p.

and a sufficient condition is strongly convex-strongly concave:

A>=0,C>0.

Proof. Recall that the O(1)-resolution ODE of PPM, EGM and GM is Z = —F(Z).
Thus

d1 ; A 0
ajwamﬁzHzfvaazzfﬂzvazwujzfﬂaTk C}Ha.

33
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O(s) Linear Convergence Condition of PPM and EGM

Proposition: O(s) linear convergence condition

The O(s) linear convergence condition of PPM and EGM w.r.t. E(z) is

A—$A?+3$BBT 0

Ay A C_ st s578) FO 2 WNIFDIR

and a sufficient condition with s < % is

A+sBBT = 0,C+sBTB > 0.

Proof. Recall that the O(s)-resolution ODE of PPM and EGM is
Z=—F(Z)+ $VF(Z)F(Z). Thus

L IF@IR = ~F(2) VF(2)F(2) + SF(2)T (VF(2)PF(2)

2 T
A—3SA? 4 5BB 0

_ T
=-F() 0 C-:c2+:B7B

F(Z) .

34
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O(s) linear convergence condition of PPM and EGM,

continued

Proposition: O(s) linear convergence condition
The O(s) linear convergence condition of PPM and EGM w.r.t. E(z) is

A— 3242 +5BBT 0

;
F(2) 0 C =205

F(Z) = p(s)IF (D)2,

and a sufficient condition with s < % is

A+sBB" =~ 0,C+sB"B 0.

@ This unifies the two conditions PPM/EGM has linear convergence

@ More cases when PPM/EGM has linear convergence:

o L(x,y) = f(x) + xT By — g(y) with strongly convex f and full column
rank B
o L(x,y) = f(Cix) + xT By — g(Cay) with strongly convex f and g
@ L(x,y) is nonconvex-nonconcave with large enough interaction terms 35
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Step 3: Extend the Convergent Results of ODEs to DTAs

Step 3: Extend the Convergent Results of
ODEs back to DTAs

36



Step 3: Back to DTAs
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Fundamental Questions to Answer

Questions:

@ What are the connections between the convergence of a DTA and
the convergence of its O(s")-resolution ODEs?

@ How to choose the energy function?

Our answer (informal):

With a “proper” energy function, if the O(s")-resolution ODE converges
linearly to an optimal solution, then the DTA converges linearly to an
optimal solution.

37
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Proper Energy Function

Recall by definition of the O(s")-resolution ODE that:
° [[Z(s) = zF|| < O(s"?).

Definition: Proper Energy Function

We say an energy function E(z) = %e(z)2 with e(z) > 0 is proper for
studying the O(s")-resolution ODE of a DTA zt = g(z, s) if there exists
a and ¢ such that it holds for any z € {e(z) < ¢} that

12(s) - 2 < es™e(z).

38



Step 3: Back to DTAs
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How to Check Whether an Energy Function is Proper?

Recall that
r+1

g(z,5) =) g(2)s +o(s™)

=0

Theorem: Sufficient Conditions for Proper Energy Functions

Suppose gj(z) is (2r + 3 — j)-th order differentiable over z, and it holds
for any z € {e(z) < ¢} that

lgi(2)]| < O(e(2)) and [[V¥g;(2)] < O(1)

forj=1,....,r+2and k=1,...,2r + 3 — j. Then the energy function
E(z) = 1e(z)? is proper.

Some typical examples of e(z):
° &(2) = [F(2)I, e(z) = llz = 27|

@ e(z) = \/f(z) — f* for convex optimization
2|IF(2)|1? is a proper energy function for GM, PPM and EGM 39
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Connections between DTAs and ODEs

Theorem: Connections between DTAs and ODEs

Consider a DTA and its O(s")-resolution ODE with a proper energy
function E(z). Suppose the O(s")-linear-convergence condition is
satisfied, i.e.,

2 B(2) < ~pls)E(2)

and it holds for any z € {e(z) < ¢} that ||Ve(z)|| < . If the step-size s

satisfies vcs’+2 < min (1, Spl—(g’)), it holds for any k > 0 that

E(Z) < <1 — SPT(5)>k E(Z°) .

@ p(s) > O(s"), thus there exists s* such that the step-size condition
holds when s < s*

40



alyze the ODEs  Step 3: Back to DTAs icati Summar
00000e0 (o}

Connections between DTAs and ODEs

Theorem: Connections between DTAs and ODEs

Consider a DTA and its O(s")-resolution ODE with a proper energy
function E(z). Suppose the O(s")-linear-convergence condition is
satisfied, i.e.,

d
—E(Z) < —p(s)E(Z
T B(2) < ~pls)B(2)
and it holds for any z € {e(z) < ¢} that ||Ve(z)|| < . If the step-size s

satisfies vcs’+2 < min (1, Spl—(g’)), it holds for any k > 0 that

E(Z) < <1 — SPT(5)>k E(Z°) .

@ p(s) > O(s"), thus there exists s* such that the step-size condition
holds when s < s*

41
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Connections between DTAs and ODEs

Theorem: Connections between DTAs and ODEs

Consider a DTA and its O(s")-resolution ODE with a proper energy
function E(z). Suppose the O(s")-linear-convergence condition is
satisfied, i.e.,

2 B(2) < ~pls)E(2)

and it holds for any z € {e(z) < ¢} that ||Ve(z)|| < . If the step-size s

satisfies ycs™2 < min (1, Sq(ﬁs)), it holds for any k > 0 that

E(Z) < <1 — SPT(5)>k E(Z°) .

@ p(s) > O(s"), thus there exists s* such that the step-size condition
holds when s < s*

42
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Applications: Nonconvex-Nonconcave Minimax Problems

Applications:

Nonconvex-Nonconcave Minimax Problems

43
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Nonconvex-Nonconcave Minimax Problems

The problem of interest is

min max L(x,y) ,
x y

where L(x,y) may not be convex in x nor concave in y.

Many applications:
@ Generative Adversarial Nets (GANs)

@ Robust Neural Networks

44
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A Simple 2-d Problem

Consider simple 2-d nonconvex-nonconcave problem with bilinear
interaction term:

minmax L(x, y) = f(x) +xAy — g(y),
where f(x) = g(x) = (x = 3)(x — 1)(x + 1)(x + 3).

sE

5+ “ :L' : O
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Why are Nonconvex-Nonconcave Problems Hard?

Cycling is a fundamental part of nonconvex-nonconcave problems
(trajactory of PPM):

a4t e
2k
ore °
2+
Ar o
L . n . L
-4 -2 0 2 4
T=1

(=](+] 46
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The Landscape of Nonconvex-Nonconcave Problems

Consider simple 2-d nonconvex-nonconcave problem with bilinear
interaction term:

minmax L(x,y) = f(x) + x" Ay — g(y),
x oy

where f(x) = g(x) = (x = 3)(x — 1)(x + 1)(x + 3).

A=1 A=10 A=50
Linear Convergence Cycling is possible Linear Convergence
to a Local Solution if Interaction to a Global Solution
if Interaction Weak Moderate if Interaction Dominate

47
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The Landscape of Nonconvex-Nonconcave Problems

The above structure extends to every nonconvex-nonconcave bilinear
problem:
L(x,y) = f(x) +x" Ay — g(y)

@ A Large Enough: PPM has global linear convergence to a
stationary point

@ A Middle Size: PPM may cycle indefinitely

@ A Small Enough: PPM has local linear convergence to a
stationary point with a good initialization

Recall the O(s)-linear-convergence condition for bilinear
nonconvex-nonconcave problem:

V2f(x) + sAAT = p(s)l,V2g(x) +sATA = p(s)!

@ The first case globally satisfies the above condition; The third case
locally satisfies this condition. 48
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The Landscape of Nonconvex-Nonconcave Problems

A more smoothed phase shift:

4 FT

(=]

@ The phase transition can be characterized by Hopf Bifurcation of
the O(s)-resolution ODE

49
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Summary

O(s")-Resolution ODE framework
@ First Step — Obtain ODEs from a DTA:

o The O(s")-resolution ODEs, and how to obtain them
o Examples for PPM, EGM and GM

@ Second Step — Analyze the O(s")-resolution ODEs:
o O(s")-linear convergence condition
@ Third Step — Going back to DTAs:

o Proper energy function
o The connection between the ODEs and the DTAs
e How to check whether an energy function is proper

@ Application — Nonconvex-Nonconcave Minimax Problems

Thank you!

50
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