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Abstract— The decreased airport arrival capacity during
adverse weather conditions makes the pre-planned airline flight
schedules unachievable, and necessitates the reallocation of
arrival resources at the affected airport. This paper considers
two different approaches based on market design to resolve
the issue of airport landing resource reallocation. Several
properties of these techniques are evaluated, including the
nature of incentives for airlines to participate, report their true
preferences, and the desire to minimize manipulation of the
system. The first part of the paper analyzes the problem of
slot trading without monetary payments, and presents sufficient
conditions for the existence of stable allocations. The second
part of the paper proposes the combination of optimization-
based slot trading with a payment-based exchange scheme that
ensures that the exchange (the FAA) does not operate at a
deficit, while minimizing the extent by which airlines could
manipulate the system by misrepresenting their preferences.

I. I NTRODUCTION

The growing numbers of aircraft in the skies have resulted
in a congested airspace, and put a strain on the resources for
takeoffs and landings at airports. Several airports have been
designated ashigh-density airports, and are subject to limits
on the number of instrument flight takeoffs and landings of
aircraft that can be scheduled over a given period of time [1].
Air carrier schedules are based on reservations for instrument
flight takeoff or landing, which are also known asslots. The
limits on the operational capacity of an airport caused by
constraints on runway operations, gate availability, and air
traffic control, make landing slots scarce resources.

While slots at high-density airports have traditionally been
grandfathered, with the success of several combinatorial
auctions in recent years, there has been a renewed interest in
auction mechanisms for slot allocation [2], including a case
study based at the Hartsfield Atlanta airport [3]. The FAA is
considering market-based mechanisms for demand, capacity
and congestion management in many airports, including New
York’s LaGuardia [4] and Chicago’s O’Hare [5] airports.

An important issue that needs to be addressed is that of
slot reallocation when an airline is unable to utilize a slot
that it owns, due to circumstances beyond its control. This
could be because of over-scheduling of the airspace (for
example, departures in O’Hare airport are sometimes slowed
because of enroute traffic) or because of adverse weather
phenomena. Bad weather can decrease the arrival capacity
of the airport, and sometimes even close an airport down
temporarily, increasing the rate of arrivals (demand) intothe
airport at a later time. The FAA is required to respond when

Hamsa Balakrishnan is with the Department of Aeronautics and Astronau-
tics, and the Engineering Systems Division, at the Massachusetts Institute
of Technology.hamsa@mit.edu

the demand over a 15-minute period exceeds the capacity.
Small surges in demand are resolved using airborne control
procedures, such as hold patterns, re-routes, and variations
in speed (within 10%). Due to the high fuel costs of airborne
delay, longer surges in demand are resolved by delaying
flights at the departure airport, known as a Ground Delay
Program or GDP [6]. The disruption of flights in a GDP
implies that airlines can no longer fly their original schedules,
and requires a reallocation of airport landing slots. Since
the implementation of the ground delay program affects the
effective allocation of slots, it is necessary to analyze the
rules and incentives of GDPs before the airlines can be
expected to spend large sums of money in slot auctions.

In developing slot reallocation algorithms for GDPs, we
can treat the problem as that of designing an exchange
mechanism for slots, where airlines are self-interested agents
who wish to maximize their utility, represented by the utility
that they derive from the slots that they are allocated. There
are several issues that must be considered while designing
such market-based mechanisms for slot reallocation. We seek
a solution that ispareto efficient, that is, there is no other
solution that is preferable to all airlines. In other words,we
seek a solution such that no airline can receive a better alloca-
tion of slots without some other airline being made worse off.
While the objective of reallocation is to maximize the overall
value of the trades (allocative efficiency), we also require
that the airlines are not worse off by participating in the slot
exchange (individual rationality or voluntary participation).
A stable allocation is also desirable; we would like to find an
allocation such that no coalition of airlines would do better
by not participating in the exchange, and instead trading
amongst themselves. The set of such stable allocations is also
called thecore. To minimize user gaming, we would also like
to design a mechanism that encourages airlines to report their
true preferences. This could be either expressed byincentive-
compatibility, which implies that truthful reporting forms a
Bayes-Nash equilibrium (that is, if every other airline reports
its preferences truthfully, an airline maximizes its utility by
reporting truthfully) or bystrategy-proofness, which implies
that truthful reporting is optimal irrespective of the reports
of other airlines. We note that the issue of truthful reporting
of preferences arises when the airlines are required to state
the preferences of flight-slot allocations, or even bid for slots
based on their private valuations.

In this paper, we consider two possible approaches to the
slot trading problem. The first is a mechanism in which
airlines declare the relative priorities of their flights, and
also the ranked order of slot preferences for each flight.
There are no monetary transfers allowed between airlines.



As the mechanism designers, we would like to obtain the
pareto-efficient reallocation of slots to flights. However,we
demonstrate that there may be no stable allocation, that is,
the core of the slot trading economy may be empty. This
would imply that the airlines would always have incentive
to deviate or form coalitions, and the system will not
converge to a stable allocation of slots. As a preliminary
step to better understand the behavior of this mechanism,
we derive sufficient conditions on the preference relationsof
airlines that guarantee a non-empty core; we also propose
an algorithm to determine a core allocation when it exists.
The second approach is a mechanism that allows payments
between airlines for the slots traded. Airlines report the set
of acceptable trades and the associated utility of the trade;
we employ the techniques proposed by Parkes et al. [7] to
develop a payment scheme that is individual-rational and
budget-balanced, that attempts to minimize the ability of
airlines to manipulate the payments by deceit, and that
determines the pareto-efficient allocation correspondingto
the declared utilities of the airlines.

II. GROUND DELAY PROGRAMS

There is currently a move toward Collaborative Decision
Making (CDM) for slot allocation during Ground Delay
Programs [8]. The chief premise of the CDM program is
that an increased data exchange between the FAA and the
airlines will result in improved decision making. Before
the implementation of CDM-based proposals, GDPs were
implemented by assigning flights to slots using a first-come,
first-served algorithm known asGrover Jack. The two new
procedures introduced by the CDM program are known as
Ration-By-Schedule(RBS) andCompression.

The first stage of a GDP is the RBS algorithm, which
rations the arrival slots among the airlines on a first-come,
first-served basis, according to theiroriginal scheduled time
of arrival (STA). The rationale behind this is that airlines
will not forfeit a slot by reporting a delay or cancellation.

Delays, and cancellation of flights by airlines, create gaps
in the current schedule. The Compression stage moves flights
up to fill in these slots such that an airline that vacates a
slot receives the slot belonging to the earliest flight that can
utilize the vacant slot. In this manner, there is incentive for
airlines to report cancellations.

Compression is essentially an exchange mechanism in
which the objective is to minimize delays, and to maximize
slot allocation. It assumes that airlines would like to schedule
any flight as early as possible, with priorities based on the
earliest time of arrival. In reality, we would like to allow
airlines the freedom to assign more general priorities and slot
preferences (for example, based on their banking strategies).
CDM primarily concentrates on incentives for airlines to
report delays and cancellations. In this research, we consider
the nature of incentives for airlines to participate in a GDP,
and when they do, be truthful in their reports to the FAA.

III. SLOT REALLOCATION WITHOUT PAYMENTS

In this section, we consider a solution based on the Top
Trading Cycles mechanism for house allocation [9]. These

mechanisms have been shown to, under certain conditions,
yield a unique outcome [10] that is pareto-efficient, and in
addition, are individually rational and strategy-proof [11].

We fix a priority ordering of flights in the GDP. If an
airline cancelled a flight and created a vacant slot, it is
allowed to choose one of its flights as the “highest priority
flight”. If a flight is delayed for reasons not related to the
GDP (a mechanical failure, for example), the airline can
choose to vacate its slot and use the priority it obtains to
choose a later time slot. An ordering is randomly selected
for the remaining flights from an exogenous distribution of
orderings. Airlines submit a set of preferences for each of
their flights. In the absence of any other constraints, the
preference set for flightf would be the set of slots ranging
from the earliest possible arrival,e(f) (the most preferred
slot) to the current slot position,I(f). Given the preference
profiles of flights over slots, we find the matching of flights
to slots using the Top Trading Cycles algorithm [9].

Algorithm 1 (Top Trading Cycles Algorithm):
We begin with the set of all flights and all slots, and
sequentially match slots to flights as follows:

• Each flightf points to its most preferred slot among the
remaining slots under its announced preferences, each
occupied slot points to its occupant, and each vacant
slot points to the flight with the highest priority among
those still remaining. Since the numbers of flights and
slots are finite, there is at least one cycle. Every flight
in the cycle is assigned the slot that it points to, and
removed along with its assignment. If there is at least
one remaining flight and one remaining slot, we repeat
the process.

The algorithm terminates in at mostmin{|F|, |S|} iterations,
whereF is the set of flights andS is the set of slots.

The following theorem describes the properties of the
induced Top Trading Cycles (TTC) mechanism.

Theorem 1 (In [11]): For any ordering of flights, the in-
duced TTC mechanism is pareto-efficient, individually ratio-
nal, and strategy proof.

Example 1 (Top Trading Cycles): We consider an exam-
ple scenario of reallocating slots to flights using the Top
Trading Cycles algorithm. The initial slot assignments after
the Ration-by-Schedule stage is shown in Fig. 1 (a). The solid
lines represent initial assignments of slots to flights, while
the dotted lines represent the earliest arrival times (STA).

The Top Trading Cycles mechanism allows the airlines to
report the order of preference of slots for each flight. Unless
the airline states otherwise, we assume that the only objective
is to decrease delay, and priorities are determined by the
amount of delay incurred. However, we could also consider
other scenarios, such as, if UAL2 most prefers the 1602 slot
(Fig. 1 (b)), UAL2 most prefers the 1604 slot (Fig. 1 (c)),
or if flight AAL2 most prefers the 1606 slot (Fig. 1 (d)).

A. When airlines possess multiple flights in a GDP

It is clear that in the instances in which the flights
correspond to agents, the top trading cycles mechanism will
find the (single) core allocation. This extends to situations



(a) (b) (c) (d)
Fig. 1. Slot assignments using Top Trading Cycles, for different airline preferences. AAL1 and UAL1 are cancelled by theairlines.

in which the airlines are the agents, and each airline owns
only one flight. Vossen [12] suggests that the case in which
airlines may have more than one flight corresponds to a
Shapley-Scarf economy with a single type of indivisible
good, in which agents may consume multiple units, and by
modifying an example illustrated for such an economy by
Konishi et al. [13], they construct an example of a GDP with
an empty core. We note that slot exchange in a GDP where
each airline owns several flights is not quite equivalent to
a Shapley-Scarf economy with a single type of indivisible
good, in which agents may consume multiple units. The
reason for this is that an airline cannot claim equal cost
structure over the slots for all its flights, since that would
imply that it would ideally like all its flights to be scheduled
in the same slot, which is not possible. In reality, since flights
are scheduled over different slots in the original schedule, the
costs of the slots in the GDP differ from flight to flight.

We show in the following example, modified from [14],
that even when airlines only reveal a list of preferences for
each flight, if an airline is allowed to own more than one
flight, the core may be empty.

Example 2 (GDPs and empty cores): Let us consider a
GDP with 9 slots, 9 flights, and 5 airlines.

F = {f1, · · · , f9}; S = {s1, · · · , f9}; A = {a, b, c, d, e}
Fa = {1, 2}, Fb = {3, 4}, Fc = {5, 6}, Fd = {7, 8}, Fe = {9};
Sa = {1, 2}, Sb = {3, 4}, Sc = {5, 6}, Sd = {7, 8}, Se = {9};

The preference profiles for each of the flights, as given by
the airlines are

Q(f1) = (s7, s1);Q(f2) = (s2, s3);Q(f3) = (s2, s9, s5, s3);
Q(f4) = (s4, s1);Q(f5) = (s6, s8);Q(f6) = (s3, s8, s5);
Q(f7) = (s4, s5, s8);Q(f8) = (s7, s8);Q(f9) = (s9);

Clearly, for any core-stable allocation,σ(f9) = 9. Each
airline, declares its priority order of flights as
P(a) = (f1, f2);P(b) = (f4, f3);P(c) = (f5, f6);
P(d) = (f8, f7);P(e) = (f9).

Suppose the flights extend their preferences over the rest
of their airline using the ruleδ such that(1, 2) ≻δ (2, 1) ≻δ

(1, 3). For example, for airlinea, with the priorities defined
as above, from the perspective of flightf1, this would
translate to{s7, s3} ≻ {s1, s2} ≻ {} (there is no preference
3 for f2). If we were to order the ranking of matchings for
each airline (a = {f1, f2}, for example), we would get, for
sets of matching defined asΣa

ij = {σ(f1) = si, σ(f2) =
sj}, the following ranking of sets:

a b c d

Σa
72 Σb

24 Σc
63 Σd

47

Σa
73 Σb

21 Σc
68 Σd

57

Σa
12 Σb

54 Σc
83 Σd

48

· · · Σb
34 or Σb

51 Σc
65 Σd

78 or Σd
58

(↓: decreasing
preferences).

We note that for a given airline, both flights have the same
ranking of matches. Any core-stable matchingσ must be
such that

σ ∈ Aa = Σa
72 ∪ Σa

73 ∪ Σa
12

σ ∈ Ab = Σb
24 ∪ Σb

21 ∪ Σb
54 ∪ Σb

34 ∪ Σb
51

σ ∈ Ac = Σc
63 ∪ Σc

68 ∪ Σc
83 ∪ Σc

65

σ ∈ Ad = Σd
47 ∪ Σd

57 ∪ Σd
48 ∪ Σd

87 ∪ Σd
58

The intersection of the above sets results in four possible
matchings,X1, X2, X3 andX4, given by
Xa

1 = {s7, s3}, X
b
1 = {s2, s1}, X

c
1 = {s6, s4}, X

d
1 = {s5, s8}

Xa
2 = {s2, s1}, X

b
2 = {s5, s4}, X

c
2 = {s6, s3}, X

d
2 = {s8, s7}

Xa
3 = {s2, s1}, X

b
3 = {s3, s4}, X

c
3 = {s6, s8}, X

d
3 = {s5, s7}

Xa
4 = {s2, s1}, X

b
4 = {s3, s4}, X

c
4 = {s6, s5}, X

d
4 = {s8, s7}

We notice that bothX1 andX4 are blocked byX3 through
{c, d}, X2 is blocked byX1 through{a, b, d}, and X3 is
blocked byX2 through{b, c}. Therefore, the core of this
game, where airlines can operate multiple flights, is empty.

IV. SLOT EXCHANGES AND THE EMPTY CORE PROBLEM

The fact that the core of the slot allocation economy might
be empty is an important one, since it implies that there
are situations in which there is no stable allocation of slots.
We note that this alone does not merit the discarding of
game-theoretic approaches in favor of other (for example,
optimization-based) techniques, since the problem of coali-
tions being formed between airlines will exist, even if some
other reallocation mechanism (with no payments between
airlines) is chosen. Instead, to gain a better understanding of
the problem, we try to determine conditions on the airlines’
preference profiles that guarantee the existence of a non-
empty core, and also propose an algorithm to determine a
stable allocation within this core.

In this section, we describe a generalized Shapley-Scarf
economy that models GDPs in which each airline (single
agent) could own more than one flight. In such a scenario,
while side payments between airlines are still not allowed,
it is possible for flightswithin the same airline to pool their
resources. The initial endowment to an each flight is the slot
initially assigned to it. When transfers are allowed withinan
airline, the budget-feasible outcomes are those allocations in
which the total price of the allocated goods to an airline does



not exceed the total initial endowment to that airline.

A. Model of a Shapley-Scarf economy for slot reallocation

We broadly follow the notation of Laffond and Laine [14].
We denote the set of positive integers byN. Let F =
{1, 2, · · · , n}, n ∈ N denote a finite set of flights. Let
S ∈ {1, · · · , n} be the set of (indivisible) slots. A matching
σ is a bijection fromF to S, whereσ(f) = s means that
slot s is allocated to flightf . We denote byΣ the set of all
possible matchings. LetA = {A1, · · · , AH} be a partition
of F into different airlines. We denote byA(f) the unique
airline which operates the flightf .

Individual flight preferences are given by two linear or-
ders:PF

f is a linear order onA(f), which describes how the
flight positions its importance relative to the other flights
owned by the same airline;PS

f is a linear order onS,
which describes howf values slots. Therefore, flightf ’s
preferences are denoted byPf = (PF

f , PS
f ).

A profile π ∈ Π is a vector(Pf )f∈F of flight preferences.
We denote byrπ

f (s) the rank given byPS
f to slot s. x(f)

is the flight in A(f) having rank x ∈ {1, · · · , |A(f)|},
according toPF

f . 1(Ah) denotes the set of flights inAh that
are ranked first (highest priority) by at least one member of
Ah. 1Z(f) is the slot inZ ⊆ S flight f most prefers.

The set of all preferences onΣ is denoted byΨ. A
preference extension rule is a mappingδ from Π to Ψ. A
preference extension rule describes how an airline derives,
from the set of all original orderings of its flights and slots,
a complete ranking of matchings for a particular flight. We
assume that for all flights in an airline, the same extension
rule is applied (∀f ∈ a = A(f), δf = δa).

There are several possible restrictions on the set of pref-
erence extension rules. We considerπ ∈ Π, σ ∈ Σn, and let
f ∈ F . The π-ordered rank vector ofσ for f is given by
Sπ

f (σ) = (rπ
1(f)(σ), rπ

2(f)(σ), · · · , rπ
|A(f)|(f)(σ)).

Definition 1: Let δ be a preference extension rule. Then
δ is said to beneutral if ∀σ, σ′, γ, γ′ ∈ Σ, ∀π, π′ ∈ Π,
[Sπ

f (σ) = Sπ′

f (σ′) and Sπ
f (γ) = Sπ′

f (γ′)] ⇒ {[σδf (π)γ] ⇔

[σ′δf (π)γ′]}.
A neutral rule describes a specific non-selfish way to evaluate
matchings. It implies that the “name” of the slot does not
matter when ordering matchings. Each flight (individual) f
considers first the well-being of its most preferred flight
1(f), then the preferences of2(f), and so on. Therefore
the comparison of two matchings by flightf requires the
comparison of two vectors inΩf = {1, · · · , n}|A(f)|. As a
result of neutrality, forσ, σ′ ∈ Σn, f ∈ F , and π ∈ Π,
[σδf (π)σ′] will be equivalent to[Sπ

f (σ) � Sπ
f (σ′)].

Definition 2: A neutral preference extension ruleδ is
monotone if ∀π ∈ Π, σ, σ′ ∈ Σn, ∀f ∈ F , δ(π) is such
that [Sπ

f (σ) ≤ Sπ
f (σ′)] ⇒ [σδ(π)σ′].

Monotonicity means that an individual (flight) is (strictly)
better off when moving from one matching to another Pareto-
improves the welfare of the airline to which it belongs.

Definition 3: An economyE is a 5-tuple(F ,A, π, δ, σ0),
whereF is the set of flights,A is the partition of flights
among the airlines, where(π, σ0) ∈ Π × Σ, whereδ is a

neutral and monotone preference extension rule, and where
σ0 is called the initial matching ofE .

Definition 4: Let E = (F ,A, π, δ, σ0) be an economy. A
matchingσ is said to be unblocked if there exists noJ ⊆ F
and noσ′ ∈ Σ such that:

1) ∀A ∈ A, [A ∩ J 6= ∅] ⇒ [A ⊆ J ]
2) ∀j ∈ J, σ′δj(π)σ
3) ∀f ∈ F − J, σ′(f) = σ0(f)

The core of E is the setC(E) of unblocked matchings.
Definition 5: A neutral preference extension ruleδ is

transfer-consistent if ∀π ∈ Π, ∀σ, σ′, ∀f ∈ F ,
[rπ

k(f)(σ) = rπ
k(f)(σ

′), k 6= k′, k′′, k′ < k′′ andrπ
k′(f)(σ) =

rπ
k′′(f)(σ

′) < rπ
k′′(f)(σ) = rπ

k′(f)(σ
′)] ⇒ [σδf (π)σ′].

Definition 6: A neutral preference extension rule,δ is
strongly separableif ∀(w1, w2, · · · , wK), (z1, z2, · · · , zK) ∈ Ω

such that allwis not equal, and allzis not equal,
[(w1, · · · , wK) ≻δ (z1, · · · , zK)] ⇒

[∃i such that∀xj ∈ {1, · · · , n}, j 6= i,
(x1, · · · , wi, · · · , xK) ≻δ (z1, · · · , zK)].

Strong separability implies that when comparing two dis-
joint ordered rank vectors, only one coordinate matters.

B. Guaranteeing a non-empty core

We can guarantee a non-empty core for a slot reallocation
economy by placing restrictions on the preference extension
rules.

Theorem 2 (Non-empty core):Let E = (F ,A, π, δ, σ0)
be an economy in which the preference extension rules
δ are neutral, monotone, transfer-consistent, and strongly
separable. Then, the economyE has a non-empty core.

Proof: This theorem is proved in the appendix. It is
a proof by construction, and describes an algorithm (the
Generalized Top Trading Cycles sequence) that determines
an allocation that is in the core of the economy.

The class of preference extension rules for which we can
guarantee a non-empty core is quite restrictive, but include
the set of lexicographic rules. Therefore, if airlines or-
der their flights according to priority, and rank allocations
lexicographically across the vector, the core is non-empty.
Similarly, lexicographic ordering subject to the constraint
that no individual flight receives a worse allocation that
its current slot is also an acceptable preference relation to
determine an allocation that its within the core. If the core
is empty, the FAA would have to implement rules to ensure
that the market converges; these rules would have to enforce
stability by preventing the formation of coalitions by airlines.

The investigation of the incentive-compatibility or
strategy-proofness of the Generalized Top Trading Cycles
algorithm, under the restricted preference extension rules
that guarantee a nonempty core, is a direction for future
research. It can be shown that in the most general scenario
in which airlines have preferences over the set of all possible
matchings, the problem is quite similar to models of voting
schemes [15]. In this case, the only matching rules that are
strategy-proof and Pareto-efficient are dictatorial rules, in
which one airline gets to make the decision.



V. SLOT EXCHANGES WITH PAYMENTS

We now consider a different approach, namely one in
which monetary transfers are allowed between airlines. This
is a marked deviation from the current system, and the
acceptability of such a scheme to the various stakeholders
needs to be studied, but is beyond the scope of this work.

We consider the problem of a general slot exchange mech-
anism, in which airlines bid for slot trades, and payments are
determined when the market is cleared, that is the allocation
of slots is determined. Vossen and Ball [6] model the slot
trading mechanism as an optimization framework in which
the FAA acts as the mediator (in other words, the exchange).
They consider the scenario in which airlines make offers in
the form (s, Ts), wheres is a slot andTs is the set of all
slots that the airline is willing to receive in exchange for
relinquishings. The airline also submits (”bids”) the value
of each trade,vst, t ∈ Ts, which is the value it would derive
by trading slots for slot t. In addition, the airline is also
allowed to define a slotρ(s) from among the slots it owns,
which is the slot that it will retain if all the trades inTs are
denied. We require that the mappingρ(s) is a one-to-one
mapping. The allocation of slots (winner determination) is
then determined by value maximization, using the following
formulation:
maximize

∑
s∈S

∑
t∈Ts

vstxst

subject to
∑

t∈Ts
xst + ys = 1 ∀ s ∈ S

∑
t:s∈Tt

xts + yρ−(s) = 1 ∀ s ∈ S (1)

xst, ys ∈ {0, 1} ∀ s ∈ S, t ∈ Ts

whereρ−(s) = {t : ρ(t) = s}. The variablexst = 1 for
somet ∈ Ts when the airline receives slott in exchange for
slot s. The variableys = 1 if the offer (s, Ts) is rejected, and
0 if it is accepted. The above formulation would determine
the efficient allocation if the airlines bid truthfully.

The next task is to determine the payments by (or to)
the airlines, depending on their declared value for the trade.
As before, we would like the payment rules to satisfy
individual rationality, that is, no airline should be worse
off by participating in the exchange. Since the FAA will
be operating this mechanism, we require that the exchange
does not run at a loss, that is, we require budget balance.
In addition, since the payments are being computed based
on the values (bids) declared by the airlines, we would like
to minimize the extent to which the airlines can manipulate
the allocation and payments by misrepresenting their values
(i.e., we would like strategy-proofness).

It is well-known that there is no exchange mechanism
that can be efficient, budget-balanced, and individual ratio-
nal [16]. As an alternative, we follow the approach proposed
by Parkes et al. [7], wherein we enforce budget-balance and
individual rationality, and try to achieve a fairly efficient and
fairly incentive-compatible scheme.

A. Vickrey payments

Vickrey-Clarke-Groves (VCG) pricing mechanisms sup-
port efficient, individual rational and strategy-proof ex-
changes that are, however, frequently not budget-balanced.

We consider the formulation shown in (1). The optimal
trade (for the reported values) is given byx∗

st, and the optimal
value isV ∗ =

∑
s∈S

∑
t∈Ts

vstx
∗
st. We denote by(V−a)∗

the optimal value without any participation from airlinea.
V ∗
−a =

∑
s∈S\Sa

∑
t∈Ts

vstx
∗
st is the value of tradex∗

st to all
airlines excepta. Then, the Vickrey payment [17] to airline
a is computed as

pvick,a = (V−a)∗ − V ∗
−a. (2)

Negative payments imply that the airline receives money
from the exchange (FAA). The Vickrey discount is defined
as the difference between the bid and the payment, that
is, ∆vick,a =

∑
s∈Sa

∑
t∈Ts

vstx
∗
st − pvick,a. The Vickrey

payment is individual rational, because the discount is always
non-negative. Similarly, the allocation is also individual
rational because the airlines only bid on preferable trades,
and are allowed to reserve a slotρ(s) for a flight in the
event that none of the preferred trades is accepted. Vickrey
payments can also be shown to be strategy-proof [17]. We
now demonstrate using a slot trading example that the VCG
mechanism can result in a failure of budget-balance.

Example 3 (Slot trading with Vickrey payments):
Consider 3 airlinesA = {A, B, C}, which operate 6
flights, such thatFA = {f1, f6}, FB = {f2, f5}, and
FC = {f3, f4}, and the initial slot assignments are
SA = {s1, s6},SB = {s2, s5}, andSC = {s3, s4}. Suppose
f1 is cancelled (airlineA will trade slot s1 for any other
slot). Ts1 = {s2, s3, s4, s5, s6}, Ts2 = {s1}, Ts3 = {s1, s2},
Ts4 = {s2, s3}, Ts5 = {s1, s2, s3}, Ts6 = {s2}. In the
following discussion, we use the symbol ’$’ to denote the
unit of currency used. The airlines report the value of trades
asvs1t = 0 for all t, vs2s1 = $10, vs3s1 = $20, vs3s2 = $10,
vs4s2 = $20, vs4s3 = $10, vs5s1 = $40, vs5s2 = $30,
vs5s3 = $20, andvs6s2 = $40. Then, the optimal flight-slot
assignments and Vickrey payments are given by

Airline Flight Initial Final pvick

A F1 S1 − -$10
F6 S6 S2

B F2 S2 S1 -$10
F5 S5 S5

C F3 S3 S3 0F4 S4 S4

which implies that the FAA (exchange) would run at a loss
of $20.

B. Approximate Vickrey-based payments

We employ the approach proposed in [7], and determine
a payment scheme that minimizes the distance from the
Vickrey payments, subject to the budget balance constraints.
In other words, we would like to minimize the (L2 or
L∞) distance from the Vickrey payments, but constrain the
payment scheme to be budget-balanced (that is, the sum
of payments from all the airlines must be nonnegative).
Therefore, in conjunction with Problem (1), we solve the
following problem, written in terms of the discounts,∆:

minimize ||∆vick − ∆||2
such that

∑
a∈A∗ ∆a ≤ V ∗ [Budget-balance]

∆a ≤ ∆vick,a, ∀a ∈ A∗ [Discount≤ ∆vick]
∆a ≥ 0, ∀a ∈ A∗ [Indiv. rationality]



where A∗ is the set of airlines that participate in the
optimal trade. It has been shown in [7] that the solution
to the above problem can be written analytically as∆a =

max(0, ∆vick,a−C), whereC =
P

a∈A∗ ∆vick,a−V ∗

|A∗| (Thresh-
old rule).

It has been shown empirically that the Threshold rule
applied to exchanges results in a mechanism that has a
relatively high level of truth-revelation by the agents, and
therefore a high level of efficiency [7].

Example 4 (Slot trading with the Threshold rule): We
return to the scenario in Example 3, and apply payments
according to the Threshold rule.C = (50+20−50)/2 = 10.
This implies that∆A = $40, ∆B = $10, ∆C = 0, and
pA = pB = pC = 0, which is budget-balanced.

It must be borne in mind that while the Threshold rule
maintains a level of truth-revelation by the airlines, especially
when they do not have knowledge of their competitors true
valuations, the payment scheme is not strategy-proof. For
example, let us consider the case where airline A falsely
reports the value of tradings6 for s2 as v(s6s2) = $30,
when its true valuation is $40 (as in Example 3). Then,
the optimal allocation will remain unchanged, while the
optimal value will be calculated asV ∗ = $40. The Vickrey
payments would bepvick,A = −$10 (unchanged, since
Vickrey payments are strategy proof) andpvick,B = 0. But
the exchange still runs at a deficit, and the budget-balanced
payments can be shown to bepA = −$5, pB = $5 and
pC = 0. This means that the total payoff to airlineA (its
true utility minus the payment) increases from $40 when it
reported truthfully, to $45 when it reported falsely; in other
words, the payment scheme using the Threshold rule is not
strategy-proof.

1) Fiat currency vs. commodity currency:When consider-
ing sales, trades and compensations, it is necessary to decide
on a unit of exchange, or currency. One possibility is the
use of “slot currency”, issued in fixed quantities to each
airline [18]. These would play the role of vouchers that could
be freely bought or sold among airlines, but could only be
redeemable in airport slots, perhaps during some future GDP.
Another alternative is the use of a “fiat currency” instead of
commodity currency (such as slots) for the trading.

VI. CONCLUSION

The focus of this paper has been the design of slot
reallocation mechanisms for the Ground Delay Programs that
are adopted at airports during adverse weather situations.In
contrast to the techniques that are currently in use, we would
like to accommodate a wide range of airline strategies in the
prioritization of flights. The possibility that there may be
no stable allocation poses a challenge in this market, and
we have derived conditions on the manner in which airlines
extend their individual flight’s slot preferences over the entire
fleet that guarantee the existence of a core allocation. In
particular, if airlines choose priority orders of their flights and
slots to their flights, a lexicographic ordering of allocations
based on these priorities will ensure a nonempty core.

We believe that this analysis is an important first step to
understanding the behavior of the slot trading market.

Monetary transfers between airlines during slot realloca-
tion is a significant shift from the current paradigm, and
requires a detailed analysis from a policy and stakeholder
perspective to determine acceptability. However, it is clear
that any such system would have to ensure that the FAA
does not operate at a loss, and that manipulation of the
allocation by the airlines be limited. For this reason, we
have proposed the combination of a payment mechanism
that uses approximate Vickrey payments in combination with
an optimization-based approach to slot exchanges. Future
research will involve an extensive empirical study of the
incentive-compatible properties of this mechanism when
applied to typical airline slot valuations.
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APPENDIX

Proof of Theorem 2
Proof: We first formalize the notion of a weak budget set.



Definition 7: Let p = (ps)s∈S ∈ Nn be a price vector. Letf ∈
F . The weak budget setof f facing p is the subset of matchings
∆(p, f) = {σ ∈ Σ :

P

i∈A(f) pσ(i) ≤
P

i∈A(f) pσ0(i)}.
We now define weak equilibrium concepts for the economyE =
(F ,A, π, δ, σ0).

Definition 8: Let p = (ps)s∈S ∈ Nn be a price vector. Aweak
p−optimum for A(f) is a matchingσ ∈ ∆(p, f) such that there
is noσ′ ∈ ∆(p, f)−{σ} which satisfiesσ′δi(π)σ ∀i ∈ A(f). We
denote byW(p,A(f)) the set of all weakp−optima forA(f).

Definition 9: A cooperative weak price equilibrium for E is a
pair (σ, p) ∈ Σ×Nn such that∀A ∈ A, σ ∈ W(p,A). We denote
by Wcoop(E) the set of all matchings that can be implemented as
a weak price equilibrium.

Allowing for transfers between the flights owned by the same
airline, we now consider the benefit to the airline, instead of the
individual flights. This results in economies with no equilibrium,
as well as economies in which the Top Trading Cycles mechanism
results in non-equilibrium matchings [14].

Lemma 1: Let E be an economy. ThenWcoop ⊆ C(E).
Proof: Let σ ∈ Wcoop(E) and letp = (ps)s∈S be the associated

equilibrium price vector. Supposeσ /∈ C(E). Let J and σ′ be
defined as in Definition 4. LetJ = ∪h=1,···,H′Ah, whereAh ∈ A.
Condition (2) implies that∀h, ∀i ∈ Ah, σ′δi(π)σ. Therefore,
from the definition of a weakp−optimum (Definition 8),[∀h, σ ∈
W(p,Ah)] ⇒ [∀h, ∀f ∈ Ah, σ

′ /∈ ∆(p, f)]. From the definition
of weak budget sets (Definition 7),

P

i∈Ah
pσ′(i) >

P

i∈Ah
pσ0(i).

Summing overh, one gets
P

h

P

i∈Ah
pσ′(i) >

P

h

P

i∈Ah
pσ0(i),

which is impossible because Condition (3) of Definition 4 implies
that ∪f∈Ah

σ′(f) = ∪f∈Ah
σ0(f). Therefore,σ ∈ C(E), proving

thatWcoop ⊆ C(E).

We begin by considering the following lemma. Let us suppose
an airlinea is faced with several possible choices of allocations
(all feasible) to its flights, and must evaluate them. Let theairline
operateK flights, and let the ordered set of ranks accessible to
flight f from among the allocation choices be denotedM (f).

Lemma 2: Let Θ be the set of all economies where the extension
rule δ is neutral, monotone and transfer-consistent. Supposeδa ∈
Θ is strongly separable. LetM (i) = {r

(i)
1 , r

(i)
2 , · · · , r

(i)
X }, i ∈

{1, · · · ,K}, beK subsets of{1, · · · , n} such that|M (1)| = · · · =

|M (K)| = X, andr(i)1 < · · · < r
(i)
X , ∀i. Let

R(i) =
n

r(i) ∈M (i) : (x(1), · · · r(i) · · · , x(K)) ≻δa (y(1) · · · y(K)),

∀x(j), y(j)(j 6= i) ∈M (j), y(i) ∈M (i) − {r(i)}
o

.

Then, ∪iR
(i) = {r(j)1 }, for some value ofj ∈ {1, · · · , K}.

We denote this unique integer in the set∪iM
(i) by

R(M (1),M (2), · · · ,M (K)).
Proof: Suppose∃r ∈ R(i) − {r(i)1 }. Then, by definition,

(r
(1)
X , r

(2)
X , · · · , r, · · · , r(K)

X ) ≻δa (r
(1)
X , r

(2)
X , · · · , r(i)1 , · · · , r(K)

X ),
which, however, violates the monotonicity ofδa. Since this is true
for all i ∈ K, ∄r ∈ R(i) − {r(i)1 }, for any i. This implies that
∪iR

(i) ⊆ {r
(1)
1 , r

(2)
1 , · · · , r

(K)
1 }. In fact, for anyi, j ∈ {1, · · · , K},

R(i) ∪R(j) ⊆ {r(i)1 , r
(j)
1 }. We can assume, w.l.o.g, thati < j.

SupposeR(i) ∪ R(j) = {r
(i)
1 , r

(j)
1 }. This implies that

(r
(1)
1 · · · r(i)1 · · · r(j)j · · · r(K)

K ) ≻δa (r
(1)
1 · · · r(i)i · · · rj

1, · · · r
(K)
K ),

and
(r

(1)
1 · · · r(i)i · · · r(j)1 · · · r(K)

K ) ≻δa (r
(1)
1 · · · r(i)1 · · · rj

j · · · r
(K)
K ).

This is not possible, since the two conditions contradict each other.
Therefore,R(i) ∪ R(j) = {ri}, or {rj}, or ∅. Using induction,
it is clear that

S

i=1:K R(i) = {r(j)1 }, for somej, or ∅. Suppose
S

i R
(i) = ∅. This impliesR(i) = ∅,∀i. This implies that there

does not exist anr(i) such that
(x(1), · · · , r(i), · · · , x(K)) ≻δa (y(1), · · · , y(K)),

∀x(j), y(j) ∈M (j), y(i) = M (i)−{r(i)}.
⇒ (r

(1)
X , · · · , r

(i)
1 , · · · , r

(K)
X ) ≺δa (r

(1)
1 , · · · , r

(i)
2 , · · · , r

(K)
1 )

⇒ (n, · · · , r(i)1 , · · · , n) ≺δa (r
(1)
1 , · · · , r(i)2 , · · · , r(K)

1 ).

This, in turn, implies that
either (n, n, · · · , r(i)2 , · · · , n) ≻δa (n, n, · · · , r(i)1 , · · · , n), which
violates monotonicity, or it implies that∃j 6= i such that

(n, n, · · · r(j)1 , · · ·n, · · · , n) ≻δa (n, n, · · ·n, · · · r(i)1 , · · · , n). (3)

Let J (i) =

{j : (n, n, · · · r(j)1 · · · , n · · · , n) ≻δa (n, n, · · ·n · · · , r(i)1 · · · , n)}.
If J (i) = ∅ for somei, it implies that

S

i R
(i) 6= ∅.

Let us assume thatJ (i) 6= ∅, ∀i. Supposej ∈ J (i) and j′ ∈
J (j). Eqn. (3) implies that

(n, n, · · · , r(j
′)

1 , · · · , n, · · · , n) ≻δa (n, n, · · · , n, · · · , r(j)1 , · · · , n)

≻δa (n, n, · · · , n, · · · , r
(i)
1 , · · · , n).

ConsiderJ (k)(i) = J (J (· · · J (i) · · ·)).
Then, j ∈ J (k)(i) ⇒ j /∈ {

Sk−1
l=0 J (l)(i)}, whereJ (0)(i) = i.

Suppose|
S(k−1)

l=0 J (l)(i)| = K − 1. Then,
∃ (only one)s /∈ {

Sk−1
l=0 J (l)(i)} such thats ∈ J (k)(i).

⇒ (n, n, · · · r
(s)
1 · · · , n, · · · , n)≻δa (n, n, · · · , n · · · r

(t)
1 , · · · , n).

However, (3) implies that∃t′ 6= s, such that
(n, n, · · · , r

(t′)
1 , · · · , n, · · · , n) ≻δa (n, n, · · · , n, · · · , r

(s)
1 , · · · , n),

t′ /∈ {
Sk−1

l=0 J (l)(i)}. This is a contradiction, implying that
S

i R
(i) 6= ∅.

We considert ∈ N, and letSt ⊆ S be a subset of slots and
Ft ⊆ F be a subset of flights such that|St| = |Ft|. Let E be an
economy such thatδ ∈ Θ, andi ∈ Ft. We define

1) Qi
t = {r ∈ {1, · · · , n} : ∃s ∈ St such thatr = rπ

i (s)}.
2) bit = min{r ∈ Qi

t} = rπ
i (1St(i)).

3) Supposebk(i)
t = R(Q

1(i)
t , · · · , QK(i)

t ). Then,

θi
t =



k(i), k(i) ∈ Ft

i, k(i) /∈ Ft

4) ForA = A(i) = (f1, · · · , i, · · · , fK),
θt(A) = {θt(f1), · · · , θt(i), · · · , θt(fK)} with the conven-
tion that if fj /∈ Ft, θt(fj) = θt(k), k = m(j) such that
m = min{m : m(j) ∈ Ft}, according toPF

j .
5) θt(Ft) = ∪i∈Ftθt(i).

θt(i) is well-defined for anyi ∈ Ft, from Lemma 2, ifδ is strongly
separable.

Definition 10: Let E be an economy whereδ ∈ Θ. Let St ⊆ S ,
Ft ⊆ F , such that|St| = |Ft|. Let σ and γ be two one-to-one
mappings fromF to S . Then,γ is said to beσ−feasibleif for any
f ∈ Ft such thatγ(f) 6= σ(f), andA = A(f):
f ∈ θt(A) =⇒ [γ(f) = 1St(f)].
f /∈ θt(A) =⇒ [j ∈ θt(A(f)), for somej ∈ A(f), f ∈ Ft, j 6=
f andγ(f) = σ(j)].
The set ofσ−feasible matchings fromFt to St is denoted by
F(σ,Ft,St).
The above definition ofσ−feasible matchings specifies the proce-
dure of moving from one matching(σ) to another (γ). In particular,
if a flight f is called in a claim (some flight in the same airline
calls for f to get its most preferred slot), thenf is assigned its
best slot among those available. If flightf is assigned a new slot
without being called in a claim, then some other flight owned by
its airline (denoted flightj) is given its top slot, andf is assigned
the slotσ(j) originally assigned to flightj.

Lemma 3: Let E be an economy in whichδ ∈ Θ. Let St ⊆ S ,
Ft ⊆ F , such that|St| = |Ft|. Let σt be any one-to-one mapping
from F to S . Suppose that∀f ∈ Ft ∩ θt(A(f)), σt(f) 6= 1St(f).
Then, there exists a matchingσt+1 ∈ F(σ,Ft,St) − {σ}.

Proof: We define, for flightj and airlinea = A(j),
C(a)

j = {fi ∈ a : θt(fi) = j, fi /∈ θt(A(j))} ∪ {j}, ∀j such that

|θt(A(j))| < |A(j)|, |C(a)
j | > 1. We note that

P

j |C
(a)
j | = |A(j)|.

Let C1 = ∪a ∪j∈a C
(a)
j . Let j ∈ C(A(j))

j = θt(C
(A(j))
j ). We note

that each element in the setFt − C1 is a singleton set. LetG be a



directed graph defined on{C1 ∪ [Ft − C1]}2, with arcs described
by ∀C ∈ C1, ∀f ∈ Ft−C1, [(C, f) ∈ G ⇔ σt(f) = 1St(θt(C))],
and [(f, C) ∈ G ⇔ 1St(f) ∈ σt(C)].
∀C,C′ ∈ C1, (C,C′) ∈ G ⇔ 1St(θt(C)) ∈ σt(C′)
∀f, f ′ ∈ Ft − C1, (f, f ′) ∈ G ⇔ σt(f ′) = 1St(f).

Since ∀f ∈ Ft ∩ θt(A(f)), σt(f) 6= 1St(f), each vertex in
G has a single outgoing arc (i.e., the out-score is one). Therefore,
the directed graphG contains a cycle. Let us denote this cycle by
T = {cj}j=1,···,J where(cj , cj+1) ∈ G for all j, andcJ+1 = c1.
The new mapping fromF to S , denotedσt+1, is given by
∀j, [cj ∈ C1] ⇒ [σt+1(θt(cj)) = 1St(θt(cj)) ∈ σ

t(cj+1)], and
[f ∈ cj − {θt(cj)}, andσt(f) ∈ {1(θt(cj−1)),1(cj−1)}] ⇒

[σt+1(f) = σt(θt(cj))].
∀j, [cj /∈ C1] ⇒ [σt+1(cj+1) = 1St(aj)].
The mappingσt+1 satisfies the conditions of Defn. 10, and there-
fore σt+1 ∈ F(σ,Ft,St) − {σt} (i.e., σt+1 is σt−feasible).

The Generalized Top Trading Cycles (GTTC) algorithm [14]
consists of constructing successiveσt−feasible matchings, starting
from an initial matchingσ0.

Algorithm 2: (Generalized Top Trading Cycles Algorithm):
Let E = (F ,A, π, δ, σ0) be an economy whereδ ∈ Θ.
The generalized top trading cycles sequence is the sequence
{Ft,St, σ

t}t=0,···,T defined by
1) F0 = F , S0 = S
2) ∀t ∈ {0, · · · , T},

if At = {f ∈ θ(Ft) : σt(f) = 1St(f)} 6= ∅, then
a) Ft+1 = Ft − At

b) σt+1 = σt

c) St+1 = St − σt(At)

if At = ∅, then
a) Bt = {f ∈ θ(Ft) : ψσt(f) 6= σt(f)}
b) Ft+1 = Ft − Bt

c) σt+1(f) =



σt(f), f /∈ Ft

ψσt(f), f ∈ Ft

d) St+1 = St − ψσt(Bt) = σt+1(Ft+1)
whereψσt is the maximal element inF(σt,Ft,St)

3) FT+1 = ST+1 = ∅
Proposition 1: Let E = (F ,A, π, δ, σ0) be an economy in

whichδ ∈ Θ, δ strongly separable. LetσT be the matching obtained
through the GTTC sequence given byT = {Ft,St, σ

t}t=0,···,T .
Then,σT ∈ Wcoop(E).

Proof: Let K be the number of flights belonging to the largest
airline in the GDP,i.e., K = maxi |A(i)|. Let t(f) be the stage
at whichσt+1(f) = σT (f). Let p = (ps)s∈S be the price vector
defined byps = 1

Kt , ∀s ∈ ψσt(Bt) ∪ At. Consider anyA =
(f1, · · · , fK′ ) ∈ A. Then,
PK′

i=1 pσT (fi)
=

PK′

i=1
1

Kt(fi) =
PK′

i=1 pσ0(fi)
.

Therefore, by Definition 7,∀ i, σT ∈ ∆(p, i). Let us suppose,
without loss of generality, thatt(f1) ≤ t(f2) ≤ · · · ≤ t(fK′).

We need to prove thatσT ∈ Wcoop(E). Let us assume to the
contrary, that it, thatσT /∈ W(p,A). Then, there existsσ′ ∈
∆(p, f1) such thatσ′δj(π)σT , ∀j ∈ A(f1).
Claim: σ′(A) ⊆ St(f1)
Suppose not. Then, there existsm′ ∈ σ′(A) ∩ St, t < t(f1).
Therefore,
pm′ ≥ 1

Kt ≥ 1

Kt(f1)−1 = K

Kt(f1) ≥ K′

Kt(f1) ≥
PK′

i=1
1

Kt(fi ) =
w(A), say. Now, ifpm′ = w(A), the budget constraint (Definition
7) implies that

P

j∈σ′(A)−{m′} pj = 0, which in turn means that
∀ j ∈ σ′(A) − {m′}, pj = 0, which is not possible. Similarly,
pm′ > w(A) implies that

P

j∈A
pσ′(j) ≥

P

j∈A
pσ0(j), which in

turn contradictsσ′ ∈ ∆(p, f1). This proves the claim thatσ′(A) ⊆
St(f1). Let i∗ ∈ A such thatf1 = θt(f1)(i

∗). From the definition
of the GTTC sequenceT, Sπ

i∗(σT ) = (bf1
t(f1), · · · , b

fK′

t(fK′ )
), or

some permutation of it, wherebfi

t(fi)
= R(Q

1(i∗)

t(1)
, · · · , QK′(i∗)

t(K
′)

),

t(1) 6= · · · 6= t(K
′) ∈ {t(f1), · · · , t(fK′)}. Suppose (without loss

of generality) thatSπ
i∗(σT ) = (bf2

t(f2), · · · , b
f1
t(f1), · · · , b

fK′

t(fK′ )
), i.e.,

t(i) = t(f1). Then,σ′δi∗(π)σT ⇒ Sπ
i∗(σ′) �δ S

π
i∗(σT )

⇒ Sπ
i∗(σ′) = (rπ

1(i∗)(σ
′), · · · , rπ

i(i∗)(σ
′), · · · , rπ

K′(i∗)(σ
′))

� (bf2
t(f2), · · · , b

f1
t(f1), · · · , b

f
K′

t(fK′ )
). (4)

But bf1
t(f1) = R(Q

1(i∗)
t(f2) , · · · , Q

i(i∗)
t(f1), · · · , Q

K′(i∗)
t(fK′ )

). Therefore, by

definition,∀x(j), y(j) ∈ Q
j(i∗)
t(fj), ∀y

(i) ∈ Q
i(i∗)
t(f1),

(x(1), · · · , bf1
t(f1), · · · , x

(K′)) ≻δ (y(1), · · · , y(i), · · · , y(K′)). (5)
Therefore, from Eqns. (4-5), it follows thatσ′(a1) = σT (f1).

Let A′ = A− {f1}. Then,t(f2) = minj∈A′ tj .
Claim: σ′(A′) ⊆ St(f2).
Suppose not. Then, there existsm′ ∈ σ′(A′) ∩ St, t < t(f2).
Therefore,
pm′ ≥ 1

Kt ≥ 1

Kt(f2)−1 = K

Kt(f2) ≥
PK′

i=2
1

Kt(fi) = w(A′),
say. Now, if pm′ = w(A′), the budget constraint (Definition 7)
implies that

P

j∈σ′(A′)−{m′} pj = 0, which in turn means that
∀ j ∈ σ′(A′) − {m′}, pj = 0, which is not possible. Similarly,
pm′ > w(A′) implies that

P

j∈A′ pσ′(j) ≥
P

j∈A′ pσ0(j), which
in turn contradictsσ′ ∈ ∆(p, f1).

As before, by the definition ofT, σ′(f2) = σT (f2). Similarly,
it is possible to show, fori = 1, · · · , K′−1, thatσ′(fi) = σT (fi).
Sinceσ′ ∈ ∆(p, f1), then,pσ′(fK′ ) ≤ pσT (fK′ ) = 1

K
t(f

K′ )
. The

definition ofT implies thatσT (fK′) = 1St(f
K′ )

(fK′ ). Since∀i =

1, · · · ,K′ − 1, σ′(fi) = σT (fi), andσT (fK′) = 1St(f
K′ )

(fK′),

σ′δi∗σ
T contradicts the monotonicity ofδ (Definition 2).

Therefore, for anyA ∈ A, σT ∈ W(p,A).

We have shown that in the case of economies in which the pref-
erence extension ruleδ is neutral, monotone, transfer-consistent and
strongly separable, the GTTC sequence terminates in an allocation
that is a cooperative weak price equilibrium, and is therefore in the
core of the economy from Lemma 1.

Example 5 (A GDP instance using the GTTC algorithm):
Consider a GDP with 6 flights, 6 slots, and 4 airlines.
Let F0 = {f1, f2, f3, f4, f5, f6}, S0 = {s1, s2, s3, s4, s5, s6} and
A = {a, b, c, d}.
Fa = {f1, f2}, Fb = {f3}, Fc = {f4}, andFd = {f5, f6}.
Sa = {s1, s2}, Sb = {s3}, Sc = {s4}, andSd = {s5, s6}.

The preference profiles for each of the flights, as given by the
airlines are
Q(f1) = (s2, s3, s6, s4, s5, s1); Q(f2) = (s2, s3, s6, s4, s5, s1);
Q(f3) = (s4, s5, s3, s2, s1, s6); Q(f4) = (s6, s3, s4, s2, s1, s5);
Q(f5) = (s2, s5, s4, s6, s3, s1); Q(f6) = (s2, s5, s4, s6, s3, s1).
Suppose flights extend their preferences over assignments to the

other flights in their airline in a lexicographic manner. We now
apply the Generalized Top Trading Cycles Algorithm (Algorithm
2) to the exchange of slots in this GDP.
Iteration t=0: F0 = F , S0 = S , σ0(fi) = si.
θ0(a) = {f1, f2}, θ0(b) = {f3}, θ0(c) = {f4}, θ0(d) = {f5, f6}.
A0 = {f2} 6= ∅.
t=1: F1 ={f1, f3, f4, f5, f6},S1 ={s1, s3, s4, s5, s6}, σ

1(fi)=si.
θ1(a) = {f1}, θ1(b) = {f3}, θ1(c) = {f4}, θ1(d) = {f5, f6}.
A1 = {f5} 6= ∅.
t=2: F2 = {f1, f3, f4, f6}, S2 = {s1, s3, s4, s6}, σ2(fi) = si.
θ2(a) = {f1}, θ2(b) = {f3}, θ2(c) = {f4}, θ2(d) = {f6}.
A2 = ∅, B2 = {f4, f6}. γ(f1) = s3, γ(f3) = s4

t=3: F3 = {f1, f3},S3 = {s1, s3}, σ
3(fi) =

8

<

:

si, i ∈ {1, 2, 3, 5}
s6, i = 4
s4, i = 6

θ3(a) = {f1}, θ3(b) = {f3}; A3 = {f3} 6= ∅.
t=4: F4 = {f1},S4 = {s1}, σ

4(fi) = σ3(fi), ∀i.
θ4(a) = {f1}; A4 = {f1} 6= ∅.
The final assignment of slots to flights (airlines) is given by
Sa = {s1, s2}, Sb = {s3}, Sc = {s6}, andSd = {s5, s4}, and is
in the core of the economy.


