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Two papers under review:

Haihao Lu. “An O(s r )-Resolution ODE Framework for Discrete-Time
Optimization Algorithms and Applications to Linear Convergence of
Minimax Problems.”

Benjamin Grimmer, Haihao Lu, Pratik Worah, Vahab Mirrokni. “Limiting
Behaviors of Nonconvex-Nonconcave Minimax Optimization via
Continuous-Time Systems.”
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Discrete-Time Algorithms and Ordinary Differential
Equations

Discrete-Time Algorithms (DTA):

z+ = g(z , s)

Ordinary Differential Equations (ODE):

Ż = G (Z )

Comparisons between DTA and ODE

DTA is easy to be computed numerically
ODE is easy to be analyzed theoretically
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Numerical ODE and ODE for DTA

Numerical ODE:

This work:
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Using ODEs to Understand Optimization Methods

History

There is a history of using ODE to understand optimization
method [Schropp and Singer, 2000]
Renewed spark recently [Su, Boyd, Candes, 2014]
Hundreds of papers on this topic in the past six years

Two fundamental open question:

How to obtain a suitable ODE from a DTA?
What is the connection between the convergence of the ODE
and the convergence of the DTA?
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Three Major Steps
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Motivating Example

Unconstrained minimax problem

min
x∈Rn

max
y∈Rm

L(x , y)

Goal: Find a first-order Nash Equilibrium (x∗, y∗)

∇xL(x∗, y∗) = 0 and ∇yL(x∗, y∗) = 0

New notations

z = (x , y) ∈ Rn+m and F (z) = [∇xL(x , y),−∇yL(x , y)] ∈ Rn+m

Applications: game theory, generative adversarial networks (GANs),
robust optimization/robust machine learning
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Classic DTAs for Minimax Problems

Gradient Method (GM):

z+ = z − sF (z)

Proximal Point Method (PPM):

z+ = z − sF (z+)

Extra-Gradient Method (EGM) (it is a also special case of Mirror
Prox Algorithm):

z̃ = z − sF (z), z+ = z − sF (z̃)

When s → 0, all above three algorithms converge to gradient flow:

Ż = −F (Z )
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Behaviors of Different Algorithms
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Under What Conditions does PPM/EGM Have Linear
Convergence?

Problem of interest:
min
x∈Rn

max
y∈Rm

L(x , y)

Previous works show that PPM/EGM appear linear convergence when

L(x , y) is strongly convex-strongly concave, or

L(x , y) = xTBy is a bilinear function

Question:

Is there a unified or more fundamental condition and how to obtain
it?

How about nonconvex-nonconcave minimax problems?
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Three Major Steps
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Step 1: Obtain an ODE from a DTA

Question: How to obtain a suitable ODE from a DTA?

Previous works:

Mostly let step-size s go to 0
Exception [Shi et al, 2018]: high-order resolution ODE to
distinguish heavy ball method and accelerated method

However:

Step-size s is never 0 in practice
The solution path of a DTA and 0-step-size ODE can be
topologically different
Different DTAs may collapse to one ODE

This work:

An O(s r )-resolution ODE framework:
A framework to obtain the unique ODE with certain order of
accuracy in normal form
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Step 2: Analyze the Convergent Properties of the ODEs

Previous works:

Given the class of problems and an ODE, identify a decaying
energy function

However:

It may not always be easy to identify a perfect energy function
for this class of problems

This work:

Given the ODE and a reasonable energy fuction, identify the
class of problems that the energy function decays



14

Review Step 1: Obtain ODEs Step 2: Analyze the ODEs Step 3: Back to DTAs Applications Summary

Step 3: Extend the Results from ODEs to DTAs

Question: What is the connection between the convergence of the ODE
and the convergence of the DTA?

Previous works:

Prove independently the energy function still decays for the
DTA

However:

Some modification of the energy function may be needed
Such proof can be highly non-trivial and independent from the
proofs for ODEs

This work:

Propose the properness of an energy function
Show that the DTAs have linear convergence whenever the
O(s r )-resolution ODEs have linear convergence w.r.t. a proper
energy function
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The O(s r)-Resolution ODE of a DTA

Step 1: Obtain a “good” ODE from a DTA:

The O(s r)-Resolution ODE of a DTA
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Generic DTAs

We consider a generic DTA with iterate update:

z+ = g(z , s) ,

where

z is the iterate input

z+ is the iterate output

s is the step-size of the algorithm

g(z , s) is sufficiently differentiable in z , s

g(z , 0) = z
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Definition of the O(s r)-Resolution ODE

Definition: The O(s r )-Resolution ODE of a DTA

We say an ODE system with the following normal form

Ż = f (r)(Z , s) := f0(Z ) + sf1(Z ) + · · ·+ s r fr (Z )

the O(s r )-resolution ODE of the discrete-time algorithm with iterate
update z+ = g(z , s) if it satisfies that for any z that

‖Z (s)− z+‖ = o(s r+1) ( or O(s r+2)) , (∗)

where Z (s) is the solution obtained at t = s following the above ODE
with initial solution Z (0) = z .

There can be multiple ODEs satisfying (∗), but the one of the
normal form is unique.
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Definition of O(s r)-Resolution ODE, continued

Definition: O(s r )-Resolution ODE

We say an ODE system with the following normal form

Ż = f (r)(Z , s) := f0(Z ) + sf1(Z ) + · · ·+ s r fr (Z )

the O(s r )-resolution ODE of the discrete-time algorithm with iterate
update z+ = g(z , s) if it satisfies that for any z that

‖Z (s)− z+‖ = o(s r+1) ( or O(s r+2)) , (∗)

where Z (s) is the solution obtained at t = s following the above ODE
with initial solution Z (0) = z .

There can be multiple ODEs satisfying (∗), but the one of the
normal form is unique.
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Definition of O(s r)-Resolution ODE, continued

Definition: O(s r )-Resolution ODE

We say an ODE system with the following normal form

Ż = f (r)(Z , s) := f0(Z ) + sf1(Z ) + · · ·+ s r fr (Z )

the O(s r )-resolution ODE of the discrete-time algorithm with iterate
update z+ = g(z , s) if it satisfies that for any z that

‖Z (s)− z+‖ = o(s r+1) ( or O(s r+2)) , (∗)

where Z (s) is the solution obtained at t = s following the above ODE
with initial solution Z (0) = z .

There can be multiple ODEs satisfying (∗), but the one of the
normal form is unique.
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How to Obtain the O(s r)-Resolution ODE?

Theorem: Obtaining the O(sr )-resolution ODE from g(z, s)

Consider a discrete-time algorithm with iterate update z+ = g(z, s), where g(z, 0) = z
and g(z, s) is (r + 1)-th order differentiable over s for any z. Then the i-th coefficient
function in the O(sr )-resolution ODE can be obtained recursively by

fi (Z) = gi+1(Z)−
i+1∑
l=2

1

l!
hl,i+1−l (Z) , for i = 0, 1, . . . , r ,

where gi (z) is the i-th Taylor’s expansion of g(z, s):

g(z, s) =
r+1∑
j=0

gj (z)s j + o(sr+1)

hl,i+1−l (Z) is a function of f0(Z), . . . , fi−1(Z) defined as the coefficient function of s i

in the expansion of d j

dt j
Z :

d j

dt j
Z =

r+1∑
i=0

hj,i (Z)s i + o(sr+1).
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The Logic Flow of Computing the O(s r)-Resolution ODEs

Given f0, g1, g2, g3, ...

O(s r )-resolution ODE gives the first r terms of the O(s r+1)-
resolution ODE

How to determine r? Try it out!
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Going Back to Minimax Problems

Corollary: O(1)-resolution and O(s)-resolution ODE of GM, PPM and
EGM

(i) The O(1)-resolution ODEs of GM, PPM and EGM are the same, that
is, GF:

Ż = −F (Z ) .

(ii) The O(s)-resolution ODE of GM is

Ż = −F (Z )− s

2
∇F (Z )F (Z ) .

(iii) The O(s)-resolution ODEs of PPM and of EGM are the same:

Ż = −F (Z ) +
s

2
∇F (Z )F (Z ) .
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Behaviors of Different Algorithms
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Toy Example L(x , y) = xy with z∗ = (0, 0)

GF circles:

〈Ż ,Z 〉 = ZT

[
0 −1
1 0

]
Z = 0

GM diverges:

Ż = −F (Z ) +
s

2
Z

PPM and EGM converges:

Ż = −F (Z )− s

2
Z
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Toy Example L(x , y) = xy with z∗ = (0, 0), continued

The higher the order of resolution, the closer the trajectoris between
the DTA and the ODE

PPM and EGM are different in their O(s2) terms
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Extensions to Bilinear Minimax Problem L(x , y) = xTBy

The O(s)-resolution ODE of PPM and EGM is a linear ODE

Ż =

[
− s

2BB
T −B

BT − s
2B

TB

]
Z

After changing basis, it leads to independent evolving 2-d ODE with
close form solution:

x̂i (t) = cie
− s

2 λ
2
i t cos(λi t + δi )

ŷi (t) = cie
− s

2 λ
2
i t sin(λi t + δi )

Explains the Linear convergence rate of PPM and EGM

Similarly, the O(s)-resolution ODE of GM diverges linearly

PPM/EGM is superior to GM for solving minimax problems
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Step 2: O(s r) Linear Convergence Condition

Step 2: Analyze the O(s r)-Resolution ODE:

The O(s r) Linear Convergence Condition
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The Standard Steps to Show Linear Convergence

The standard steps to show linear convergence of a dynamic:

Identify an energy function E such that E(z∗) = 0 and E (z) ≥ 0

Continuous-time dynamic:

d

dt
E(Z ) ≤ −ρ(s)E(Z )

Discrete-time algorithm:

E(zk+1) ≤ (1− sρ(s))E(zk)
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The O(s r) Linear Convergence Condition of a DTA

Definition: O(s r ) Linear Convergence Condition of a Discrete-Time
Algorithm w.r.t. an Energy Function E

We say a condition the O(s r ) linear convergence condition of a
discrete-time algorithm w.r.t. an energy function E following the
dynamic of its O(s r )-resolution ODE decays linearly:

d

dt
E(Z ) ≤ −ρ(s)E(Z ) .

ρ(s) is usually lower-bounded by a r -th order polynomial of s



32

Review Step 1: Obtain ODEs Step 2: Analyze the ODEs Step 3: Back to DTAs Applications Summary

Linear Convergence Condition of PPM, EGM and GM

We choose the energy function E (z) = 1
2‖F (z)‖2

E (z) = 0 iff z is an optimal minimax solution

Let us introduce new notations:

A = ∇xxL(x , y),B = ∇xyL(x , y),C = −∇yyL(x , y)
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O(1) Linear Convergence Condition of PPM, EGM and GM

Proposition: O(1) linear convergence condition

The O(1) linear convergence condition of PPM, EGM and GM w.r.t.
E (z) is

F (Z )T
[
A 0
0 C

]
F (Z ) ≥ 1

2
ρ‖F (Z )‖2 ,

and a sufficient condition is strongly convex-strongly concave:

A � 0,C � 0.

Proof. Recall that the O(1)-resolution ODE of PPM, EGM and GM is Ż = −F (Z).
Thus

d

dt

1

2
‖F (Z)‖2 = F (Z)T∇F (Z)Ż = −F (Z)T∇F (Z)F (Z) = −F (Z)T

[
A 0
0 C

]
F (Z) .
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O(s) Linear Convergence Condition of PPM and EGM

Proposition: O(s) linear convergence condition

The O(s) linear convergence condition of PPM and EGM w.r.t. E (z) is

F (Z )T
[
A− s

2A
2 + s

2BB
T 0

0 C − s
2C

2 + s
2B

TB

]
F (Z ) ≥ ρ(s)‖F (Z )‖2 ,

and a sufficient condition with s ≤ 1
γ is

A + sBBT � 0,C + sBTB � 0.

Proof. Recall that the O(s)-resolution ODE of PPM and EGM is
Ż = −F (Z) + s

2
∇F (Z)F (Z). Thus

d

dt

1

2
‖F (Z)‖2 = −F (Z)T∇F (Z)F (Z) +

s

2
F (Z)T (∇F (Z))2F (Z)

= −F (Z)T
[
A− s

2
A2 + s

2
BBT 0

0 C − s
2
C2 + s

2
BTB

]
F (Z) .
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O(s) linear convergence condition of PPM and EGM,
continued

Proposition: O(s) linear convergence condition

The O(s) linear convergence condition of PPM and EGM w.r.t. E (z) is

F (Z )T
[
A− s

2A
2 + s

2BB
T 0

0 C − s
2C

2 + s
2B

TB

]
F (Z ) ≥ ρ(s)‖F (Z )‖2 ,

and a sufficient condition with s ≤ 1
γ is

A + sBBT � 0,C + sBTB � 0.

This unifies the two conditions PPM/EGM has linear convergence

More cases when PPM/EGM has linear convergence:

L(x , y) = f (x) + xTBy − g(y) with strongly convex f and full column
rank B
L(x , y) = f (C1x) + xTBy − g(C2y) with strongly convex f and g

L(x , y) is nonconvex-nonconcave with large enough interaction terms
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Step 3: Extend the Convergent Results of ODEs to DTAs

Step 3: Extend the Convergent Results of
ODEs back to DTAs
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Fundamental Questions to Answer

Questions:

What are the connections between the convergence of a DTA and
the convergence of its O(s r )-resolution ODEs?

How to choose the energy function?

Our answer (informal):
With a “proper” energy function, if the O(s r )-resolution ODE converges
linearly to an optimal solution, then the DTA converges linearly to an
optimal solution.
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Proper Energy Function

Recall by definition of the O(s r )-resolution ODE that:

‖Z (s)− z+‖ ≤ O(s r+2).

Definition: Proper Energy Function

We say an energy function E (z) = 1
2e(z)2 with e(z) ≥ 0 is proper for

studying the O(s r )-resolution ODE of a DTA z+ = g(z , s) if there exists
a and c such that it holds for any z ∈ {e(z) ≤ δ} that

‖Z (s)− z+‖ ≤ cs r+2e(z).



39

Review Step 1: Obtain ODEs Step 2: Analyze the ODEs Step 3: Back to DTAs Applications Summary

How to Check Whether an Energy Function is Proper?

Recall that

g(z , s) =
r+1∑
j=0

gj(z)s j + o(s r+1)

Theorem: Sufficient Conditions for Proper Energy Functions

Suppose gj(z) is (2r + 3− j)-th order differentiable over z , and it holds
for any z ∈ {e(z) ≤ δ} that

‖gj(z)‖ ≤ O(e(z)) and ‖∇kgj(z)‖ ≤ O(1)

for j = 1, ..., r + 2 and k = 1, ..., 2r + 3− j . Then the energy function
E (z) = 1

2e(z)2 is proper.

Some typical examples of e(z):

e(z) = ‖F (z)‖, e(z) = ‖z − z∗‖
e(z) =

√
f (z)− f ∗ for convex optimization

1
2‖F (z)‖2 is a proper energy function for GM, PPM and EGM
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Connections between DTAs and ODEs

Theorem: Connections between DTAs and ODEs

Consider a DTA and its O(s r )-resolution ODE with a proper energy
function E (z). Suppose the O(s r )-linear-convergence condition is
satisfied, i.e.,

d

dt
E(Z ) ≤ −ρ(s)E(Z ) ,

and it holds for any z ∈ {e(z) ≤ δ} that ‖∇e(z)‖ ≤ γ. If the step-size s

satisfies γcs r+2 ≤ min
(

1, sρ(s)
16

)
, it holds for any k ≥ 0 that

E (zk) ≤
(

1− sρ(s)

4

)k

E (z0) .

ρ(s) ≥ O(s r ), thus there exists s∗ such that the step-size condition
holds when s ≤ s∗
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Theorem: Connections between DTAs and ODEs

Consider a DTA and its O(s r )-resolution ODE with a proper energy
function E (z). Suppose the O(s r )-linear-convergence condition is
satisfied, i.e.,

d

dt
E(Z ) ≤ −ρ(s)E(Z ) ,

and it holds for any z ∈ {e(z) ≤ δ} that ‖∇e(z)‖ ≤ γ. If the step-size s

satisfies γcs r+2 ≤ min
(

1, sρ(s)
16

)
, it holds for any k ≥ 0 that

E (zk) ≤
(

1− sρ(s)

4

)k

E (z0) .

ρ(s) ≥ O(s r ), thus there exists s∗ such that the step-size condition
holds when s ≤ s∗



42

Review Step 1: Obtain ODEs Step 2: Analyze the ODEs Step 3: Back to DTAs Applications Summary

Connections between DTAs and ODEs

Theorem: Connections between DTAs and ODEs
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Applications: Nonconvex-Nonconcave Minimax Problems

Applications:

Nonconvex-Nonconcave Minimax Problems
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Nonconvex-Nonconcave Minimax Problems

The problem of interest is

min
x

max
y

L(x , y) ,

where L(x , y) may not be convex in x nor concave in y .

Many applications:

Generative Adversarial Nets (GANs)

Robust Neural Networks
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A Simple 2-d Problem

Consider simple 2-d nonconvex-nonconcave problem with bilinear
interaction term:

min
x

max
y

L(x , y) = f (x) + xAy − g(y),

where f (x) = g(x) = (x − 3)(x − 1)(x + 1)(x + 3).
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Why are Nonconvex-Nonconcave Problems Hard?

Cycling is a fundamental part of nonconvex-nonconcave problems
(trajactory of PPM):
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The Landscape of Nonconvex-Nonconcave Problems

Consider simple 2-d nonconvex-nonconcave problem with bilinear
interaction term:

min
x

max
y

L(x , y) = f (x) + xTAy − g(y),

where f (x) = g(x) = (x − 3)(x − 1)(x + 1)(x + 3).
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The Landscape of Nonconvex-Nonconcave Problems

The above structure extends to every nonconvex-nonconcave bilinear
problem:

L(x , y) = f (x) + xTAy − g(y)

A Large Enough: PPM has global linear convergence to a
stationary point

A Middle Size: PPM may cycle indefinitely

A Small Enough: PPM has local linear convergence to a
stationary point with a good initialization

Recall the O(s)-linear-convergence condition for bilinear
nonconvex-nonconcave problem:

∇2f (x) + sAAT � ρ(s)I ,∇2g(x) + sATA � ρ(s)I

The first case globally satisfies the above condition; The third case
locally satisfies this condition.
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The Landscape of Nonconvex-Nonconcave Problems

A more smoothed phase shift:

The phase transition can be characterized by Hopf Bifurcation of
the O(s)-resolution ODE
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Summary

O(s r )-Resolution ODE framework

First Step — Obtain ODEs from a DTA:

The O(s r )-resolution ODEs, and how to obtain them
Examples for PPM, EGM and GM

Second Step — Analyze the O(s r )-resolution ODEs:

O(s r )-linear convergence condition

Third Step — Going back to DTAs:

Proper energy function
The connection between the ODEs and the DTAs
How to check whether an energy function is proper

Application — Nonconvex-Nonconcave Minimax Problems

Thank you!
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