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We describe a multi-modal unscented Kalman filter developed for estimation of aircraft
position, velocity and heading from noisy surface surveillance data. The raw data is com-
posed of tracks generated by the Airport Surface Detection Equipment, Model-X at Boston
Logan International Airport, and is obtained from the Runway Status Lights system. The
multi-modal filter formulation facilitates estimation of aircraft taxi mode, described by
different acceleration and turn rate values, in addition to aircraft states.

Nomenclature

ASDE-X Airport Surface Detection Equipment, Model-X

MMF Multi-Modal (Unscented Kalman) Filter

UKF Unscented Kalman Filter

X Position (meters east)

Y Position (meters north)

V Taxi speed (m/s)

θ Heading (degrees)

af Acceleration value (m/s2) in process model of filter f

ωf Turn rate value (deg/s) in process model of filter f

w̄ Process noise vector

v̄ Measurement noise vector

σ2
wA Assumed process noise variance for any quantity A

σ2
vA Assumed measurement noise variance for any quantity A

P Sigma point generator matrix

Q Process Noise Covariance Matrix

Qd Discrete-Equivalent Process Noise Covariance Matrix

R Measurement Noise Covariance Matrix

wc,i Sigma-point weights for covariance update

wm,i Sigma-point weights for mean update

ˆ̄x Estimated state vector

ȳ Actual Measurement vector

ˆ̄y Expected Measurement vector

x̄(i) ith sigma point
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I. Introduction

A. Motivation

The availability of new surface surveillance data from the Airport Surface Detection Equipment, Model-X
(ASDE-X) has created opportunities for detailed investigation of airport surface operations. Specifically, it
is now possible to visualize actual taxi routes of aircraft and to directly measure metrics such as total taxi
distance, taxi time and time spent in the departure queue. These quantities form the basis for further studies
such as the calculation of total fuel burn due to airport surface operations1,2 or the prediction of aircraft
taxi-out times.3

However, estimates produced using raw ASDE-X tracks are prone to error, because of inherent noise in
the data. For example, noise in position data can lead to overestimation of taxi distance, noise in velocity
data can lead to errors in detection of takeoff and landing, and noise in heading data can lead to false turn
detection. In order to mitigate these effects, we used an unscented Kalman filter (UKF)4,5 in the multi-
modal form. A bank of filters processes the raw data, with each filter representing a different taxi mode. The
current taxi mode is detected by selecting the filter with the least normalized squared error, combined with
a heuristic that offers resistance to rapid mode jumping. The multi-modal formulation has been previously
used in areas such as computer vision,6 but as far as we know, it has not been used before for aircraft position
tracking. In this paper, we present the results from our version of the multi-modal filter, and compare it to
raw data and a single-mode filter.

B. Overview of ASDE-X data

Airport Surface Detection Equipment, Model-X is primarily a safety tool designed to mitigate the risk of
runway collisions.7 It incorporates real-time tracking of aircraft on the surface to detect potential conflicts.
There is potential, however, to use the data generated by it for surface operations analysis and aircraft
behavior prediction. The data itself is generated by sensor fusion from three primary sources: (i) Surface
movement radar, (ii) Multilateration using onboard transponders, and (iii) GPS-enabled Automatic Depen-
dent Surveillance Broadcast (ADS-B). Reported parameters include each aircraft’s position, velocity, altitude
and heading. The update rate is of the order of 1 second for each individual track. The coverage range is
approximately 20 miles out from the airport.

ASDE-X data from the Runway Status Lights (RWSL) system at Boston Logan International Airport
(BOS) was available for this study. The results presented in this paper are based on data from August to
December 2010. As discussed above, it contains a substantial amount of noise despite an upgrade installed
in April 2010 to the system at Boston.

II. Formulation

A. Selection of Filter Algorithm

Prior to settling on the UKF as the algorithm of choice, we also tested the linear and extended versions of
the Kalman filter.8 The linear filter was unable to reduce noise to a satisfactory level without sacrificing
accuracy, while the extended Kalman filter was prone to divergence. The unscented Kalman filter, on the
other hand, was seen to be much more stable. Finally, the multi-modal formulation was used because of
its tracking accuracy and the relative ease of inferring taxi mode, when compared to a single filter. While
‘truth’ was not available in this study since the data was from actual operations, some idea of taxi path
could be inferred from the raw trajectories superimposed over a layout of the taxiways. Specifically, aircraft
do not stray far from the centerlines marked on the taxiways/runways, allowing comparison of filter tracking
behavior by visual inspection.

B. System Dynamics

The state vector to be estimated consists of aircraft position (X in meters east and Y in meters north),
velocity (V , m/s) and heading (θ, degrees),

x̄ =
[
X Y V θ

]T
. (1)
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The number of states is n = 4. To account for variability in longitudinal acceleration and turn rate values, the
velocity and heading states were assumed to have independent, zero mean, white Gaussian process noise of
variance σ2

wV and σ2
wθ respectively. The assumption of independence meant that the process noise covariance

matrix Q was diagonal,

Q =

[
σ2
wV 0

0 σ2
wθ

]
. (2)

Since all four states are available in ASDE-X data, the measurement vector ȳ had the same components as
the state vector. It was assumed that the noise in measurement of X and Y positions was independent but
had the same variance. The values of position, velocity and turn-rate noise variance were assumed to be
equal to σ2

vxy, σ2
vV and σ2

vθ respectively. The measurement noise covariance matrix, R was therefore given
by,

R =


σ2
vxy 0 0 0

0 σ2
vxy 0 0

0 0 σ2
vV 0

0 0 0 σ2
vθ

 . (3)

Finally, the continuous nonlinear state dynamics were derived from kinematic relations to be,

˙̄x =


Ẋ

Ẏ

V̇

θ̇

 =


V sin θ

V cos θ

a

ω

 +Bww̄. (4)

Here, a is the longitudinal acceleration and ω is the turn rate, both of which are assigned different constant
values in the system model for each mode. Since a heading of zero degrees is due north, the sine component
of velocity affects X position while the cosine component affects Y position. A full list of taxi modes is given
in Table 1. For the single-mode UKF used for comparison purposes, the assumed values were a = ω = 0.
The additive noise term in (4) is the product of the the matrix Bw and the process noise w̄. The noise vector
w̄ = [wV wθ]

T contains noise in acceleration and turn rate, and is assumed to vary according to the normal
distribution N (0, Q). The matrix Bw ensures that w̄ affects only velocity and turn rate, and is given by,

Bw =


0 0

0 0

1 0

0 1

 . (5)

The measurement vector is equal to the state vector with an additive noise term,

ȳ = x̄+ v̄. (6)

Here, v̄ = [vX vY vV vθ]
T is the measurement noise vector, assumed to be independent of process noise,

white, Gaussian and to vary like N (0, R). The diagonal covariance matrix R ensures that the elements of
measurement noise are independent of each other.

C. Filter Implementation

1. Definition of Constants

The UKF formulation used for each mode was based on the method proposed by Wan and van der Merwe.4

According to this method, a state vector of length n is represented by (2n+1) sigma points. Some additional
required constants are defined below. Note that in this case, the number of states is n = 4.

κ = 3− n, (7a)

α = 0.5, (7b)

λ = α2(n+ κ)− n, (7c)

β = 2. (7d)
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Mode Description Longitudinal Turn

Number Acceleration Rate

a (m/s2) ω (deg/s)

1 Default 0 0

2 Moderate Acceleration 1 0

3 Moderate Deceleration -1 0

4 Constant Speed Turn Right 0 10

5 Constant Speed Turn Left 0 -10

6 Accelerating Turn Right 3 10

7 Accelerating Turn Left 3 -10

8 Decelerating Turn Right -3 10

9 Decelerating Turn Left -3 -10

10 High Acceleration 3 0

11 High Deceleration -3 0

Table 1. List of taxi modes

Based on these constants, the weights used for generation of the (2n+ 1) sigma points from the sigma point
generator matrix are given by,

wc,i =
1

2(n+ λ)
for i = 1, 2, ..., 2n, (8a)

wc,2n+1 =
λ

n+ λ
+ 1− α2 + β, (8b)

wm,j =
1

2(n+ λ)
for j = 1, 2, ..., 2n, (8c)

wm,2n+1 =
λ

n+ λ
. (8d)

Finally, the discrete equivalent process noise covariance matrix, Qd, is based on the approximation (9), with
Ts the time difference between two successive measurements. Note that Qd is of size 4× 4.

Qd ≈ BwQBTwTs. (9)

2. Filter Algorithm

Let us define z
(i)+
k to be the value of any quantity z after the measurement update at time step k, for the

ith sigma point where i = 1, 2, ..., 2n+ 1. Similarly, z
(i)−
k+1 is the quantity z propagated to time step k+ 1 but

prior to the measurement update at time step k + 1. Let ˆ̄x denote the estimated state vector, x̄(i) denote
the ith sigma point, ȳ denote actual measurements, ˆ̄y be the expected measurement vector and P be the
sigma point generator matrix, which is the uncertainty matrix from which sigma points are generated. The
filter algorithm4 is given below. Since all the states are available for measurement, algorithm initialization
is done using ˆ̄x+0 = ȳ0 and P+

0 = R.

1. Generation of sigma points at time step k, where the ith and (n+ i)th sigma points are generated using
the transpose of the ith row belonging to the matrix square root of (n+ λ)P+

k :

x̄
(i)+
k = ˆ̄x+k + [{

√
(n+ λ)P+

k }
(i)]T , for i = 1, 2, ..., n,

= ˆ̄x+k − [{
√

(n+ λ)P+
k }

(i)]T , for i = (n+ 1), (n+ 2), ..., 2n,

= ˆ̄x+k , for i = 2n+ 1.
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2. Propagation of belief to the next time step, with af and ωf being the acceleration and turn rate values
assumed in the system model for filter f . The propagation equations are based on simple kinematics.

x̄
(i)−
k+1 = x̄

(i)+
k +


(V

(i)+
k Ts + 1

2afT
2
s ) sin ( π

180θ
(i)+
k )

(V
(i)+
k Ts + 1

2afT
2
s ) cos ( π

180θ
(i)+
k )

afTs

ωfTs

 .

3. Calculation of expected state vector at step (k + 1) from the propagated sigma points:

ˆ̄x−k+1 =

2n+1∑
i=1

wm,ix̄
(i)−
k+1 .

4. Estimation of the uncertainty covariance matrix:

P−
k+1 = Qd +

2n+1∑
i=1

wc,i(x̄
(i)−
k+1 − ˆ̄x−k+1)(x̄

(i)−
k+1 − ˆ̄x−k+1)T .

5. Recalculation of sigma points x̄
(i)−
k+1 using the same equations as in step 1, but with P−

k+1 as the

generating matrix. The measurement sigma points, ȳ
(i)
k+1, are equal to x̄

(i)−
k+1 since full state measurement

is available.

6. Calculation of expected measurement vector at step k + 1:

ˆ̄yk+1 =

2n+1∑
i=1

wm,iȳ
(i)
k+1.

7. Calculation of the Kalman filter gain at time step k + 1, Lk+1:

Pyy = R+

2n+1∑
i=1

wc,i(ȳ
(i)
k+1 − ˆ̄yk+1)(ȳ

(i)
k+1 − ˆ̄yk+1)T ,

Pxy =

2n+1∑
i=1

wc,i(x̄
(i)−
k+1 − ˆ̄x−k+1)(ȳ

(i)
k+1 − ˆ̄yk+1)T ,

Lk+1 = PxyP
−1
yy .

8. Belief update using actual measurement at time step k + 1, ȳk+1:

ˆ̄x+k+1 = ˆ̄x−k+1 + L · (ȳk+1 − ˆ̄yk+1),

P+
k+1 = P−

k+1 − LPyyL
T .

This algorithm is run simultaneously on all filters in the bank. The expected measurement from each filter
is compared to the actual measurement vector. Based on this comparison, the current taxi mode is set, and
the state estimate from the corresponding filter becomes the new state estimate for the entire bank. The
algorithm then repeats, starting from step 1.
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3. Selection of Taxi Mode

The selection of taxi mode is based upon a Quality Index (QI) that is essentially the negative of the second-
order norm of the residual for each filter, normalized by the measurement noise covariance. Large negative
values of QI for a filter f indicate large differences in the actual measurements and the expected ones as
derived from the system model for f , and are thus an indicator of poor performance from this filter.

QI = −(ȳk+1 − ˆ̄yk+1)TR−1(ȳk+1 − ˆ̄yk+1). (10)

The filter selection algorithm tracks the Quality Index for each filter, for the latest three time steps. The
particular filter selected is the one that has the maximum (least negative) QI, among all (2n+ 1) filters, for
the most times in these three time steps. If three different filters have one instance each of maximum QI
in the last three time steps, the incumbent filter continues to be selected. The algorithm is initiated at the
start of each flight track with the ‘straight, constant velocity’ mode active.

A Gaussian likelihood estimate, based on the measurement error of each filter, and the uncertainty as
derived from the matrix P , was initially tested as the criterion for mode selection. However, it was found
that the measurement noise can cause the error to be occasionally so large that all likelihood values drop
to machine zero. In addition, the evaluation of Gaussian likelihood requires a call to a separate subroutine
in the code, and is computationally expensive. Therefore, the second-order norm was chosen as a measure
of likelihood. The additional heuristic of choosing the best filter over the last three time steps helps avoid
frequent mode jumping caused by erratic measurement errors.

III. Results

A. Multi-Modal Filter Output

A comparison of the output from the multi-modal filter with raw data is shown in Figure 1. It is from a
portion of taxiway close to the threshold of Runway 33L at Boston Logan. The white line in the upper plot
traces the raw data, while the multi-colored segmented line in the lower plot is the filter output. It can be
seen that most of the noise in the raw data has been filtered out by the MMF. At the same time, an idea
about tracking performance of the filter can be obtained by observing that the filtered output is fairly close
to the taxiway markings on the surface. Note that the colors in the filter output indicate the taxi mode as
detected by the filter. Table 2 relates the colors to taxi modes. Figure 2 shows sample filtered output for a
departure and an arrival. The arriving flight can be seen braking on the runway (in red), prior to turning
off onto a rapid-exit taxiway. The departing flight can be seen to be turning onto the runway (portions in
light blue) and then accelerating on its takeoff roll (in green).

Figure 3 shows results from the taxi mode detection algorithm for a specific flight. It can be seen that
the code correctly detects a constant speed turn (starting at 756 seconds on the X axis) followed by takeoff,
which is a period of sustained high acceleration. Note that the fourth plot in the figure shows relative Quality
Index values for each mode, i.e., the difference between the Quality Index of each filter and the instantaneous
Quality Index of the default mode having [a, ω] = [0, 0]. This was done only for ease of plotting.

Figures 4(a) and 4(b) are typical time series plots of the noise in raw data. In Figure 4(a), considerable
jitter is seen in the measured Y position, most of which is removed by the filter. There is some noise in the
X position as well, but not much in the velocity and heading fields. In Figure 4(b), there is noise in velocity
and heading but not in position. Note that each of the four fields is independently measured by the ASDE-X
system, and therefore, measured velocity is not simply the derivative of position. Finally, Figure 5 shows
autocorrelation plots of the estimation residuals for a single flight. For each measurement variable, it shows
the correlation coefficient of the residual (error) at one time step with all other residuals in the rest of the
flight track. The low value of correlation except where the difference in index goes to zero (correlation with
itself) indicates that the residuals are a white sequence,9,10 and therefore the filter is working efficiently.
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Taxi Mode Mode Numbers Color

Raw data - White

Straight, constant speed 1, 2, 3 Dark Blue

Decelerating straight / turn 8, 9, 11 Red

Accelerating straight / turn 6, 7, 10 Green

Turn, constant speed 4, 5 Light Blue

Table 2. Color coding for Figures 1 and 2

(a) Raw Data

(b) MMF Output

Figure 1. Sample output from Multi-modal Filter. Both pictures correspond to the area enclosed by the
orange rectangle in the inset image.
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(a) Arriving flight: Landing on the runway is seen on the right, with strong braking marked in red. The
flight then leaves the runway and taxis towards its gate beyond the top edge of the picture. Portions
where a turn was detected are marked in light blue.

(b) Departing flight: Departure is on Runway 4R, with acceleration phase indicated in green.

Figure 2. Sample MMF output
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Figure 3. Taxi mode detection for a sample flight. The first two plots show velocity and heading for the part
of the aircraft trajectory shown in the bottom plot. The third plot shows the output of the mode detection
algorithm, with acceleration and turn-rate values of each mode marked on the Y axis. The fourth plot shows
the quality index of the best five modes in this time period, relative to the baseline mode [a, ω] = [0, 0].
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(b) Noise seen in heading and velocity measurement

Figure 4. Time series plots of raw and filtered data for sample flights
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Figure 5. Autocorrelation of residuals for a single sample flight

B. Comparison with single-mode UKF and Raw data

In terms of output quality, the single-mode UKF formulation ends up being inferior to the multi-modal form.
This is primarily due to the fact that the process model in the single-mode UKF only accounts for straight,
constant speed taxi. If noise suppression comparable to the MMF is desired, the assumed measurement
noise covariance needs to be so high that the filter fails to track quick changes in velocity and heading. For
example, Figure 6 shows the single-mode filter output belatedly tracking a turning aircraft, thus producing
an estimate of position which is unrealistically close to the edge of the taxiway. If certain areas of the airport
are being monitored for activity (such as queuing) based on geographical coordinates, this behavior could
easily lead to errors.

Figure 7 gives an idea of the relative tracking behavior of the filters discussed so far. It shows the mean
ratio of the taxi distance measured using three different methods for a total of 20 flights, to the taxi distance
measured visually by a straight-line approximation of the taxi path. The three ways in addition to the visual
measurement, by which taxi distances have been calculated are (i) using the MMF, (ii) using the single-mode
UKF, and (iii) from raw data. The normalization of taxi distance in this manner accounts for different taxi
paths used by different flights. As seen in the figure, the mean distance measured by the MMF is closest
to the straight-line method. Note that the MMF output is likely to be closer to actual taxi distance than
the straight-line approximation since aircraft do not stick strictly to taxiway centerlines. It is clear from
the figure, though, that taxi distance calculated directly using raw data would hold very little value for
further analysis, because of its large taxi distance estimates. Further, the large variance precludes the use
of constant-factor scaling to increase the accuracy of the raw estimates.

Figure 6. Sample result from single-mode UKF: Raw data in white, UKF output in yellow
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Figure 7. Comparison of taxi-out distance ratios

IV. Conclusion

In this paper, we presented a multi-modal unscented Kalman filter developed to estimate the position,
velocity and heading of aircraft on the airport surface. We showed that the raw data contained a significant
amount of noise, precluding its direct application to further analysis such as taxi distance calculations.
The MMF was shown to successfully mitigate the effect of noise, while maintaining tracking performance.
Tradeoffs involved with the use of a single-mode UKF instead of the MMF were considered. It was found
that the MMF had better tracking properties than the UKF, making it the filter of choice for applications
requiring accurate estimates of aircraft position and taxi mode.
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