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Abstract

This paper presents a new class of models for predicting air traffic delays.
The proposed models consider both temporal and spatial (that is, network)
delay states as explanatory variables, and use Random Forest algorithms
to predict departure delays 2-24 hours in the future. In addition to local
delay variables that describe the arrival or departure delay states of the
most influential airports and links (origin-destination pairs) in the network,
new network delay variables that characterize the global delay state of the
entire National Airspace System at the time of prediction are proposed. The
paper analyzes the performance of the proposed prediction models in both
classifying delays as above or below a certain threshold, as well as predicting
delay values. The models are trained and validated on operational data from
2007 and 2008, and are evaluated using the 100 most-delayed links in the
system. The results show that for a 2-hour forecast horizon, the average test
error over these 100 links is 19% when classifying delays as above or below
60 minutes. Similarly, the average over these 100 links of the median test
error is found to be 21 minutes when predicting departure delays for a 2-hour
forecast horizon. The effects of changes in the classification threshold and
forecast horizon on prediction performance are studied.

Keywords: air traffic delay prediction, network effects, k-means clustering,
Random Forests, classification, regression

1. Introduction

Flight delays in the United States result in significant costs to airlines,
passengers and society. The annual cost of domestic flight delays to the US
economy was estimated to be $31-40 billion in 2007 (Ball et al. 2010, Joint
Economic Committee, US Senate 2008). Such high delay costs motivate the
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analysis and prediction of air traffic delays, and the development of better
delay management mechanisms.

The large number of shared resources in the National Airspace System
(NAS) together with aircraft, crew and passenger interdependencies result
in the propagation of delays through the network (AhmadBeygi et al. 2008,
Jetzki 2009). The desire to maximize aircraft utilization reduces the time
buffer between arrivals and departures, increasing the likelihood of delay
propagation (AhmadBeygi et al. 2008). Increasing demand also decreases the
ability of the network to absorb disruptions, making the network susceptible
to large-scale delays. The study of network effects can help identify factors
that mitigate or amplify delay propagation in the NAS.

Delay prediction has been the topic of several previous efforts. Jetzki
(2009) studied the propagation of delays in Europe, with the goal of identify-
ing the main delay sources. Tu et al. (2008) developed a model for estimating
flight departure delay distributions, and used the estimated delay information
in a strategic departure delay prediction model. Yao et al. (2010) focused
exclusively on downstream delays caused by aircraft, cockpit and cabin crew
connectivities. By contrast, Bratu and Barnhart (2005) focused on the im-
pact of delays on passengers. Recently, Pyrgiotis et al. (2013) have considered
delay propagation in a network of airports using a queuing model. Other pre-
diction models (Klein et al. 2007, 2010, Sridhar and Chen 2009) have focused
on weather-related delays, and the development of a Weather Impacted Traf-
fic Index (WITTI). Xu et al. (2005) proposed a Bayesian network approach to
estimating delay propagation. Using a system-level Bayesian network, the
authors were able to capture interactions among airports. None of these prior
approaches have investigated the role of a network delay state in predicting
future delays. By contrast, the goal of this paper is to evaluate the potential
of network-scale delay dependencies in developing delay prediction models.

Due to the existence of network effects, current delays in the NAS are
expected to be a good indicator of the short term evolution of delays in
the system. It is therefore useful to determine state variables that reflect
the current situation, and use them to predict future delays. The models
presented in this paper therefore attempt to predict future departure delays
on a particular origin-destination (OD) pair by considering current and/or
past delays in the network. The proposed prediction models will not cap-
ture delays that only affect a few aircraft (for example, mechanical delays).
The objective of these models is not to predict individual flights delays, but
instead to estimate the future network-related delay on a certain route. How-



ever, it is important to note that the models are evaluated using actual data
containing all delays, including those that impacted only a few flights. The
prediction models presented in this paper yield a better understanding of
delay interactions between the different elements in the NAS. They also help
assess how much of the future delay on a particular link can be explained by
the current delay state of the network.

2. Problem definition

The main objective of this paper is to predict the departure delay on
a particular link or at a particular airport, some time in the future. The
departure delay of a link at time ¢ is an estimate of the departure delay of
any flight(s) taking off at time ¢, and flying on that link. For example, if
the BOS-MCO departure delay state two hours from now is estimated to
be 30 minutes, it means that the estimated departure delay for BOS-MCO
flights taking off two hours from now is 30 minutes. Two types of prediction
mechanisms are considered: classification, where the output is a binary
prediction of whether the departure delay is more or less than a predefined
threshold, and regression, where the continuous output is an estimate of the
departure delay along the link.

2.1. Data sources

The results presented in this paper were obtained using data from the
Aviation System Performance Metrics (ASPM) database (Federal Aviation
Administration 2012), for the two-year period beginning January 2007 and
ending December 2008. The ASPM database provides detailed data for indi-
vidual flights by phase of flight, airport weather data, runway configuration,
and arrival and departure rates. The fields used in the analyses in this paper
include the arrival and departure airports, the scheduled and actual gate-in
times, the scheduled and actual wheels-off times, the flight carrier codes, and
the aircraft tail number.

The individual flight data were processed to obtain a more robust aggre-
gate delay estimate. A moving median filter, a low-pass filter, was used to
obtain the delay states of airports and OD pairs. The delay state of a NAS
element at time ¢ refers to the median delay of all the flights that fall within
a window of size W centered at time ¢t. The window size, W, was set to two
hours, and ¢ was incremented in steps of one hour.



The raw data set spanned 2,029 airports and 31,905 OD pairs, most of
which averaged fewer than one flight a day. Since the analysis focused on
network effects, only OD pairs with at least 10 flights per day on average
were considered. Figure 1 shows the resulting simplified network, which is
composed of 112 airports and 584 OD pairs.

Figure 1: Simplified network for the continental US. The green icons denote airports in
the original dataset that are not part of the simplified network.

3. Characterization of the network delay state

The interdependencies among the different elements in the NAS and
repetitive traffic patterns support the development of characteristic NAS de-
lay states, that reflect the current situation at a network-level. These states
are characterized both as a “snapshot” in time (i.e., the current delay pat-
terns in the NAS), and in terms of temporal evolution (i.e., a characteristic
type of day). In addition to yielding insights into system behavior, these
delay states can be used as explanatory variables in prediction models.

3.1. Characteristic NAS delay states

The observed NAS departure delay at time ¢ is a 584-dimensional vector,
defined by the departure delay state of each link in the simplified network at
time ¢t. The 17,519 NAS departure delay observations were classified into a
few typical NAS delay states using the k-means clustering algorithm (Hastie
et al. 2009).

The k-means algorithm partitions the observations in the data set into
k clusters so as to minimize the sum of distances within each cluster. In
the case of departure delays, the centroids of each of the clusters represent



the typical NAS delay states. Six clusters were chosen because, as seen in
Figure 2, the total intra-cluster distance did not decrease much for more than
6 clusters. Figures 3 shows the cluster centroids’ delay levels, illustrating that
Chicago (ORD), New York City (NYC) and Atlanta (ATL) are the main
delay centers. For fewer than six clusters, ATL does not appear; for more
than six clusters, no new delay centers appear, further supporting the choice
of k = 6. Table 1 qualitatively describes the six identified delay states, along
with the average link delay of its centroid and the number of observations
classified as belonging to it.
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Figure 2: (Left) Intra-cluster distances vs. number of clusters.
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Figure 3: Centroids of NAS delay states for six clusters.



Table 1: NAS delay state clustering. Delay definitions: High (90 minutes), Medium-high
(60 minutes), Medium (20 minutes), Low (5 minutes).

Delay o . . Avg. centroid Elements
state Qualitative description link delay (minutes) | in cluster
1 NAS low delay 5.8 8,029
2 NAS medium delay 15.2 5,915
3 NAS medium high delay 24.4 1,505
4 ORD high delay 31.2 1,192
5 ATL high delay 32.9 398
6 NYC high; ATL, ORD medium delay 42.2 480

3.2. Characteristic types of delay days

Similar to the identification of characteristic delay states, typical types of
delay days can be identified by clustering an entire day’s worth of time series
data using the k-means algorithm. In this case, each observation contains
584 x24=14,016 variables (i.e., number of OD pairs x 24 hours/day). Figure
4 shows the total distances and the within-cluster distances for different
numbers of clusters.
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Figure 4: Intra-cluster distances vs. number of clusters.

The main delay centers were found to be the same as seen in the NAS
delay state clusters: ORD, ATL, and NYC. Table 2 describes the main source
of delay at the highest delay point of the day for each of the six identified
type-of-day clusters, along with the average delay in the NAS for that type
of day, and the number of observations belonging to it.

Figure 5 shows the monthly occurrences of each type of day in 2007-2008.
Day 1 (high NYC delays, and significant ORD and ATL delays) was more
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Table 2: Descriptions of the types of NAS delay days. Delay definitions: High (90 minutes),
Medium-high (60 minutes), Medium (20 minutes), Low (5 minutes).

Day o . . Avg. centroid Elements
type Qualitative description link delay (minutes) | in cluster

1 NYC high+; ATL, ORD high delay 29 31

2 ORD high; NYC medium-high delay 22 94

3 ATL high; NYC, ORD medium-high delay 21 29

4 NYC high; ATL, ORD medium delay 19 86

5 NYC, ORD medium delay 15 207

6 NAS low delay 9 282

common in the summer months, while Day 4 (high NYC delays, but not high
ORD or ATL delays) was seen year-round, with higher frequency around the
summer months. The ORD high delay day (Day 2) was found to be more
frequent in winter, while the ATL high delay day (Day 3) was more frequently
seen in summer.
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Figure 5: Occurrences of NAS type-of-day by month in the 2007-2008 dataset.

4. Delay prediction

Ten training sets (3,000 points each) and ten test sets (1,000 points each)
The prediction models were
fit and tested for each of the 10 training and test set pairs, respectively,
providing measures of the variability and test error. The training and test
sets were over-sampled from the 2007-2008 data. Over-sampling is the over-
selection of samples of the minority class in order to achieve balanced training

were sampled from the 2007-2008 data set.




and test datasets with sufficient representatives of both the majority and
minority classes (Upton and Cook 2008). Since the majority of links do not
experience delays of more than 60 minutes, a naive classification algorithm
that predicts no delays of more than an hour would be correct most of the
time. For this reason, the true evaluation of a classifier’s performance is its
ability to correctly predict delays in a balanced data set in which half the
points have delays of less than 60 minutes (the so-called “majority class”),
and half the points have delays of more than 60 minutes (the “minority
class”).

Different classification and regression models (logistic regression, single
classification trees, bagging, boosting, linear regression, neural nets and ran-
dom forests) were tested, and Random Forests were chosen due to their
superior performance (Hastie et al. 2009, Rebollo 2012).

4.1. Random Forests

The Random Forest (RF) is an ensemble classifier that consists of many
decision trees, and outputs the mode of the classes output by individual trees
(Breiman 2001). It combines the concept of bagging with the random selec-
tion of variables at each tree split (Hastie et al. 2009). Benefits of Random
Forests include the automatic generation of variable importance, their low
sensitivity to outliers in the training data, and their good performance in
cases where the number the variables is large compared to the number of
samples. The RF approach has also been extended to regression (Breiman
2001).

5. Explanatory variables

The delay prediction models proposed in this paper use a combination of
categorical and continuous explanatory variables. The Kruskal-Wallis para-
metric ANOVA test (Rice 2006) and the multiple comparisons test were
used to evaluate the dependence of the future departure delay with different
categories for the proposed categorical explanatory variables. A parametric
ANOVA test was used because of the highly-skewed nature of the delay dis-
tributions. The Random Forest methodology was used to identify the most
relevant continuous variables.

The level of significance of the explanatory variables is expected to vary
depending on the desired output of the prediction model (regression vs. clas-
sification), as well as the forecast horizon. It is, however, reasonable to as-



sume that if an explanatory variable is significant for the regression problem,
it will also be significant in the classification problem.

5.1. Temporal variables

Temporal variables considered included the time-of-day, the day-of-week
and the month-of-year, all of which were treated as categorical (the time-
of-day variable has one category for each hour). The low p-values obtained
by the ANOVA tests, as well as the multiple comparisons tests, showed that
delays varied significantly with all three temporal variables. Based on the
analysis, the month-of-year was replaced by a “season” variable with three
categories: September-November (with typically experience low delay levels),
January-May (moderate delay levels), and June-August and December (high
delay levels).

5.2. Spatial variables

5.2.1. NAS delay state, type of delay day, and previous day’s type

The primary spatial variables considered were the NAS delay state and
the type of delay day. In practice, delay information will only be known from
the beginning of the day until the time when the prediction is made. However,
in the analyses in this paper, the type of day is assumed to be known with
certainty at the time of prediction, and its importance is evaluated. NAS
delays for the previous day are known with certainty, and can help predict
delays on a given day. The NAS does not immediately recover from high delay
situations, such as, a day with strong convective weather and a large number
of cancelled flights. Passengers will be accommodated in flights over the next
few days, leading to higher traffic levels and subsequent delays. Scheduled
aircraft routings are also affected by cancelled flights, causing additional
delays. The multiple comparisons test results showed significant differences
for the variable reflecting the previous day’s type; this variable was therefore
included in the prediction model.

5.2.2. Delays at influential airports and OD pairs

Future delays on a particular OD pair are likely to be influenced by de-
lays at certain airports or OD pairs. For example, while predicting departure
delays on the JFK-ORD link, it is reasonable to expect that ORD departure
delays and JFK arrival delays will play an important role. The model consid-
ers arrival and departure delays at 400 airports, which results in 800 variables,



which are ordered according to their ability to predict delays on a particu-
lar link. The importance of different variables, as determined by the RF
algorithm, was used to choose the most relevant airport delay variables. A
similar analysis was conducted for the 1,064 OD pair delay variables. Table 3
shows the 10 airport delay and OD pair delay variables used in the JFK-ORD
departure delay prediction model. The variable importance is normalized by
the most important variable of that type. Influential delay variables are
similarly identified for each OD pair in the simplified NAS network.

Table 3: Influential airports and OD pair delay variables for JFK-ORD departure delay
prediction. The importance values are normalized such that the most influential variable
of each kind has an importance of 100.

Apt. delay variable | Importance || OD pair delay variable | Importance
DCA Departure 100 JFK-ORD Departure 100
JFK Departure 96.9 EWR-ORD Departure 90.9

ORD Arrival 85.3 LGA-ORD Departure 65.3
ORD Departure 82.8 ORD-JFK Departure 44
LGA Departure 58.9 ORD-LGA Departure 24.3
BOS Departure 58.9 BOS-ORD Departure 17
PHL Departure 58.2 PHL-ORD Departure 16.9
EWR Departure 57.7 JFK-FLL Departure 11.9
JFK Departure 56.3 BUF-JFK Arrival 11.4

DCA Arrival 46.1 LGA-ORD Arrival 11

Not surprisingly, Table 3 suggests that most of the important variables
reflect the delays prevalent in the NYC and ORD areas. There are two
potential explanations for the high importance of the DCA departure delay
variable. Firstly, DCA is located close to the route between JFK and ORD.
Airspace weather events that have a large impact on the JFK-ORD route
will also affect DCA airport delays. The routes served by the airports as
another important element. DCA serves more short haul, East Coast flights
(similar to JFK-ORD) than either JFK or ORD, which serve International
traffic. The average DCA delay therefore reflects the local delay state, and
consequently the JFK-ORD delay state. The latter hypothesis is supported
by the absence of IAD (which is close to DCA but serves international traffic)
in the list of influential airports for JFK-ORD. Another interesting finding
is that the JFK-FLL departure delay has nearly the same importance as
the BUF-JFK and LGA-ORD arrival delays when predicting the JFK-ORD
departure delay. It is conjectured that factors such as aircraft routings and
airline networks drive these features.
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6. Departure delay prediction for the 100 most-delayed OD pairs

The performance of the prediction models are evaluated for the 100 OD
pairs in the simplified NAS network with the highest average delays. Clas-
sification and regression predictors were developed for each OD pair. The
performance of the classification-based and regression-based departure delay
prediction models were first studied for a 2-hour prediction window and a
60 minutes classification threshold (that is, predictions of whether the delay
will be above or below 60 minutes).

6.1. Classifier performance

The performance of the classification models is first considered. Figure 6
shows the test error histogram for the 100 most delayed OD pairs. The test
error ranges from 11.3% to 28.8%, and the average value is 19.1%. The link
with the lowest test error is EWR-ATL (11.3%), and the one with the highest
is LAS-SFO (28.8%). 90% of the analyzed links have a test error standard
deviation under 1.7 percentage points. Figure 6 (right) shows the empirical

cumulative distribution function (cdf) of the test error standard deviations
of all 100 links.
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Figure 6: (Left) Classification test error histogram and (Right) Empirical cumulative
distribution function (ecdf) of the standard deviation of the classification test error, for
the 100 most-delayed OD pairs.

Further inspection of the test error reveals that the False Negative Rate
(FNR) clearly dominates the False Positive Rate (FPR), that is, the classifier
is more likely to misclassify a high delay link than to predict high delay
when in reality the delay on the OD pair is low. For the 100 most-delayed
links, the average FNR is 23.62% and the average FPR is 14.6%; the FNR
rate is higher than the FPR for all OD pairs. This behavior is because
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the proposed prediction model focuses on the delay state of the different
elements in the network, but does not capture localized delays (for example,
mechanical issues). As a result, even if the delays on the relevant network
elements were low, an OD pair may experience high delays 2 hours later due
to a local issue that only affects a certain flight, but this delay would not be
predicted by the proposed model.
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Figure 7: FNR and FPR scatter plots for the 100 most-delayed OD pairs.

Figure 7 shows the FPR and FNR versus the test error for all the studied
OD pairs. For the lowest test error OD pair, FNR/FPR ratio is 1.3, while
for the highest test error OD pair (LAS-SFO), FNR/FPR=1.9, showing that
the FNR dominance increases with the test error.

Time-of-day is the most important explanatory variable for both the OD
pair with the lowest (EWR-ATL) and the highest (LAS-SFO) test errors. The
large difference in the test errors can be explained using Figure 8. The fig-
ure shows the EWR-ATL (left) and LAS-SFO (right) departure delay means
and one standard deviation intervals versus the time-of-day, for the test data.
The EWR-ATL confidence intervals overlap less with the 60 minute thresh-
old line than the LAS-SFO intervals. The more the overlap and the less
the distance from the mean values to the 60 minutes threshold, the worse
the prediction performance, because the difference between the likelihood of
being above and below the decision threshold at a certain time decreases.
The LAS-SFO confidence intervals in Figure 8 are wider than the EWR-
ATL intervals, indicating less correlation between the departure delay and
the time-of-day variable. Delays for flights arriving or departing from SFO
are hard to predict: The average test error rate for links that have SFO as
origin or destination is 23.3%. This behavior is likely a result of reduced
airport capacity due to fog at SFO, and the resulting delays that can linger
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though the day.
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Figure 8: (Left) EWR-ATL and (right) LAS-SFO mean delays by time-of-day (£0).

6.2. Regression performance

The performance of the regression approach is evaluated using the same
data set that was used in Section 6.1. Figure 9 (left) shows the histogram
of the median test error for the 100 most-delayed OD pairs. The median
error values range from 15.6 minutes (EWR-ATL) to 36.4 minutes (LAX-
HNL), and the average median test error is 20.9 minutes. As can be seen in
Figure 9 (right), the standard deviation of these error values is low, with the
90th percentile of the error distribution being 1.17 minutes. A significant gap
is seen between the highest median error value (LAX-HNL), and the second
highest (SFO-JFK). Since neither of these links had the highest test error in
classification, a natural question is whether links with high classification test
error also have high regression test error. Figure 10 addresses this question by
showing the classification error versus the regression error. Although there is
a strong positive correlation (0.78), some specific links perform significantly
differently in the classification and regression problems. The highlighted data
point in Figure 10 corresponds to the CLT-LGA departure delay prediction
model. The classification test error in this link is high (22.6%, and in the
87th percentile of the classification error distribution), but the regression
median test error is only 20.2 minutes (in the 40th percentile of the regression
error distribution). In general, the classification and regression problems are
different: The former requires information that helps to differentiate between
high and low delays, whereas the latter tries to predict the value of the future
delay. Depending on the classification threshold and the typical delays on a
link, the relative performance on classification and regression can differ.
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Figure 9: (Left) Regression median test error histogram. (Right) Empirical cdf of the
standard deviation of the regression median test error.
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Figure 10: Classification vs. regression test error.

6.3. Effect of changing classification threshold

Three values of the classification threshold, namely, 45, 60, and 90 min-
utes, are studied for the 100 most-delayed links, and a forecast horizon of 2
hours. For a 45 minute threshold, the mean test error is found to be 21.2%;
for the 60 minute threshold, the misclassification test error is 19.1%; and for
the 90 minute threshold, 16.4%. As expected, the test error decreases as the
classification threshold increases.

Figure 11 (left) shows the test error values for the three threshold values
for each of the 100 most-delayed links; the links are ordered according to
their test error for the 60 minutes threshold. This plot shows that not all
links have the same reduction in test error when increasing the classification
threshold, and that the reduction is not correlated with the value of the
test error. Figure 11 (right) depicts the histogram of the increase in test
error when moving from a 90 minutes threshold to a 45 minutes threshold in
classifying delays. The increase in test error ranges from 2 percentage points
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to 8 percentage points, depending on the OD pair.
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Figure 11: (Left) Classification threshold analysis. (Right) Histogram of the test error
increment when changing the classification threshold from 90 minutes to 45 minutes.

6.4. FEffect of increasing forecast horizon

The prediction performance would be expected to decrease with an in-
crease in the forecast horizon. The performance on the classification and
regression problems is analyzed for forecast horizons of 2, 4, 6 and 24 hours.
The classification threshold is maintained at 60 minutes.

The average classification test errors over the 100 links and different fore-
cast horizons are found to be 19.1% (for a 2-hour forecast horizon), 21.4%
(4-hour forecast horizon), 22.6% (6-hour forecast horizon), and 27.2% (24-
hour forecast horizon). By contrast, a model with only time-of-day as an
explanatory variable yields an average test error of 30%. The difference be-
tween this test error and the 24-hour forecast horizon test error is largely due
to the predictive value of the previous day’s delay information.

The regression problem shows similar results as the forecast horizon in-
creases. The average median test errors over the 100 most-delayed OD pairs
are found to be 20 minutes (for a 2-hour forecast horizon), 23 minutes (4-
hour), 24.3 minutes (6-hour), and 27.4 minutes (24-hour). In other words,
the average median test error increase is only 7.4 minutes as the forecast
horizon increases from 2 to 24 hours.

6.5. Prediction of delays relative to scheduled departure times
Thus far, the departure delay of an OD pair at time ¢t was defined as
the average delay of flights on that OD pair that actually take off at time
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t. In this section, the performance of the proposed model in predicting the
departure delay of flights scheduled to depart at time t is evaluated.

For the JFK-ORD link, a 2-hour forecast horizon and a 60 minutes classi-
fication threshold, the classification test error for predicting delays for sched-
uled departure times is 24.8%. For comparison, the corresponding test error
for actual departure times was 21.2%. The prediction error for a 2-hour fore-
cast horizon with scheduled times is close to the 6-hour forecast horizon error
for actual times, namely, 25.1%. The median regression error for a 2-hour
forecast horizon with scheduled times is also comparable to that of the 6-hour
forecast horizon error for actual departure times (29.5 minutes).

On average, the 100 most-delayed links exhibit a similar deterioration in
test performance when scheduled departure times are used instead of actual
ones. For example, the classification test error increases by 3.5 percentage
points between a 2-hour and a 6-hour forecast horizon for actual departure
times, while it increases by 4.5 percentage points between the actual and
scheduled departure times for a fixed 2-hour forecast horizon. However, in-
dividual links behave differently. For example, the 2-hour to 6-hour increase
in forecast horizon increases the test error of the JFK-LAX link by 7.9 per-
centage points, while the change from actual to scheduled times (for a fixed
2-hour horizon) only increases the test error by 1.4 percentage points (Rebollo
2012).

7. Implications of results

To the best of our knowledge, the proposed models present the first at-
tempt to predict flight delays at a future time, using only aggregate vari-
ables that are presently available. For example, in the Bayesian network
model proposed by Xu et al. (2005), the explanatory variables include the
air carrier delay, Ground Delay Program holding times, departure demand,
departure demand, airport capacity, en route weather report and air carrier
rescheduling decisions, all corresponding to the flight for which delays are
being estimated. However, these variables are typically not available prior
to the actual flight time. Similarly, the Pyrgiotis et al. (2013) model tries to
estimate the extent of air traffic delay propagation using a queuing network
model consisting of the OEP-35 airports in the US. The authors acknowledge
that the purpose of the model is not to reproduce the exact delays, but only
the trends and behaviors that are seen (Pyrgiotis et al. 2013). Other models
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focus on estimating, not predicting, weather impacts (Klein et al. 2007, 2010,
Sridhar and Chen 2009) or airline operational factors (Yao et al. 2010).

In evaluating classification algorithms, two commonly-used metrics are
the accuracy and recall. In the present context, accuracy would be the per-
centage of correctly classified links, and recall would be the percentage of
delayed links that are correctly classified as delayed. The aim of classifica-
tion would be to maximize the recall, although this would result in a decrease
in accuracy Hastie et al. (2009). From the results in Section 6.1, we note that
our classification algorithm achieves an average accuracy of 81% and an av-
erage recall of 76.4%. These rates appear to be better than those reported
anecdotally by commercial flight delay prediction tools (Skomoroch 2009),
although it is important to bear in mind that these tools predict individual
flight delays on unbalanced datasets, while this paper focuses on predicting
aggregate delays on balanced datasets.

Benchmarking of the regression performance is more difficult, due to a
lack of suitable comparisons. However, we note that the US Department
of Transportation (Bureau of Transportation Statistics accessed 2014) only
counts a flight as delayed if it incurs a delay of more than 15 minutes, sug-
gesting that a mean prediction error of 21 minutes may not be unreasonable.

The models developed in this paper serve two purposes. They help iden-
tify features that influence future delays, thereby improving our understand-
ing of system behavior. In practice, accurately predicting delays 6 hours or a
day prior to the scheduled departure time could enable travelers make appro-
priate changes to their travel plans, such as changing their flight connections
tactically, in order to improve their travel experience. For this reason, the
next step in this research will be to see if the lessons learned in this research
can be used to predict individual flight delays.

8. Conclusions

This paper presented new network-based air traffic delay prediction mod-
els that incorporated both temporal and network delay states as explanatory
variables. The new models were enabled by the development of novel NAS
delay state variables that represented the system as a whole. The results
obtained for the 100 most-delayed OD pairs in the NAS showed an average
test error of 19% when classifying delays as above or below 60 minutes, for
a 2-hour forecast horizon. The analysis also found that the dependence of
individual link delays on the network state varied from link to link. Both the
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classification and regression models were found to be quite robust to increases
in the forecast horizon: The median regression test error (averaged across the
100 OD pairs) only increased from 19.1 minutes to 27.4 minutes when the
forecast horizon increased from 2 hours to 24 hours. Similar promising results
were obtained for the prediction of departure delays relative to the scheduled
flight times.
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