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Dynamic Control of Airport Departures:

Algorithm Development and Field Evaluation
Ioannis Simaiakis, Melanie Sandberg, and Hamsa Balakrishnan

Abstract—This paper proposes dynamic programming based
algorithms for controlling the departure process at congested air-
ports. These algorithms, called Pushback Rate Control protocols,
predict the departure throughput of the airport, and recommend
a rate at which to release aircraft from their gates in order to
control congestion. The paper describes the design and field-
testing of a variant of Pushback Rate Control at Boston airport
in 2011, and the development of a decision-support tool for its
implementation. The analysis of data from the field trials shows
that during 8 four-hour test periods, fuel use was reduced by an
estimated 9 US tons (2,650 US gallons), and taxi-out times were
reduced by an average of 5.3 min for the 144 flights that were
held at the gate.

I. INTRODUCTION

A. Motivation and background

Airport surface congestion contributes significantly to taxi

times, fuel burn and emissions at airports. Annually, taxi-out

delays at major US airports exceed 32 million minutes, while

taxi-in delays exceed 13 million minutes [1]. Recent studies

have also shown that low-thrust taxi emissions have significant

impacts on the local air quality near major airports [2–4]. The

objective of this paper is to develop, implement and evaluate

a control policy that can reduce surface congestion.

B. Related work

An airport congestion control strategy in its simplest form

would be a state-dependent pushback policy aimed at reduc-

ing surface congestion. One such approach is the N-Control

strategy. N-Control is an implementation of the virtual queue

concept described in the Departure Planner [5], and variants of

it have been extensively studied [6–9]. N-Control is based on

the typical variation of departure throughput with the number

of departures on the surface (denoted N): As more aircraft

pushback from their gates onto the taxiways, the throughput

of the departure runway initially increases. However, as the

number of taxiing departures exceeds a threshold, denoted N∗,

the departure runway capacity becomes the limiting factor, and

there is no additional increase in throughput. Any additional

aircraft that pushback simply incur taxi-out delays [10]. Figure

1 illustrates this behavior for the most frequently used runway

configuration at Boston Logan International Airport (BOS) in

2011, using surface surveillance data from a system known as

ASDE-X [11].
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Fig. 1: Variation of departure throughput with the number of

aircraft taxiing out, for the 22L, 27 | 22L, 22R configuration

at BOS, under Visual Meteorological Conditions (VMC).

The N-Control policy is effectively a threshold heuristic: If

the total number of departing aircraft on the ground exceeds

a certain threshold, Nctrl, where Nctrl ≥ N∗, aircraft requesting

pushback are held at their gates until the number of aircraft

on the ground is less than Nctrl. While the choice of Nctrl

must be large enough to maintain runway utilization, too large

a value will be overly conservative and reduce the benefits

of the control strategy. A similar heuristic, based on the

concept of an Acceptable Level of Traffic (ALOT), is used

by Air Traffic Controllers at BOS during extreme congested

situations [12]. The N-Control policy is also closely related

to the constant work-in-process (CONWIP) policy used in

manufacturing systems. The main benefits of CONWIP sys-

tems are their simplicity, implementability and controllability

[13]. They present an efficient way to control congestion by

accepting an adjustable risk of capacity loss.

Optimization-based policies have also been considered re-

cently for surface traffic. Burgain et al. used advanced model-

ing tools for the characterization of optimal pushback policies.

Their control protocol was a generalization of N-Control,

where the state of the surface at any time was mapped to

an on-off input signal. The solutions were full-state feedback

policies, which presented implementation challenges [14].

There has been much prior research on the optimal control

of a variety of queuing systems, considering different decision

variables and control objectives [15–17]. However, several

challenges remain when attempting to apply these results to

the control of the airport departure process. Firstly, on-off

or event-driven control policies for controlling the pushback

process are difficult to implement in practice. Both the air

traffic controllers and the airlines prefer a pushback rate that

is valid for a predefined time period, after which it can be

updated. Controllers prefer such pushback rate recommenda-

tions for workload and procedural reasons, and airlines prefer

them because of their predictability, which helps with ground
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crew planning. Secondly, the control input is applied at the

gates during pushback, whereas the main bottleneck is the

runway. The control strategy has to accommodate stochastic

travel times between the gate and the runway, due to factors

such as the pushback process, flight checklists, communication

delays and variable taxi speeds.

Several approaches to departure metering have been pro-

posed, including the Ground Metering Program at New York’s

JFK airport [18], the field-tests of the Collaborative Departure

Queue Management concept at Memphis (MEM) airport [19],

the human-in-the-loop simulations of the Spot and Runway

Departure Advisor (SARDA) concept at Dallas Fort Worth

(DFW) airport [20], the trials of the Departure Manager

(DMAN) concept [21] in Athens International airport (ATH)

[22], and the field-tests of an N-control based heuristic,

Pushback Rate Control (henceforth referred to as PRC v1.0)

[23]. However, none of these efforts have explicitly estimated

the stochasticity of the underlying processes, or developed

optimal control policies that account for the uncertainty.

Surface traffic control has also been formulated as an opti-

mization problem minimizing a delay function [24–27]. These

formulations are MILP problems that have been shown to be

NP-hard [24, 28]. Practical implementations deterministically

schedule a small number of operations, typically 20-30 flights

at a time, using a rolling horizon. In other words, the solutions

are open-loop policies subject to periodic reoptimization. They

assume knowledge of the location and intent of all aircraft, no

uncertainty, and the ability to instantaneously modify aircraft

speeds; they are not applicable in the current operational

environment. Receding horizon approaches have also been

used for multi-airport capacity management [29].

In this paper, a queuing model is used for the prediction

of the takeoff rate to derive two control algorithms, using

dynamic programing and approximate dynamic programming

(referred to as PRC v2.0 and PRC v2.1, respectively). The

paper also presents the design of a decision support tool

(DST) for air traffic controllers, and describes the field tests

of PRC v2.1 using the new DST at BOS in 2011. Finally,

the proposed congestion control algorithm, the takeoff rate

predictions, and the results of the field-tests are evaluated.

II. CONTROL STRATEGY DESIGN REQUIREMENTS

The objective of the control strategy is to minimize the num-

ber of aircraft taxiing out and thus taxi-out times, while still

maintaining runway utilization. It needs to be compatible with

currently available information, automation and operational

procedures in the airport tower, and have a minimal impact

on controller workload. It must also account for uncertainties

in the taxi-out process.

As mentioned before, the preferred form of a congestion

control strategy is one that recommends a pushback (release)

rate to air traffic controllers [23] at the beginning of each time

period and is periodically updated. In general, the length of

the time period, ∆, should equal the lead time of the system,

that is, the delay between the application of the control input

(setting an arrival rate at the runway server by controlling the

pushback rate) and the time that the runway “sees” that rate.

For the departure process, this time delay is given by the travel

time from the gates to the departure queue. By choosing a

value of ∆ that is approximately equal to the travel time from

the gates to the runway, the flights released from the gate

during a given time period are expected to reach the departure

queue in the next time period.

Careful monitoring of off-nominal events and constraints is

also necessary for implementation at a particular site. Particu-

lar concerns are gate conflicts (for example, an arriving aircraft

is assigned the same gate as a departure that is being held) and

the ability to meet controlled departure times (Expected Depar-

ture Clearance Times or EDCTs) and other traffic management

constraints. In consultation with the BOS Tower, flights with

EDCTs were handled as usual and released First-Come-First-

Served. Pushbacks were expedited to accommodate arrivals if

needed. Finally, since departures of propellor-driven aircraft

(props) were known not to significantly affect jet departures

[30], props were exempt from Pushback Rate Control.

III. DEPARTURE PROCESS MODEL

A. State variables

At the beginning of each time-window (called an epoch),

the state of the airport system was observed. The takeoff rate

in this time-window and the state of the departure process at

the beginning of the subsequent time-window were predicted

and used to recommend a pushback rate. For the purposes of

control, the state was derived from the following inputs:

1) Meteorological conditions and runway configuration,

(MC;RC).

2) Number of jet aircraft traveling from the gates to the

departure runway, G.

3) Number of jet aircraft in the departure queue, D.

4) Expected number of arrivals in the next 15 min, A.

5) Number of props taxiing out, P.

The above quantities are all known in the current tower

environment: G is the number of jet flight strips in the ground

controller’s position, D is the number of jet flight strips in the

local controller’s position, P is known from the same positions,

and A is given by the Traffic Situation Display (TSD).

Given the meteorological conditions and runway configu-

ration (MC;RC) at any time t, the state Nt of the departure

process consists of the number of jet aircraft traveling from

the gates to the departure queue (Gt ) and the number of aircraft

in the departure queue (Dt):

Nt = (Gt ,Dt). (1)

Total number of aircraft taxiing out, also known as the total

work-in-process of the departure process, Wt , is given by

Wt = Gt +Dt . (2)

B. Selection of time period

The value of ∆ should equal the lead time of the system,

that is, the delay between the application of the control

input (setting an arrival rate at the runway by controlling the

pushback rate) and the time at which the runway sees that

arrival rate. By choosing a time horizon that is approximately
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equal to the expected travel time from the gate to the departure

queue, flights pushing back during a given time period will

reach the departure queue in the next time period.

C. Pushback process

At each epoch (the beginning of each time period), the

decision maker chooses a pushback rate (arrival rate into the

surface system), λ ∈ Λ = {0,1, · · · ,λmax}. λ is expressed as

the number of pushbacks per ∆ minutes. By setting a pushback

rate at epoch τ , the air traffic controller authorizes λ aircraft

to push back in that time period. In other words, λ pushbacks

will occur in the time period (τ,τ +∆] with probability 1.

D. Runway service process

Each departure runway can be modeled as a single server

at which aircraft queue to await takeoff. For the case of BOS,

the departure runways of each configuration are modeled as

a single server with a single queue, as departure runways of

each major configuration are not independent and are fed by

the same queue [23]. This approach has been extended to the

case of multiple departure runways as well [31]. The runway

system has finite queuing space C, which depends on the

airport layout and operational procedures. The runway service

times are modeled as being Erlang distributed, with shape and

rate (k,kµ) extracted from surveillance (ASDE-X) data [32].

The arrival times at the queuing system are assumed to be

random and independent from each other. At each epoch, the

total number or aircraft traveling from the gate to the departure

queue is known (denoted Rτ ); it is assumed that all of them

will have reached the runway server in the next epoch. This

assumption will be relaxed later in Section IV.

This departure runway resembles a M(t)/Ek/1 system with

queuing space C, with the additional constraint that there

are Rτ arrivals during the (τ,τ + ∆] time interval. Such a

system is denoted as (M(t)|Rτ )/Ek/1. Assuming that at epoch

τ there are Rτ aircraft traveling to the departure runway, the

probability density function g of the rth arrival at the departure

runway at time t ∈ (τ,τ +∆] is:

g(r, t) =
Rτ − (r− 1)

(τ +∆)− t
, t ∈ (τ,τ +∆], r = 0,1, . . .Rτ (3)

(3) is derived by considering Rτ − (r− 1) uniformly distributed

random variables in the interval (t,τ+∆]. The probability that

one of these lies in (t, t + dt] is
(

Rτ − (r− 1)
)

dt/(τ +∆− t).
The state of the queuing system at time t is denoted by

St = (Rt ,Qt) (4)

where Rt is the number of aircraft that were traveling to the

departure runway at the start of that epoch but have not reached

the departure queue yet, and Qt ∈ {0,1, . . . ,kC} is the state of

the embedded chain of the semi-Markov process. An example

of the chain for k = 2 and C = 4 is shown in Figure 2.

A service completion of an Erlang process with shape k and

rate kµ is represented with k stages of exponentially distributed

random variables with rate kµ . Each such stage is known as

a stage of work. A state of the Markov chain (r,q) implies

that there are r aircraft that have been traveling to the runway
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Fig. 2: State transition diagram for an (M(t)|R0)/E2/1 system

with queuing space of 4 customers in the system.

since the start of that epoch, and there are q stages of work to

be completed at the departure runway server. In other words,

there are min(1,q) aircraft in service and max(⌈(q− k)/k⌉,0)
aircraft in the departure queue.

At epoch 0, the Markov chain is at the bottom level of

Figure 2 in state (R0,Q0), namely, R0 aircraft traveling to the

departure runway and Q0 stages of work to be completed.

By the end of epoch ∆, all R0 aircraft will have reached the

departure queue, and the Markov chain will be at the top

level (0 aircraft traveling). Let Pr,q(t) denote the probability

that the queuing system is in state (r,q) at time t, where

0 < t ≤ ∆. The state probabilities P0,0(∆),P0,1(∆), · · ·P0,kC(∆)
describe the state of the queuing system at the end of the time

interval ∆, and can be determined by considering the possible

transitions of the Markov chain (for example, in Figure 2).

The resultant set of equations are known as the Chapman-

Kolmogorov equations [33]. For 0 < t ≤ ∆, and 1 ≤ r < R0:

dP0,0

dt
= kµP0,1 (5)

dP0,q

dt
= kµP0,q+1 −kµP0,q, 1 ≤ q < k (6)

dP0,q

dt
= kµP0,q+1 +

1

∆− t
P1,q−k −kµP0,q, k ≤ q < kC (7)

dP0,kC

dt
=

1

∆− t
P1,k(C−1)−kµP0,kC (8)

dPr,0

dt
= kµPr,1 −

r

∆− t
Pr,0 (9)

dPr,q

dt
= kµPr,q+1 −kµPr,q −

r

∆− t
Pr,q, 1 ≤ q < k (10)

dPr,q

dt
= kµPr,q+1 +

r+1

∆− t
Pr+1,q−k −

r

∆− t
Pr,q−kµPr,q,

k ≤ q ≤ k(C−1) (11)

dPr,q

dt
= kµPr,q+1 +

r+1

∆− t
Pr+1,q−k −kµPr,q,

k(C−1)< q < kC (12)

dPr,kC

dt
=

r+1

∆− t
Pr+1,k(C−1))−kµPr,kC (13)

dPR0,0

dt
= kµPR0,1 −

R0

∆− t
PR0,0 (14)

dPR0,q

dt
= kµPR0,q+1 −

(

R0

∆− t
−kµ

)

PR0,q,

1 ≤ q ≤ k(C−1) (15)
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dPR0,q

dt
= kµPR0,q+1 −kµPR0,q, k(C−1)< q < kC (16)

dPR0,kC

dt
= −kµPR0,kC (17)

The state probabilities P0,0(∆),P0,1(∆), ...P0,kC(∆) are ob-

tained by numerically solving (5)-(17) for t = ∆, with initial

value (R0,Q0). The probability of the queuing system state at

time ∆ being i = Q∆ is given by

Q∆ = f (R0,Q0)

with pq(i)(R0,Q0) = P0,i(∆) for 0 ≤ i ≤ kC

=⇒ pq(R0,Q0) = P0(∆), [P0,0(∆),P0,1(∆), ...P0,kC(∆)]
′.

E. System dynamics

Suppose that at epoch τ , there are Rτ aircraft traveling to

the departure runway, Qτ stages of work left in the queue, and

the decision maker selects a pushback rate λτ . At τ +∆, Rτ

aircraft will have reached the departure queue, λτ aircraft will

be traveling, and Qτ+∆ = f (Rτ ,Qτ ) stages of work will remain

in the queue. The queuing system therefore evolves according

to the following equation:

(Rτ+∆,Qτ+∆) = (λτ , f (Rτ ,Qτ)) (18)

Given that the chain is in state (r,q) at the epoch τ and the

pushback rate λ is chosen, the probability that the chain is in

state (i, j) at the next epoch τ +∆ is:

Pr(r,q)→(i, j)(λ ) =

{

pq( j)(r,q) if i = λ

0 otherwise
(19)

The state St of the queuing system maps to the state Nt of

the departure process as follows:

Nt =

{ (

λt−∆,max(⌈(Qt − k)/k⌉,0)
)

, t ∈ {0,∆, . . .}
(

Vt +Rt ,max(⌈(Qt − k)/k⌉,0)
)

, otherwise
(20)

where Vt is the number of aircraft that pushed back between

the start of the time period in which t lies, and time t. By

sampling the system every ∆ minutes, the departure process is

decoupled into the pushback and the runway service processes,

which are independent of each other within a time period.

F. Choice of cost function

The control strategy sets the arrival rate of aircraft to the

queuing system, namely, the pushback rate, to balance two

objectives: Minimize the expected departure queue length, and

maximize the runway utilization. The cost function associated

with a state (r,q) of the queuing system is denoted c(q). This

cost is a combination of the queuing cost and the cost of non-

utilization of the runway, that is, q = 0. If q ∈ {1,2, . . .k},

both the queuing and non-utilization costs are zero. For all

higher states, q > k, there is a queuing cost which is usually

assumed to be a monotonically nondecreasing function of q

with increasing marginal costs [34, 35]. It is assumed to scale

quadratically with the state of the queue, because the expected

system delay is a quadratic function of queuing state ([D ·(D+
1)/2]/µ). A candidate cost function with these properties is:

c(q) =

{

H, q = 0

(⌈(q− k)/k⌉)2 q = 1, . . . ,kC
(21)

where H is the cost of a loss of runway utilization.

Equations (5)-(17) are solved numerically to calculate

pq(R0,Q0, t) =
[

R0

∑
r=0

Pr,0(t),
R0

∑
r=0

Pr,1(t), . . . ,
R0

∑
r=0

Pr,kC(t)
]′

(22)

at time t. Numerical experiments show that sampling 10 times

a minute is sufficient for accurately calculating the expected

cost of each state, c̄, over ∆ min [32]:

c̄(R0,Q0) =
10∆−1

∑
i=0

1

10
pq(R0,Q0, i/10) · c(Q0) (23)

IV. DYNAMIC PROGRAMING FORMULATION

The optimal costs, J∗(r,q), at each state, (r,q), for the

infinite horizon problem with discount factor α are given by

the Bellman equation [36]:

J∗(r,q) = min
λ∈Λ

{c̄(r,q)+α
kC

∑
j=0

Pr(r,q)→(λ , j)J
∗(λ , j)}

= min
λ∈Λ

{c̄(r,q)+αpq(r,q) ·J
∗(λ )

where J∗(λ ) = [J∗(λ ,0),J∗(λ ,1), . . . ,J∗(λ ,kC)]′,
r ∈ {0,1, . . . ,λmax} and q ∈ {0,1, . . . ,kC}.

The earlier assumptions that the Rτ aircraft traveling at

epoch τ will all reach the queue during the time interval

(τ,τ +∆] and that the pushback rate (λτ ) set at epoch τ will

arrive at the runway at t > τ +∆ are now relaxed. For each

value of λτ and Rτ , i out of the λτ aircraft are assumed to reach

the runway during the time interval (τ,τ +∆] with probability

βi. Similarly, i out of the Rτ aircraft are assumed to reach the

runway at t > τ +∆ with probability γi. Therefore, Rτ aircraft

reach the runway during the time interval (τ,τ +∆], and λτ

aircraft at t > τ +∆, with probability 1−∑βi −∑γi.

Equation (18) therefore becomes:

(Rτ+∆,Qτ+∆)=











(

λτ , f (Rτ ,Qτ)
)

, w.p. 1−∑βi −∑γi
(

λτ − i, f (Rτ + i,Dτ)),w.p. βi, i = 1, . . . ,λτ
(

λτ + i, f (Rτ − i,Dτ)),w.p. γi, i = 1, . . . ,Rτ

The above equation is seen to maintain the Markov property.

For these system dynamics, the Bellman equation for the

infinite horizon problem with discount factor α is:

J∗(r,q) =

min
λ∈Λ

{

(1−∑ βi −∑γi)[c̄(r,q)+αpq(r,q) ·J
∗(λ )]

+∑βi[c̄(r+ i,q)+αpq(r+ i,q) ·J∗(λ − i)]

+∑γi[c̄(r− i,q)+αpq(r− i,q) ·J∗(λ + i)]

}

(24)

Equation (24) illustrates the tradeoffs involved with the

choice of time period, ∆. A long time period requires less

frequent updates of the optimal policy, making implementation

easier. It is, however, necessary to predict runway performance

and maintain runway utilization over a longer period of time.

If ∆ is significantly less than the lead time, a smaller inventory

will be necessary at the departure queue to maintain runway

utilization. However, γi will be large, and only a fraction of

aircraft taxiing will arrive at the runway by the next epoch.

As a result, the state at epoch τ , (Rτ ,Qτ ), will not be closely

related to the queuing system state at the next epoch, Qτ+∆.
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More frequent updates of the optimal policy will also be

necessary, increasing air traffic controller workload.

This problem can be shown to satisfy the property of weak

accessibility. Suppose that at epoch 0, the embedded chain

is at state (r0,q0). At the next epoch, the chain will be at

any of the states (λ0,0),(λ0,1), . . . (λ0,min(r0 + q0,kC)) with

nonzero probability. Suppose that the following control law is

applied: For all (r0,q0), λ0 = λmax, where λmax > µ . Then,

the queuing system will reach the state (λmax,kC) within

a finite number of epochs with nonzero probability. Also,

at the next epoch, the state will be in any of the states

(λmax,0),(λmax,1), . . . (λmax,kC)) with nonzero probability. As

before, from any of these states, the chain will reach the state

(λmax,kC) within a finite number of epochs with nonzero

probability. The state (λmax,kC) is therefore recurrent under

this control law, and weak accessibility is satisfied.

Using a discount factor as in (24) may not be appropriate,

since the cost of an unutilized runway remains constant in

time. An alternate formulation is to determine the policies that

minimize the average optimal cost per stage, c∗:

c∗+h∗(r,q) =

min
λ∈Λ

{

(1−∑ βi −∑γi)[c̄(r,q)+pq(r,q) ·h
∗(λ )]

+∑βi[c̄(r+ i,q)+pq(r+ i,q) ·h∗(λ − i)]

+∑γi[c̄(r− i,q)+pq(r− i,q) ·h∗(λ + i)]

}

(25)

V. A PUSHBACK RATE CONTROL POLICY FOR BOS

This section describes the application of PRC v2.0, given

by Equation (25), to the departure process at BOS. The

focus here is on runway configuration 22L, 27 | 22L, 22R in

VMC during the peak evening departure push, although other

configurations were also studied. As explained in Section II,

props at BOS were exempt from pushback control.

A. Selection of time period

The average unimpeded taxi-out time at BOS is 12.6

minutes under VMC [10]. There is an added delay due to

taxiway congestion, which is 1-2 minutes under moderate

traffic conditions. 15 minutes is therefore a suitable choice of

time-window at BOS. Furthermore, due to a lack of accurate

measurements, it is assumed that βi = γi = 0 for all i. Equation

(25) therefore becomes:

c∗+ h∗(r,q) = min
λ∈Λ

{

(c̄(r,q)+pq(r,q) ·h
∗(λ )

}

(26)

B. Estimation of runway service process parameters

The parameters of the runway service process of BOS

during peak evening times were extracted using ASDE-X data

from Nov 2010-Jun 2011. An Erlang distribution was fitted

using the approximate Method of Moments. The mean service

time was 1.54 min, and the variance was 0.47 min2 [32].

C. Maximum pushback rate and cost function

The set of permissible policies is defined as Λ =
{0,1, . . . ,λmax}. At most airports, there is a natural threshold

for the maximum admissible rate of arrivals into the departure

process (pushbacks). λmax is estimated to be 15 aircraft/15 min,

and the queuing system capacity (C) is estimated to be 30 at

BOS. The cost of underutilizing the runway, c(0), is chosen

to be equal to the cost of a queue of 25 departures, reflecting

the fact that at BOS, a very long queue can lead to surface

gridlock and non-utilization of the runway [23].

D. Calculation of optimal policies

Given the service time distribution (k,kµ), the time period

∆, the queuing space C, the set Λ and the costs c, the optimal

pushback policies can be obtained by solving (26). It can be

solved efficiently using policy iteration with a suitable choice

of initial policy. The policy iteration algorithm converges

in fewer than 10 iterations. The optimal policies λ ∗ are a

function of the state of the embedded chain (r,q), which is

not observable. However, each state of the chain is mapped to

an observed quantity, N, through (20). For 0 ≤ G ≤ λmax, the

optimal pushback rate is approximated by:

λ̄ (G,0) = ⌊
∑k

j=0 λ ∗(G, j)

k+ 1
+ 0.5⌋ (27)

λ̄ (G,D) = ⌊
∑
(D+1)k
j=Dk+1 λ ∗(G, j)

k
+ 0.5⌋ for 1 ≤ D <C (28)

Figure 3 shows the contours of the optimal pushback policy

λ̄ as a function of the number of aircraft in the departure queue

(D) and the number of aircraft traveling to the runway (G). As

expected, the optimal pushback rates decrease for increasing

D and G. The optimal policies can also be characterized by

the expected work-in-process at the next epoch, W̄τ+∆, as a

function of the current state using Equation (18), as shown in

Figure 4. When Wτ ≥ 23, the optimal pushback rate is 0, but

it is not sufficient to reduce W̄τ+∆ to 13. By contrast, when

Wτ ≤ 13, the optimal pushback policy increases W̄τ+∆ to values

higher than 13.
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Fig. 3: Optimal pushback policy λ̄τ as a function of the number

of aircraft in the departure queue (Dτ ) and the number of

aircraft traveling to the runway (Gτ ).

Figure 4 suggests that the algorithm tries to target a desired

value of Wτ . A comparison of Figures 3 and 4 shows that each

λ̄τ is associated with one value of W̄τ+∆ or D̄τ+∆, suggesting
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Fig. 4: Expected work-in-process as a function of the number

of aircraft in the departure queue (Dτ) and the number of

aircraft traveling to the runway (Gτ ).

that the optimal pushback policy at time τ is a function of the

expected queue length at time τ +∆.

Figure 5 shows the scatterplot of the optimal pushback rate

λ̄τ(Gτ ,Dτ ) as a function of the expected D̄τ+∆(Gτ ,Dτ) for all

0 ≤ G ≤ λmax and 0 ≤ D ≤C, along with a fitted convex non-

increasing function that minimizes absolute deviations from

the calculated points. The equivalent PRC v1.0 strategy which

aims at keeping Wτ+∆ at 13 aircraft is also shown [23]. For the

most part, the two strategies are the same after rounding to the

closest integer. However, when the expected queue length at

τ +∆ is less than 4, PRC v2.0 increases Wτ+∆ to 14 or 15 in

order to better account for the risk of runway non-utilization.
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Fig. 5: Optimal pushback policy λ̄τ as a function of the

expected queue D̄τ+∆ at the next epoch (τ +∆).

E. Conditional throughput forecasts

Parameters such as the fleet mix and the expected number

of landings can provide a conditional forecast for the runway

service time distribution [30, 37]. These parameters explain

some of the variance of the departure throughput, and provide

a better estimate of the expected departure capacity. For

example, the departure throughput in a given 15-min interval

for runway configuration 22L, 27 | 22L, 22R in evening peri-

ods under visual meteorological conditions, given the arrival

throughput and taxiing prop departures, can be estimated from

the regression tree shown in Figure 6. This regression tree was

validated using 10-fold cross validation.

These conditional forecasts are incorporated into the algo-

rithm as follows:

P< 1 P≥ 1 

A< 7 A≥ 7 P≥ 3 P< 3 

(10.95, 1.34)  
A< 7 A≥ 7 

(10.28, 1.18) 

(9.79, 1.29)  (7.93, 1.23) 

(9.74, 1.41)  

(9.42, 1.23) 

A< 8 A≥ 8 A< 8 A≥ 8 

P< 5 P≥ 5 

 (8.78, 1.08) 

 (9.1, 1.26) 

(10.26, 1.27)  

Fig. 6: Predicted jet departure throughput (mean, standard

deviation) given the expected number of arrivals (A) in the

next 15 minutes and number of props taxiing out (P).

• At epoch τ , the conditional throughput for the time

window (τ,τ +∆] is predicted from the regression tree,

using the expected number of arrivals (A) and the number

of props taxiing out (P).

• The expected takeoff rate in the time window (τ,τ +
∆] and queue length at τ + ∆ are calculated using a

(M(t)|Rτ )/Ek/1 queuing model with parameters fitted to

the throughput forecast from the previous step.

• The PRC v2.0 curve (Figure 5) is used to calculate the

optimal pushback policy for this expected queue length.

The proposed approach, denoted PRC v2.1, is a heuristic

modification of PRC v2.0 in the spirit of roll-out algorithms

[38] to incorporate the conditional forecast. The intuition

behind the derivation of PRC v2.1 is that the conditional

forecasts are used only to update the prediction of the queue

length. While the reduction in the variance of the capacity

distribution could yield a more aggressive control policy, this

feature is not exploited. The optimal PRC v2.1 policy at epoch

τ is denoted λ̌ , and is a function of the departure queue, the

number of aircraft traveling to the runway and the number

of props taxiing out at τ , as well as the expected number of

landings in (τ,τ +∆].

F. Rounding of optimal policies

As explained in Section II, the optimal policy needs to

be communicated to the controllers as a recommended rate.

The optimal pushback rate for each 15-minute time-period is

therefore rounded to one of the following: 0 aircraft/15 min

(Stop), 1 aircraft/5 min, 1 aircraft/3 min, 2 aircraft/5 min, 1

aircraft/2 min, 3 aircraft/5 min, 2 aircraft/3 min, 4 aircraft/5

min or 1 aircraft/min [23].

VI. DESIGN OF A DECISION SUPPORT TOOL

A Decision Support Tool (DST) was designed in order to

implement Pushback Rate Control algorithms, and PRC v2.1

particular, in the airport tower environment. The device used

was a 7” Samsung Galaxy TabTM tablet computer with the

AndroidTM operating system, which is convenient for appli-

cation development, while being compact and portable. Two

tablet computers were used in the implementation, namely, the

rate control transmitter and the rate control receiver. Inputs
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were entered into the rate control transmitter, which then

determined the optimal pushback rate and communicated it

via a Bluetooth wireless link to the rate control receiver. The

receiver displayed the recommended rate to the Boston Gate

(BG) controller, who authorized aircraft to pushback.

A. Inputs

The inputs to the rate control transmitter were the runway

configuration, meteorological conditions, expected number of

arrivals in the next 15 minutes, numbers of jets under ground

control and local control and number of props taxiing out.

The input interface is shown in Figure 7b. The expected

takeoff rate and the recommended pushback rate were then

calculated using a look-up table for the PRC v2.1 algorithm,

and transmitted to rate control receiver.

(a) Input interface.

Pushbacks in current time period 

can be released (grayed out) 

Unused rate carried over to the 

next time interval 

Pushbacks can be reserved for 

later in the time period (angled) 

Pushbacks can also be reserved 

for the next 15-min time period 

(b) Volume control display mode.

Fig. 7: Design of the DST input and output interface.

B. Outputs

The receiver conveyed the suggested pushback rate to the

BG controller through one of two display modes: the rate

control and the volume control displays.

1) Rate control display: The output in this mode was a

color-coded image of the suggested pushback rate. In this

display mode, the BG controller kept track of the time intervals

and the number of aircraft that have already pushed back.

When the demand for pushbacks exceeded the recommended

rate, aircraft were held at the gate until the next time interval.

The BG controller kept track of aircraft holds, and released

them at the appropriate time.

2) Volume control display: This display mode helped the

BG controller keep track of the number of aircraft that had

called and had been released. It was an alternative to the

handwritten notes that controllers otherwise used to keep track

of gate-holds. The volume control mode also provided visual

cues of the timeline and upcoming actions.

On the volume control display, a 15-minute time period is

broken down into smaller time intervals. For example, if the

rate is 3 per 5 minutes, the display shows three rows of three

aircraft icons, with each row corresponding to a 5-minute time

interval (illustrated in Figure 7a). Aircraft can only be released

during an ongoing time interval, indicated by a small black

arrow to the left of it. Future positions can only be reserved.

Any unused release spots roll over to the next time interval.

C. DST deployment

During the field trials at BOS in 2011, a member of the

research team gathered and input data into the rate control

transmitter. The rate control receiver was located next to

the BG controller, who chose between the rate control and

volume control displays. It is expected that in a long-term

deployment, the traffic management coordinator (TMC) or

the tower supervisor would input the data. For a part of

the field-tests, the BG position was merged with another

position, either clearance delivery or the TMC to investigate

the potential implementation of PRC without requiring an

additional controller at the BG position.

VII. FIELD-TESTS AT BOS

PRC v2.1 was field-tested at BOS during 19 evening (4PM-

8PM) demo periods between July 18th and September 11th

2011. However, there was little congestion when the airport

operated in its optimal configuration (4L, 4R | 4L, 4R, 9) or

when the demand was low. There was enough congestion to

warrant gate-holds in only eight of the demo periods. A total

of 144 flights were held, with an average gate-hold of 5.3

min. During the most congested periods, up to 44% of flights

experienced gate-holds.

This section presents an example describing one test period

(July 21, 2011), the methodology used to calculate taxi-out

time and fuel burn savings, and a comparison of the predicted

and observed takeoff rates during the test periods.

A. An illustrative example from the field-tests

This section illustrates the typical outcomes of the

PRC v2.1 field-tests using a case day with significant gate-

holds (July 21, 2011). Figure 8 depicts the events of the

demo period, divided into 15-minute windows. The top plot

shows the demand for pushbacks (that is, the number of

aircraft that called for pushback), the number of pushbacks that

were cleared, and the resulting number of jet aircraft actively

taxiing out. The middle plot shows the predicted and measured

throughput. Finally, the bottom plot shows the average taxi-

out times and gate-holding times for aircraft that pushed back

in each time interval.

The top plot in Figure 8 shows that as the number of

jet aircraft taxiing-out exceeds 14, gate-holds are initiated

in order to regulate the traffic to the desired state. For this

configuration, the desired state is 13-14 aircraft on the surface.

The airport stays in the desired state despite the high variance

of the departure throughput (middle plot of Figure 8) and the

rounding-off of the recommended pushback rates.

A key objective of the field-test was to maintain pressure on

the departure runways, while limiting surface congestion. By

maintaining runway utilization, it is reasonable to expect that

gate-hold times translate to taxi-out time reduction. Runway

utilization was shown to not be adversely impacted by the

control strategy by checking that there was always at least

one aircraft in the runway queue during the demo periods. This

validation was performed both through visual observations and

through the analysis of ASDE-X data [39].
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Fig. 8: (Top) Surface congestion, demand and pushbacks;

(Middle) Departure throughput measurements and predictions;

and (Bottom) Average taxi-out times and gate holds, during

each 15-min interval on July 21, 2011.

B. Translating gate-hold times to taxi-out time reductions

The next step is to quantify the benefits achieved during the

field-tests of PRC v2.1. Taxi-out time and fuel burn reductions

are the main benefits addressed in this paper. As long as

runway throughput is maintained, it is reasonable to use the

gate-hold times as surrogates for taxi-out time savings. Simu-

lations of departure operations are used to confirm the above

hypothesis, estimate the taxi-time savings and investigate the

fairness of the control strategy.

The outcomes of three scenarios are compared in this

analysis:

1) Data from actual operations: Taxi-out times and

queuing times during demo periods are measured using

ASDE-X data. They describe the actual system behavior

during the field-tests.

2) Simulations of actual operations: These simulations

are compared to the observed data in order to validate

the simulation model. Pushback clearance times and

gate-hold times for the simulation are obtained from

observations during the demo periods, and correspond

to the actual values.

3) Simulations of hypothetical scenarios with no push-

back rate control: Finally, the model is used to simulate

what would have happened if pushback rate control was

not in effect, that is, if flights had been cleared for

pushback as soon as they called ready to push. The

pushback clearance times in the simulations are set to

be equal to the call-ready times, that is, all gate-hold

times are set to zero.

1) Simulation set-up: The following assumptions are made

in all simulations: (1) The runway takeoff slots are determined

by actual operations, to reflect differences in runway perfor-

mance due to factors not related to pushback rate control.

Fixed departure slots are a reasonable assumption as long as

there is a nonzero departure runway queue. (2) Fights with

traffic management constraints are assumed to have the same

takeoff times as those observed in the data.

The unimpeded taxi-out times of flights are determined

using ASDE-X data [32]. Given the pushback clearance time,

the sum of the unimpeded taxi-out time and a taxi-out delay

due to congestion [32], each flight is propagated to the runway,

where it is assigned to the next available takeoff slot in that

time period. The difference between this wheels-off time and

the pushback clearance time is the expected taxi-out time. The

comparison of the actual and predicted runway queuing times

helps validate the simulations and assess the impact of the

control strategy.

Table I presents detailed simulation results for two days

with significant gateholds, Jul 21, 2011 and Jul 22, 2011. The

results correspond to flights that were cleared for pushback

between 1645 and 2045 hours. The table shows that the model

predictions of the mean taxi-out and queuing times match the

observed data from the actual operations.

TABLE I: Gate-hold times, mean taxi-times and queuing

times from actual data, simulations of actual operations, and

simulations of hypothetical operations with no gate-holds.

Date
# Gatehold

Scenario
Avg. taxi-out Avg. queue

Flts time (min) time (min) time (min)

121 368
Act. data 16.5 5.7

7/21 Act. sim. 16.5 5.8
Hyp. sim. 19.5 7.9

121 279
Act. data 17.9 7.2

7/22 Act. sim. 17.9 7.4
Hyp. sim. 20.2 9.2

Figure 9 (top) shows the instantaneous actual and simulated

queue on July 21, 2011. The actual queue is seen to be

accurately predicted by the simulations. The bottom plot on the

same figure shows the actual queue on July 21 with PRC, and

the simulated prediction without PRC. The difference between

the two queue lengths illustrates the benefit of PRC v2.1.
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Fig. 9: Observed and predicted queue lengths on Jul 21, 2011.

The overall estimation of fuel burn savings is conducted by

using the simulated taxi-out time savings for all test periods,

and models of taxi fuel burn [23, 39]. The total fuel burn

reduction estimated to be 2,650 US gallons, which translates

to an average savings of about 57 kg per gate-held flight.

Table II summarizes the results of the eight demo periods with

significant gate-holds.

2) Distribution of benefits: Equity is an important criterion

in evaluating potential congestion management strategies. The

PRC approach, as implemented here, invokes a First-Come-

First-Serve (FCFS) policy in clearing flights for pushback,
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TABLE II: Summary of the eight demo periods with significant

gate-holds during the PRC v2.1 field-tests in 2011.

Date Period Configuration
No. of Total

gate-holds gate-hold
time (min)

7/18 4.45-8PM 22L, 27 | 22L, 22R 14 28

7/21 5.15-9PM 22L, 27 | 22L, 22R 42 384

7/22 5.15-8.30PM 22L, 27 | 22L, 22R 50 290

7/24 5.15-8PM 4L ,4R | 4L, 4R, 9 12 13

7/28 5.30-8PM 4L ,4R | 4L, 4R, 9 7 13

8/11 5.30-8.15PM 22L, 27 | 22L, 22R 6 9

8/14
5.00-6.30PM 22L, 27 | 22L, 22R 1 1
6.30-7.30PM 4L ,4R | 4L, 4R, 9 0 0

9/11
5.30-6.30PM 4L ,4R | 4L, 4R, 9 0 0
6.30-8.15PM 22L, 27 | 22L, 22R 12 23

Total 144 761

since this is the widely accepted measure of fairness in air

traffic control [40]. One would therefore expect no bias toward

any airline with regard to gate-holds incurred, and that the

number of gate-holds for an airline would be commensurate

with its contribution to departure traffic during congested

periods. However, in practice, inadvertent resequencing due

to pushback procedures, taxi speeds or sudden changes in

demand can potentially lead to differences between the gate-

hold time and taxi-out savings of individual flights. Similarly,

the benefit of a gate-hold can also extend to other flights

[10]. Figure 10 shows that during the PRC v2.1 field-tests,

the FCFS sequence was mostly maintained, and that the gate-

hold times were approximately equal to the taxi-time reduction

experienced by each airline. It must be noted that the fuel burn
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Fig. 10: Percentage of gate-hold times, taxi-out time reduction

and fuel burn savings corresponding to each airline.

benefit to an airline depends on its fleet mix. Figure 10 shows

that while the taxi-out time reductions were similar to the

gate-hold times, some airlines (for example, Airlines 4, 13, 21

and 27) enjoyed a greater proportion of fuel savings. These

airlines were typically those which operated several Heavy

aircraft during the evening periods.

C. Takeoff rate prediction

As explained in Section V, the PRC v 2.1 algorithm was

used to predict the jet takeoff rate. The predictions were vali-

dated during shadow testing by means of visual observations,

and were subsequently used during the 19 days of the trials.

Table III reports the mean error (ME), mean absolute error

(MAE) and root mean square error (RMSE) of the predicted

jet takeoff rate (relative to the observed value) over the 182

15-min periods of field-tests. The errors for the 93 periods

with at least 10 taxiing jet aircraft are also shown, because

gate-holds were most likely in these times.

TABLE III: Error statistics for PRC v 2.1 predictions of the

jet aircraft takeoff rate.

All traffic conditions ≥ 10 jets taxiing-out

ME MAE RMSE ME MAE RMSE

PRC v 2.1 -0.20 1.25 1.64 -0.03 1.14 1.58

Table III shows that the regression tree-based prediction

algorithm used in PRC v2.1 predicts the takeoff-rate quite

well. The mean absolute error is only 1.14 during moderate

and high traffic conditions (10 or more jets taxiing-out).

Most importantly, the prediction errors are within the level of

uncertainty considered in the design of the PRC v2.1 strategy.

For the 22L, 27 | 22L, 22R configuration with at least 10 jet

departures taxiing, the takeoff rate was underestimated by at

most 2.7, while the PRC v2.1 algorithm tries to maintain a

queue of at least 4 aircraft for these conditions. Similarly,

for the 4L, 4R | 4L, 4R, 9 configuration with at least 10 jet

departures taxiing, the takeoff rate was underestimated by at

most 3.7, while the PRC v2.1 algorithm tries to maintain a

queue of at least 5 aircraft. These observations suggest that the

inventory targeted by the algorithm at the queue was sufficient

to avoid runway underutilization; a more aggressive congestion

control policy may have resulted in an empty runway queue.

The importance of maintaining a sufficiently large runway

queue has been recognized by other researchers as well [22].

D. Qualitative observations

1) Compatibility with traffic flow management initiatives:

An important goal of this effort was to investigate the com-

patibility of Pushback Rate Control with other traffic flow

management initiatives. On two field-test periods, controllers

demonstrated that they could handle airspace restrictions such

as Minutes-In-Trail (MINIT) programs and target departure

times (e.g., EDCTs) while executing the PRC v2.1 strategy. It

was shown that if known in advance, delays due to controlled

departure times could be efficiently absorbed as gate-holds.

2) Increased predictability: During the field-tests, once the

suggested pushback rate was given to the controller at the start

of each time period, the controller communicated the expected

release times to all aircraft on hold. The advance notice of

expected pushback clearance times improves predictability,

and can be useful in planning ground resources.

VIII. EVALUATION OF THE DST

After the field-tests at BOS had been completed, air traf-

fic controllers in the ATCT were surveyed regarding their

opinions on the study as a whole, and specifically on the

implementation and use of the DST. The survey responses

were positive and the controllers liked the DST [41]. Several

responses also supported combining BG and another position,

removing the need for a dedicated controller during gate-

holds. Comments on the best features of the DST included

“the ability to touch planes”, “reserve spots”, “[the ability to]

count the planes and account for aircraft with long delays”,
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“allows me to push and tells me to hold”, and “easy to use and

understand”. Suggestions for improvement included increasing

the icon sizes and maintaining more pressure on the runway.

IX. CONCLUSIONS

This paper presented the design and field-testing of a

Pushback Rate Control strategy at Boston Logan International

Airport (BOS). The proposed approach used historical data to

predict the performance of the airport under a set of operating

conditions, and used dynamic programming to balance the ob-

jectives of maintaining runway utilization and limiting surface

congestion. The optimal policy was a recommended rate at

which aircraft were cleared for pushback. A decision support

interface was designed to display the suggested pushback rate,

and to help air traffic controllers keep track of requests for

pushback, gate-holds and other metering constraints.

During 8 four-hour tests conducted at BOS during the

summer of 2011, fuel use was reduced by an estimated 9 US

tons (2,650 US gallons), while carbon dioxide emissions were

reduced by an estimated 29 US tons. Aircraft gate pushback

times increased by an average of 5.3 minutes for the 144

flights that were held at the gate, but with a corresponding

decrease in taxi-out times. Finally, a survey of the air traffic

controllers involved in the 2011 demo indicated strong support

for the Pushback Rate Control approach, the manner of

implementation, and the decision support tools developed for

the deployment of such strategies.
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