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ABSTRACT

In this thesis, we introduce and analyze a variation of the Travel-
ing Salesman Problem: conside: a problem of routing through a set of n
points. On any given instance of the problem only a subset consisting of
k out of the n points (0<k<n) have to be visited, with the number k
determined according to a known probability distribution (such as the
binomial). We wish to find a priori a tour through all n points. On any
given instance of the problem the k points present will then be visited
in the same order as'they appear in the a priori tour. The problem of
finding such an a priori tour which is of minimum length in the expect-
ed value sense is defined as a "probabilistic traveling salesman problem"
(PTSP). There are many possible variations of this generic version of
the PTSP, each having potentially important applications.

First we present the derivations of closed-form expressions for
computing efficiently the expected length of any given PTSP tour; we then
derive some interesting, and occasionally counter-intuitive, properties
of optimum PTSP tours; we also obtain relationships between the solutions
to TSP and PTSP problems through n points and we develop useful bounds on
the length of optimum PTSP tours.

This is followed hy an analysis of the PTSP in the plane. We first
present bounds on the expected length of the optimal PTSP tour for arbi-
trary sequences of n points lying in a square as well as for points
uniformly and independently distributed over the square. We then analyze
the asymptotic behavior of the expected value of the length of the tour
obtained through the strategy of reoptimizing the optimal tour for each
given instance of the problem. Finally we show that the expected length
of the optimal PTSP tour through n points drawn from a uniform distribu-
tion in the unit squave is almost surely (with probability 1) asymptotic
to a constant times Yn. We also discuss extensions of our results to
sequences of points lying in a general subset of a d-dimensioned eucli-
dean space.

Following this theoretical work, and based on it, we propose several
different possible strategies to solve PTSPs. After formulating the
problem as an integer nonlinear programming problem, we discuss a Branch-
and-Bound procedure and also show the inadequacy of dynamic programming
approaches for the PTSP. We then present an exposition of heuristic
procedures, including: tour construction procedures; "hill-climbing"
methods; and partitioning algorithms including a space~filling approach.



We conclude the thesis by suggesting briefly uses of this
methodology in different areas of application such as preliminary
planning of distribution systems and location of facilities.

Thesis Supervisor: BAmedeo R. Odoni

Title: Proftessor of Aeronautics and Astronautics
and of Civil Engineering
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CHAPTER 1

THE CONSIDERATION OF UNCERTAINTY IN ROUTING PROBLEMS

1.1 Introduction; Motivation:

Vehicle routing problems involve finding a set of pick up and/or
delivery routes from one or several central depots to various demand
points (e.q. customers{i in order to minimize some objective function
(minimization of routing costs, or of the sum of fixed and variable
costs, or of the number of vehicles required, etc.) Vehicles may have
capacity and, possibly, maximum-route-time constraints. For example, the
problem that arises when there is a single domicile (depot), a single
vehicle of unlimited capacity, unit demands, only routing costs, and
an objective function which minimizes total distance traveled, is the
famous Traveling Salesman Problem (TSP). With several vehlcles of common
capacity, a single depot, known demands, and the same objective function
as the TSP, we have a standard Vehicle Routing Problem (VRP). An
excellent review of various "node-covering" routing problems can be found
in Larson and Odoni [1981] as well as in Golden and Magnanti [1980]; a
useful taxonomy for vehicle routing and scheduling problems is contained
in Bodin and Golden [1987], one of many interesting papers in a special
issue of Networks devoted to the Proceedings of a National Science
Foundation Workshop on "Current and Future Directions in the Routing and
Scheduling of Vehicles and Crews"; an extensive review of the state of
the art in Routing and Scheduling of vehicles and crews is also given in
Bodin et al. [1983] (with a bibliography containing around 700

papers!). In fact the scholarly literature devoted to the TSP is by

itself quite impressive and one has simply to consult review papers such
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as Bellmore and Nemhauser [1968] and Parker and Rardin [1983] to convince
oneself that the TSP is perhaps the most intensively investigated of all
discrete optimization problems. The effort spent on the TSP problem is
partially a reflection of the fact that this problem is an essential
component of most other vehicle routing problems and that it also has
numerous, and sometimes surprising, other applications (see, for example,
Lenstra and Rinnooy Kan [1975]).

The applicationé of routing problems in general cover such diverse
activities as retail distribution, mail and newspaper delivery, municipal
waste collection, fuel oil delivery, etc.; indeed the number of instances
in which the methodologies and algorithms thus developed have been used
successfully in practical applications has been growing encouragingly
over the last several years. We ought to point out, as well, applications
of routing problems are not'restricted to transportation planning since
other settings can give rise to problems with the same mathematical
structure (for example Job-Shop scheduling).

This brief discussion shows that literature on vehicle routing

problems in a deterministic context is extensive. By a "deterministic

context", we mean situations in which the number of "customers", their
locations and the size of their demands are known with certainty before the
routes are designed. One can identify, however, a practically endless
variety of problems in which one or more of these parameters are random
variables, i.e. subject to uncertainty in accordance with some probabkility
distribution. In fact, these problems, specified as they are in a
probabilistic context, are even more applicable than their deterministic

counterparts. While much new ground has already been broken (see Section

1.2), the territory in this area is still virtually unexplored.
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Let us concentrate on the specific case of the TSP and consider the
following practical situation: assume a company wants to design a tour
through n customers and desires to minimize the routing cost only; it is
then legitimate to solve the corresponding TSP if all the customers must
actually be visited every day. Assume however that this tour is to be
used for a given prolonged period of time (more than one day) and tgat
for this time-horizon, the set of customers to be visited on a daily

basis varies; mereover, assume the company can not reoptimize or simply

does not desire to reoptimize (see later for a discussion on this

distinction) the route (on a daily basis); the vehicle will then follow a
pre-designed tour everyday and, on any given day, will simply skip the
missing'customers froim the original tour. The problem is not a XSP
anymore, since not only must the tour be a "good" one (that is, have a
small routing cost) when all customers are present, but it must also
remain "well-behaved" when some customers are skipped from the original
set. We have no guarantee that an optimal TSP tour through all the
potential points has this desirable property.

This simple observation suggests the formulation and analysis of the
following generic problem:

Consider a problem of routing through a set of n points. On any
given instance of the problem only a svbset consisting of k out of the n
points (0 < k ¢ n) must be visited, with the number k determined
according to a known probability distribution. We wish to find a priori
a tour through all n points. On any given instance of the problem, the k

points present will then be visited in the same order as they appear in

the a priori tour (see Figure 1.1 fox an illustration). The problem of

finding such an a priori tour which is of minimum length in the expected
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Figure 1.1: Simple Graphical Example of a PTSP
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value sense is defined as a "probabilistic traveling salesman problem"
(PTSP) .

One can see that this corresponds to an idealized version of the
previously described practical situation. There are at least twu
possible reasons why the company involved may not reoptimize its route on
a daily basis:

1. The company cannot reoptimize its routes due to lack of advance
information; that is, the information on who to visit on a particular day
is not available at the beginning of the journey but becomes available
only along the route itself.

2. The company does know who is to be visited on a particular day
but chooses not to reoptimize the route either because it is too expen-
sive to do so or because it prefers that the same driver visit the same
stops every day (see Stewart and Golden [1983] for additional comments);
thié latter strategy obviously promotes regularity of service and covers
situations in which a driver's knowledge of the route is an important
factor affecting his efficiency and the level of service offered.

In fact the second reason corresponds, perhaps, to a broader range
of applications; moreover, progress in communications and processing of
information might render the first reason obsolete in the near future.

As an illustration of a PTSP, one can think of the actual case of a
postman that‘delivers mail according to a fixed assigned route. On any
particular day, upon delivery at a given location, he checks what address
has to be visited next on his reqular route and proceeds accordingly.
This can be modeled by considering the simplest version of the general
framework that we described earlier. By calling p the probability that

any particular address out of a set of n addresses will require a visit
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on any given day (assuming independence between addresses and an equal p
for all addresses), the number of addresses requiring a visit is a

binocmial random variable W with the following probability mass function:
n
Pr(W=k) = (k) pk(1-p)n-k 0 <k <n .

Motivated by examples such as this one, we will often call p the
"coverage probability".

Having introduced the PTSP and before giving an outline of the
thesis, let us briefly review the few papers that deal with roduting

problems having some probabilistic elements.

1.2 Brief Literature Review:

Very few researchers have, so far, introduced the element of
uncertainty into routing problems, in contrast to the very impressive
literature devoted to the determin’stic version of these problems. (Of
course, one of the reasons why researchers are only now turning to
probabilistic types of problems is that deterministic-context routing
problems have already proved to be more than sufficiently difficult).

One can identify two types of uncertainty that have been addressed
in the literature to date:

1. the distances between points are nondeterministic

2. the demands at individual deliver (pick up) locations behave

as random variables

We will now briefly look at the two cases separately.

1.2.1 Nondeterministic Distance Between Points

This subsection might itself be subdivided into two parts, depending

on the underlying structure of the problem, i.e. on whether the points to
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be visited are on a graph/network or on a plane.

Wwith an underlying network structure the arcs are themselves
assumed to be of random length according to some probability
distribution; very few papers treat this stochastic version of routing
problems. One can note a paper by Kao [1978] in which a preference-order
dynamic program is developed to treat the TSP under nondeterministic
travel times. 1In it, Kao develoés a solution procedure for finding a
tour with maximum probability of completion by a specified time. In that
respect, this paper resembles other attempts to define well-known
problems on a probabilistic network (for example the Shortest Path
problem, see Frank [1969]). In Leipala [1978] the expectation of the
length of the optimal tour is estimated under various assumptions on the
probability distribution of the random variables representing the
interncdal distances.

A different class of papers have been devoted to the study of
routing problems in the plane. More precisely, the common approach is to
assume that the set of points to be visited is drawn from a sequence of
points in a 2-dimensional Euclidean space R2 and that distances between
points are given by the Eucllidean metric. All these analyses introduce
the probabilistic elements by assuming that the points are independently
and uniformly distributed over a given area of the plane.

This probabilistic version of the TSP received considerable atten-
tion during the 1950's. Earlier papers treated the derivation of upper
bounds on the value of the optimal TSP tour through n points lying in a
square of side 1 (see Verblunsky [1951] and Few [1955]). It is, however,
with Beardwood et al. [1959] that this probabilistic version of the TSP

received a thorough and theoretically important treatment; this
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seminal paper showed that the value of the optimal tour through n points
drawn from a uniform distribution in the unit square is almost certainly
(i.e., with probability 1) equal to a constant B times Yn. 1In fact, this
result was extended to an arbitrary Lebesgue measurable set of a d-
dimensioned space and with an arbitrary probability distribution for the
points. The paper shows that the constant of interest B(d) depends only
on the space dimensionality and not on the shape of the set considered
(B(2) has been estimated to be 0.765 {Stein [1977])). Although obtained
in the 1950's, it was only recently that this result recelved scme well-~
deserved attention. Karp [1977] was the first to use the theoretical
result as a main argument in the probabilistic analysis of heuristics for
the TSP. Following Karp's paper, results like that of Beardwood et al.
suddenly gained considerable prominence, especially among computer
scientists interested in algorithmic applications. . Within the context of
routing problems, several papers extended the basic results obtained in
Beardwood et al.: Stein [1978] obtained a similar result for the single
vehicie many-to-many Euclidean Dial-~a-Ride problem (this problem can be
modeled as a Traveling Salesman Problem with the feasibility constraint
that each customer's origin must precede that customer's destination on
the route); tha first section of Haimovich and Rinnooy Kan [1983]
obtained asymptotic expressions for the optimal solution value of the
capacitated routing problem under various assumptions on the distribution
of customers in the plane and on the capacity of the vehicle. These and
other papers develop and analyze partitioning algorithms adopting the
general idea contained in Karp [1977] to the specific problem at hand.

It is worthwhile mentioning that results have also been obtained in

contexts other than that of routing problems. To name a few, one can
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cite: wminimal Matching of a set of random points by euclidean edges
(Papadimitriou [1978]); optimal Triangulation of random points in the
plane (Steele [1982]); Steinhaus's geometric Location problem for random
points in the plane (Fisher and Hochbaum [1980]; Papadimitriou [1981];
Hochbaum and Steele [1982]; and Haimovich [1984]). A very powerful result
has also been derived in Steele [1981a): the author uses the theory of
independent subadditive processes to obtain strong limit laws for a class
of problems in geometrical probability that exhibit nonlinear growth (the
TSP being one of these problems). To conclude, one should mention that
this area of research is currently very active and is likely to lead to

more exciting results.

1.2.2 Nondeterministic Demand at Each Delivery (Pick up) Location

Let us now turn to the other type of uncertainty that has recently
been analyzed in routing problems. This subsection is concerned with
routing problems for which we wish to design a minimum cost set of routes
for a fleet of delivery (pick up) vehicles of fixed capacity; these
problems are traditionally labeled VRPs. Except for an isolated analysis
in the 1970's (Tillman [1969]), routing problems in which the demands at
individual delivery (pick up) locations behave as random variables have
received attention only very recently. A review of some results for
stochastic vehicle routing is contained in Stewart and Golden [1983].

The approach undertaken is the following: the problems are formulated by
using techniques from stochastic programming (i.e. chance-constrained
optimization, or stochastic programming with recourse, see, for example,
respectively Vajda [1972] and Hansotia [1979]) that allow one to

transform these problems into deterministic VRPs.
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By doing so, the problems can then be sovlved by using traditional
heuristics developed for the deterministic version of the problem. One
of the major drawbacks of these approaches is that it becomes necessary
to introduce additional parameters (penalties) whose choilce in terms of
form and value is at the analysts' discretion and may only vaguely be

related to routing costs.

1.3 oOutline of the thesis:

In section 1.1 we presented the practical motivation behind the
introduction of the PTSP. With respect to the brief literature review of
section 1.2, one can mention an additional motivation for studying the
PTSP, namely the author's desire to analyze a probabilistic version of a
combinatorial problem while keeping its original flavor (i.e., without
transforming the problem so that it is only indirectly related to its
deterministic counterpart).

The central motivation behind our research is to bring new elements
to bear in the analysis of routing models, thus making it possible to
consider more realistic, hence more complex models. This thesis will
then address the following two topics:

(1) Examination of the properties and characteristics of optimal
solutions to PTSPs.

(ii) Development of alternative strategies to solve PTSPs.

The outline of the research is as follows: First in Chapter 2 we
present efficient ways for computing the expected length of any given
PTSP tour; after demonstrating (in section 2.1) the inefficiency of
computing this expected length by explicit enumeration (0(n2") steps),

we present, in section 2.2, the derivation of a closed-form expression



19

giving the erpected length of any given tour through n points as a
function of the "coverage" probability p and of n-1 fixed quantities
intimately linked to the tour. This expression is obtained without any
restrictions on the matrix of distances between points. We then show,
using this expression and through a simple example, that the optimal TSP
tour can be a very poor solution to the corresponding PTSP problem with a
given probability p. In section 2.3 we extend our results in several
directions. We first consider problems where some points are always
present (one point, then m such points), the others being present only
with probability p as previously assumed. We then define and analyze the
Probabilistic Hamiltonian Path Problem (PHPP'. Finally, in a fourth
subsection we generalize all our previous results by considering more
general probabilistic assumptions about the presence cf points. When
generalization of the closed-form expression is not possible we give an
alternative way (recursive relationships) to compute efficiently the
expected length of any given fixed tour.

In Chapter 3, after providing a general "weight-form" representation
of every closed-form expression of Chapter 2 by means of a single
formula, we first derive, in section 3.2, properties of the two classes
of elements of which this expression consists. These properties are then
used to derive lower and upper bounds on the expected length of a tour,
In section 3.3 we try to obtain, using, in parts, results from section
3.2, some useful characterizations and/or exploitable properties of the
problem structure: we first show that there are some manipulations of the
distance matrix that leave the problem unchanged; we then show that,
surprisingly, the optimal FTSP tour in the Euclidean plane can intersect

itself; we finally consider the behavior of the expected length of a
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given tour with respect to perturbations of the graph such as adding or
deleting a node. Section 3.4 is then concerned with finding some
relationships between the optimal TSP tour and the optimal PTSP tour:
after providing some results for problems of small size, we then derive,
using results from section 3.2, worst--case bounds on the absolute
difference between the expected length of the optimal TSP tour and the
expected length of the optimal PTSP tour. We discuss the tightness of
our bounds and we provide insights into some very peculiar aspects of the
PTSP problem. We also point out that all our previous results are also
valid for the PHPP problem and finally we present a useful result based
on a variation of the PHPP.

Chapter 4 is concerned with methods of analysis considerably
aifferent from those of the previous two chapters. An asymptotic
approach is taken in which set-theoretic concepts are used instead of
graph-theoretic ones. We consider a set of points in 2-dimensional
Euclidean space R2, assuming the distance between points to be the
ordinary Euclidean distance. In section 4.2 we present an upper bound on
the expected length of the optimal PTSE tour for an arbitrary sequence of
n points lying in a square of side r. Assuming the points are uniformly
and independently distributed over the square, we obtain a second upper
bound as well as a lower bound on the expected length of the optimal PTSP
tour. In section 4.3 we turn our attention to asymptotic behavior (i.e.,
n+w), In a first subsection we present the asymptotic behavior of the
expected value of the length of the tour obtained through the strategy of
reoptimizing the optimal tour for each realization of the random
variables (i.e., for each subset of the points that will actually need a

visit on a particular problem instance, wa construct the optimal TSP tour



21

and compute its length). This, of course, constitutes a lower bound on
the expected length of the optimal PTSP tour. The second subsection
contains the most important theoretical result of this chapter:; we show
that the expected length of the optimal PTSP tour (coverage probability
p) through n points drawn from a uniform distribution in the unit square
is almost surely (with probability 1) asymptotic to c(p) /;, where c(p)
is a constant depending on the coverage probability p. The third
subsection is then concerned with the derivation of bounds on c(p).

We then present, in section 4.4, generalizations of our results in
several direcfions: first, we note that all our previous results extend
to the case where one of the points is always present (a depot); we then
present extensions for cases where more than one point is always present.
We also discuss extensions of all our results to any bounded Lebesgue
measurable set of a d-dimensioned Euclidean space and, after mentioning
the use of other metrics, we conclude the chapter with a brief discussion
of the practical implications of our results.

Chapgfr 5 is concerned with using the extensive theoretical
investigation provided in Chapters 2,3,4 to develop solution procedures
for solving the PTSP. Our emphasis is on the conceptualization of
solution procedures and all the proposed algorithms are based on a
theoretical foundation provided by the previous ch;pters. In section
5.2 we are concerned with exact optimization methods for solving the
PTSP. We first show how one can use the integer linear programming
formulation of the TSP to formulate the PTSP as an integer nonlinear
programming problem; then, we successively transform this formulation
first, to a mixed integer linear program, and finally, to a pure integer

linear program. In a third subsection, we discuss the relative merits
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of those three formulations, followed by a proposed Branch-and-Bound
procedure. We conclude section 5.2 by showing that the relationship
between the PTSP and TSP is not as simple as one could imagine. 1Indeed,
we will show that a seemingly natural extension of the dynamic
programming formulation of the TSP does not solve the PTSP, and that, in
fact, one cannot use dynamic programming approaches to provide an exact
solution procedure for this problem.

The second main section (5.3) contains an exposition of heuristic
procedures (that is, not guaranteed to obtain an optimal solutionj.
After providing a brief discussion on the necessity of developing such
procedures for a complex problem like the PTSP, we first present some
theoretical preliminaries, on which the proposed procedures wil) be buillt.
Based on those preliminaries, we present a host of procedures under the
generic term of Tour construction procedures (a term originally used for
the TSP). First, we discuss extensions of the Clarke and Wright savings
approach (see Golden et al. [1980], for example) and labhel them
Supersavings Algorithms. Then we also introduce the "Almost" Nearest
Neighbor Algorithm and finally conclude this section on Tour construction
procedures by listing several "insertion" procedures. In a second
subsection 5.3.3 we briefly mention the use of "hill-climbing" methods
(similar to the "2-opt" or "3-opt" heuristics proposed for the TSP).
Finally, in a third subsection we consider the PTSP in the plane. Based
mainly on results from Chapter 4, this section will analyze a recent
heuristic for the TSP based on spacefilling curves (see Platzman and
Bartholdi [1983]) and we also look at procedures based on partitioning

approaches (see Karp [1977]). We conclude Chapter 5 with a review of the
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most interesting results and most promising approaches proposed to solve
the PTSP.

Finally in Chapter 6, after a brief section on the applications of
the methodology to preliminary planning and to location of facilities, we
review the major results of the research and then discuss further
research on the PTSP as well as the general idea of integrating the

consideration of uncertainty into combinatorial optimizations problems.
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CHAPTER 2

THE EXPECTED LENGTH OF TOURS UNDER VARIOUS CONDITIONS

2.1 Introduction

2.1.1 The Expected Length "In The PTSP Sense"; Outline of Chapte: 2

Let us.first briefly reintroduce the PTSP; as indicated in Chapter 1,
we are concerned with a variation of the TSP in which it is no longer
certain that each of the n points (i.e. customers) must be visited;
rather each point is present only with a fixed probability p
(independently of each other). A tour through all points has to be found
before knowing which points actually have to be visited; once a tour
(sequence of points) is given, missing points will simply be skipped.
Hence, for each realization of the random variables (each corresponding
to a specific suéset of the points that will actually need a visit), the
relative sequence of the remaining points along the tour will not be
changed. A tour has, by definition, a random total length; the problem
of interest (PTSP) is to find a predetermined tour of minimum expected
total length.

It should be stressed that, for a given tour, the computation of its
expected length (as mentioned previously) corresponds to the strategy of
visiting the points (requesting a visit) according to the prescribed
sequence in which they appear in the predetermined tour (the other points
being skipped); we will sometimes refer to this strategy as "in the PTSP
sense".

Consider now a given tour; a way to compute its expected length
would be to enumerate all cases and report for each of them the resulting

length of the tour under consideration; however, there are 2" such cases
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(indeed, each point is either present or not, independently of the n-1
other nodes) and, if we assume that computing the length of a tour given
by a sequence of k points requires k-1 steps (basic additions), this

method will then require

Y oen

) = (n-1)2" number of steps.
k=1 K

This is clearly not satisfactorily and one of the goals of this
chapter is to reduce substantially the number of computations required to
get the expected length of a given tour.

After specifying the notation to be used in the statements and
proofs of our results (subsection 2.1.2), we will analyze the expected
length "in the PTSP sense" under variousg coiiditions. In section 2.2 we
derive a closed-form expression giving the expected length of any givgn
tour through n points as a function of the "coverage" probability p and
of n-1 fixed quantities intimately linked to the tour. This expression
is obtained without any restrictions on the distance between points. We
then show, using this expression and through a simplé example that the
optimal TSP tour can be a ver& poor solution to the corresponding PTSP
problem with a given probability p; this result provides an additional
motivation for studying in detail the PTSP. In a third section we extend
our results in several directions. We first consider problems in which
some points are always present (one point, then m such points), the
others being present only with probability p as previously assumed; we
then define and analyze the Probabilistic Hamiltonian Path Problem
(PHPP); finally, in the fourth subsection we generalize all our previous

results by considering more general probabilistic assumptions about
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the presence of points. When generalization of the closed-form
expression is not possible we give an alternative way (recursive
relationships) to compute efficiently the expected length of any given

fixed tour.

2.1.2 Background Information; Notation

Throughout this chapter G = (N,A,D) denotes a complete, directed

graph where

N the node set of cardinality |N| (set of customers)
A = the set of arcs joining the nodes of N

D

distance (cost) matrix; the elements of the matrxix D, d(i,3j),
represent the distance (cost) from node i to node j, i.e. the weight of
arc (i,j). Unless otherwise specified, we assume a general distance
matrix (not necessarily respecting a metric).

' t = (11,12,...,1|N|,i1) will represent a sequence of nodes forming a

Hamiltonian circuit (tour) of the graph G. The length L(t) of the tour t

is determined by

|
L(t) =

|
d(ij;ij+1) where 1|N|+1 = 11 (2.1)
;|

1

I 2

The TSP asks for a tour t which minimizes L(t).

An alternative way of formulating the TSP is by considering the set
of all cyclic permutations ]I on |N| objects. A cyclic permutation JI
represents a tour t if we interpret [[(j) to be the node visited after
node j, j e [1..|N|1. Then the weight w([l) of the permutation [ is

given by
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w() d(j,mn(3)) {2.2)

1

]
I ~2

3

and of course is identical to the length L(t) of the corresponding tour
t.

Notation and Assumptions:

In this chapter each node of G is colored either white or black.

A black node of G is a node that will always require a visit during
each execution of a tour t. Ny will be the set of black nodes with
N1 = m.

A white node of G, on the other hand, is a node that will not always
require a visit. Unless otherwise specified (see section 2.3.4), each
white node is present with a fixed probability p, independently of each
other - (in a general setting, P will represent the set of rules defining
the probabilistic assumptions about the white nodes) - Njp will be the set
of white nodes (N; U Np = N, Ny N Ny = ¢) and |Np| = n.

A tour t = (11:12""'1|N|'il) is cyclic by definition; we will then
adopt the following notational simplification on indices: ij+r+1 (with 3
running from 1 to |N|) will stand for i4,r mod( |N[)+1 (1.e. i|N|+ = 44
etc.)

We can now formulate the general PSP as follows:

Given G = (N,A,D,P) find the fixed tour

t = (11,...,1|N|,i1) of minimum expected length.

Before presenting our results, let us indicate that graphical
illustrations of some of the quantities involved in the theorems are
provided in Appendix A in order to give some intuitions behind their

(otherwise) formal introduction.
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2.2 fThe Expected Length of a Tour t in a Graph G With No Black Node

In this case we have |Ni| = 0, |N| = |Nz| = n.

Let t = (iy, i, ..., ip, 1y) be a given tour of G.

Let us introduce n-1 quantities obtained from t:

) ¥ r g {0..n-2] (2.3)

Note:

® for r=0 Lgo)is simply the length L(t) of the tour t (as given in

(2.1) with |N| = n)
(r)

® for r in general, Lg is the sum of n elements, each represent-

ing the distance from the node ij to its (r+1)th successor with respect
to the tour t (that is, from each ij we "skip" the first r.nodes

appearing on the tour t). With respect to the formulation given in (2.2)

(r)

is is easily seen that Ly can be written

¢ a(3, ™ (1)) (2.4)

I r~33

J=1

where NM¥*1(j) is defined recursively as netl(4) = u(nr(j)). We now have

all the elements to state the following lemma:
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Lemma 2.1:
Given a graph G with only white nodes, and a coverage probability p, the
conditional expected length of a tour t, given k white nodes are missing

from the original tour, is:

(1) E[Lt|k missing nodes] = 0 if k=n-1 or k=n

n—2-r) Lir)]

k
(ii) E[Ly |k missing nodes] = (1/(;)) [ 2 ( k-1
r=0

if k € [0..n-2]

Proof: (i) is obvious. We will prove (ii) by using a combinatorial
argument consisting of two observations:

1) there are (E) different and equiprobable possible ways of having
k missing nodes out of n (or equivalently of having n-k remaining nodes).
If then we call Dgq the resulting length of the tour t for the qth vay,

q € [1..(2)], of having k missing customers, then, simply,
n n
) ;)

E[Lt|k missing nodes] = 1/(“) 2 . It remains now to evaluate l

k
q= q=
2) When k nodes are missing, the tour t consists only of n~k nodes

D D .
1 4 1 4

and its resulting length is thus the sum of n-k elements of the distance
n
)

matrix D. So X

q=1
as some elements will appear more than once (in different Dq's) we simply

consists of the sum of (n) (n~k) elements of D;

Dq "
have to regroup them differently (according to the number of times they
appear in the computation of the Dq's).

Let us take d(ij4,144r4+q1) (that is, a generic element of L%r)) for a

given r ¢ [0..n~2]; for this element to be part of the computation of the

Dq's
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® nodes ij and ijir41 have to be present, and
® nodes ij41» -+» 134y, 1l.e., r consecutive nodes, have to be
missing.

Since we have only k missing nodes:

® if r > k, d(ij,ij+r+1) will never appear and then L£r) for r > k

will not be part of the computation of E[Ltlk missing nodes].
® if r €k, then we have the freedom to choose k-r nodes to be

missing (r having been determined already) among n-2-r, i.e. a total of

n-2-

(n—2—r) -2

r
K—r ) is the number

ways. This is true % j € [1..n] and hence (

of times L%r) will appear in ) Dq.

q

We can check that, regrouping elements this way, we did not miss any

by simply noting that each Lir) is composed of the sum of n elements.

k
Then 2 (n;f;r) Lir) will be composed of
r=0
I (2% e n™) = (ne) () erement
n A Ker =n K = (n-~k) K elements

which is the number of elements involved in z D
q

Q.E.D.

We can now state our basic result giving the unconditional expected

length of a tour t:

Theorem 2.1:
Given a graph G with only white nodes and a coverage probability p,

the expected length of a tour t is:
n-2

L] =p° [ L (1-m7 L
r=0

(x)
o
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Proof: we have:

E(L.] = E[Lt|k missing nodes] Pr{k missing nodes!}.

I ~3

k=0

n

k) "R (1-p)®

Pri{k missing nodes} = (

We obtain, using Lemma 2.1,

] k
etn = 1 L) 1 (2wl IE) 27 e, ) (2.5)
t k k-x t k-
k=0 r=0
n=-2 n=2
(r) n-2-ry) n-=k k
= L L, (Y ( Ker ) " (1-pr < L.
r=0 k=x

Setting u = k-r and s ¥ n-2-r we have

- S
I 27) o -p ™ = B2 a-m (1 R -m ™)
=YX u=0

2 - 2
= p (1-p)l[p+(1-p)]s =p (l-p)r
0.E.D.

(

As can be seen from (2.3) the computation of each Ltr)(given a tour
t of a graph G) requires n-1 additions, r € [0..n-2]. Hence, using
Theorem 2.1, we can determinz the expected length of any tour in O(nz)
steps. Moreover, since we have a closed form expression, once the L%r)
are determined, we can, in O(n) steps, compute the ekpected length of the
tour t for different values of the coverage probability p.

Let us present a numerical example illustrating these points; the

example will also provide additional motivation for studying the PTSP.

Very often in practice, companies design delivery or pick-up routes with
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reference to their full set of customers and do not reoptimize routes to
take account of daily variations in demand; our example will show that
directly taking such variations into account in designing the initial
route might lead to substantial routing cost savings compared to the
traditional application of the TSP; in other words we show that the
optimal TSP tour can be a very poor solution by comparison to the optimal
PTSP tour if the sét of customers to be visited is not fixed and if
reoptimization for each instance of the problem is not considered - (for
some problems reoptimization may even be infeasible due to lack of
sufficient advanced information).

In this example, the graph G contains 24 white nodes that are
positioned at the vertices of two concentric 12-gons as shown in Figure
2.1. In Figure 2.2 two tours have been designed through this set of
nodes; tour a is the optimal TSP tour, tour b is an alternative tour.
Although L(b) is greater than L(a), for p=0.5 the expected length of tour
a is 30% larger than the expected length of tour b. More precisely, for
this example G = (Ny U Ny, 2,D) is such that:

[N1| = 0 |N2| = 24 and D is given by the Euclidean distance between
the nodes. The nodes correspond to the vertices of two concentric
regular 12-gons; the inside 12-gon is such that each of its vertices 1is

positioned "between" two successive vertices of the outside 12-gon:
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Figure 2.1l: a 24 Nodes Graph

tour a

tour b

Figure 2.2: Two Tours of the 24 Nodes Graph
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the distance between two successive vertices of the outside 12-gon is 1

the distance between two successive vertices of the inside 12-gon is 0.629

With this information, we can compute all distances between pairs of nodes

and obtain D.

(r)

Let us give the L *'s for tour a and tour b of figure 3:

tour a tour b
L0 2 122) _ 49 561 L0 o 1022) | g g04
a a b b
(1) _ _(21) (1) _ _(21) _
A 35.86 p ! =10l < 10548
(20 2 1(20) _ 48 445 L{?) = (200 | 55 976
a a b b
(3) _ . (19) (3) _ (19
A AN 57.064 L, AN 37.764
4 2 018 | 61856 L4 2 08 L 47 952
a a b b
L3 2 107 1 63304 13V 21O gy 402
a a b b
L8 L U8 | 65 184 L8 _ 18 65 840
a a b b
L7 = 183 C 59 428 L7 2 013 65,412
a a b b
L(a) = L(14) 56.047 L(a) = L(14) = 70.080
a a b b
1% 2 103 _ 55 984 L2 - 013 L 90 960
a a b b
(10)_ . (12) (10)= (12)
L, L' 51.067 N L' 74.928
L) 5108 L) L 95,528
a b

tour a is

tour b is

the optimal TSP tour of length 19.561

an alternative tour of length 19.704
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However, for p=0.9, we have from Theorem 2.1

~

E[La] ¥ 19.193 > E[Lp] = 17.846,
i.e. E[L,] is 7% greater
and for p = 0.5

E[La] ¥ 16.110 > E[Ly] ¥ 12.286,

i.e. E[Lz] is 31% greater

2.3 Extensions:

Ir section 2.2 all nodes of G were white. In practical routing
applications, however, one of the nodes generally represents the depot
where the tour begins and ends; this depot is fixed and is always
present. It is therefore important to extend out results to graphs G
where Nj # ¢; we will do so by first considering |N1| Zm =1 (one depot)
and then a general m.

Then, after introducing the Probabilistic Hamiltonian Path Problem
and giving similar expressions for it, we will finally consider more

general probabilistic assumptions for all previous problems.

2.3.1 The Expected Length of a Tour t in a Graph G With One Black Node

We have |N9| =1, |N2| = n, hence [N| = n+1. Let iy be the black
node and let t = (iy, ..., in4y, 19) be a given tour of G.

Here again we shall introduce quantities (n, this time) obtained
from t; as they differ slightly from the Lgr) defined in section 2.2

(recall that now we have a black node which always requires a visit) we

will use
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L:rl for this subsection and

1

L;rl for the next subsection where G
]

contains m black nodes.

L:r) is defined as follows:
]
(o) _ "} (o)
® 1 = Z d(i 1 ) (hence L still represents the
’ j=1 j j+1 1;t
length of the tour t) and
+1
(ry _ "
® = -
L1,t jz1 d1,t(ij’ij+1+r] ¥ xr e [1..n-1]

where d1’t(.,.) is obtained from d(.,.) according to the following rules:

¥ re[1..n-1]

(a) dq,telig,144094x) = Aldg,154741) 1€ 1 €3 S n-r+l
(2.6)

(b) dy,t(i4,14414x) = d(1§,19)4d(4q,44onqxy) L1E n-r+1 < 3 < 0t

Note that in case (b) above, node iy is one of the first r nodes
following ij on the tour t and that it cannot be "skipped". 1In other
words, for n-r+1 < j € n+1, to go from ij to its (r+1)th successor we

have to "visit" node i1 first.
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Lemma 2.2:
Given a graph G with n white nodes, one black node, and a coverage
probability p, the conditional expected length of a tour t, given k white

nodes are missing from the original tour is:

(i) E[Ltln missing nodes] = 0 if k = n

(ii) E[Ltln—1 missing nodes] = (1/n)L$n;1) if k=n-1
b

n—2~r)

o ] if k € [0..n-2]

k
(iii) E[Ltlk missing nodes] = (1/(2))[ I ( 1t

r=0

Proof:

(n-1)

(i) is obvious. (ii) is also obvious from the definition of L1 &
?

and the fact that each white node of G has an equal probability of being

(n-1)
1,t

n+1
definition as follows: L(n-1) = X (d(i yi,) + d(i 1 )). The proof of
1,t j=2 ' 1773

(iii) follows with some minor changes the one for Lemma 2.1. The first

the only one present (indeed L can be egquivalently written from its

observation in the proof of Lemma 2.1 remains valid; for the second obser-

vation the proof goes as follows: the elements d(ij, ) % r e [0..k]

ij+r+1
n-2-r 2 i ; in those
k-r

) times, except if i, i o Vi

still appear ( 3 y °F ij+r+1

cases the elements d(i ,i ) appear (n;1;r) times (since now, out of

j+r+1

3

the n white nodes, only either ij or ij+r+1 has to be present, and not

both as previously). This complication does not create a problem since

(r)

terms like d(i
1,t

) or d(ij,i1) do not appear only in L but also

1’ij+r+1
(r+1) L(r+2)

16 2 Bpg ot L(k) (according to our definition of those
’ ]

in L
n 1,t

quantities). Hence keeping the same weight (as in Lemma 2.1) for each

L:rl (i.e. (niz;r)) is still valid; indeed for terms unique to Lgrl this
’ - ’
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weight represents the true number of times this element remains on the

tour t when k nodes are missing, and for the elements belonging to Lgri,
(k) KSF n-2-r-% n-1-r ’

... L these weights will lead to 2 ( ) = ( - ), which is the
1 )t 2_0 k"r""e’ k-r

quantity we derived previously. 0.E.D.

Theorem 2.2 can now be stated; its proof is not given since it
follows exactly the lines of the proof of Theorem 1 (using Lemma 2.2

instead of Lemma 2.1).

Theorem 2.2:
Given a graph G with n white nodes, one black node, and a coverage
probability p, the expected length of a tour t is:
n-2

E[Lt] = pz[ Z (1-9)r L:r
r=0 ’

L

2.3.2 The Fxpected Length of a Tour t in a Graph G With m Black Nodes:

We have |Ni| =m, |N2| =n, |N| = ntm. Let t = (i1, 12, ..., lnm,

iq) be a given tour of G. Let us again define quantities as follows:

n+m
L L(o) = z d(i , 1 ) (as before it represents the length of
m,t 3=1 3773+

the tour t through the n+m nodes of G)

1
[o})

L4 Lirl % r e [1..n=1]

, 321 m,t(ij’ij+1+r]

where dm,t (.,.) is obtained from d(.,.) according to the following

rules:
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Vrell..n"1]
(a) dm,t(ijvij+r+1) = d(i4,154r+1) (2.7)

whenever the nodes ij+1, ooy ij+r are all white nodes

S
(b) dp t(1g,194p1) = L dlke,ket)
e=0

where ko = 14, Kgtq ¥ ij4r41, and where (ky,kp,...,Kg) 1s the sequence of

black nodes drawn from (ij+1»°--vij+r) (s € [1..min(m,x)])

® finally we define Lé?% to be the length of the tour t through the
m black nodes (i.e. when no white nodes are present).

Given these definitions we can now state two general results. We
will do so without giving proofs since, although cumbersome, these proofs
are straightforward extensions of the ones previously given in subsection

2.3.1 and section 2.2,

Lemma 2.3:
Given a graph G with n white nodes, m black nodes, and a coverage
probability p, the conditional expected length of a tour t, given k white

nodes are missing from the original tour, is:

(n)

m, t if k=n

(1) E[Lt|n missing nodes] = L

(11) E(L,|n-1 missing nodes] = (1/n) L{n-1) if k=n-1

m, t

k
(11i) E[Ltlk missing nodes] = (1/(;))[r56(“;3;r) L;TL]

if k ¢ [0..n-2]
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Theorem 2.3
Given a graph G with n white nodes, m black nodes, and a coverage

probability p, the expected length of a tour t is:

n-2
_ 2 ¥ (x) _ n-1 _(n~1) oy (n)
B[L] = p [rgo SRR A IO SR A A TR

We now present similar results for a related problem.

2.3.3 The Probabilistic Hamiltonian Path Problem: (PHPP)

This is essentially the same problem as the PTSP except that in
addition to the graph G and the coverage probability p, we need to
specify two fixed nodes between which a Hamiltonian path is to be
constructed.

We use the same notation as before for describing the underlying
graph G (note that now we require m ? 2 since two black nodes have to be
specified). The starting node and the finishing node of the Hamiltonian
path will always be labeled iy and i|N|-

Let h = (11,i2,...,i|N|) repreuentI:'Hamiltonian path from iy to
i'NI of the graph G with length L(h) = Z d(ij,ij+1)

The formulation of the general PHPg—ls then:

Given G = (N,A,D,P), and two black nodes iq, 1|N|u find the

Hamiltonian path h = (11,...,1|N|) between node i1 and node 1|N| of

minimum expected length.

In this subsection, we do not consider tours anymore, so that the

assumptions for indices are as follows: for j e [1..|N|-1], 14441 will

stand for 1(j4r-1 mod(|N|—1)+1) (i.e., 1|N|+1 i, and so on).
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For the problem of finding the expected length of a Hamiltonian path
h, we will present the results for the general case where |N1' =m ? 2,

|N2| = n and the coverage probability is p.

(r)
h

Let us define the Lm 's:
’
(o) n+m-1
® 1 = 1 a(i_,i ) (as in all previous sections, this
m,h =1 3 A

represents the length L(h) of the path h)

® % rel1..n~1]

n+m-1

(r) _
La,n ™ 41 o n gty

where dm,h(°:-) is obtained from d(.,.) in the same fashion as dm,t(-»-)
(see’ (2.7)); in fact for the purpose of the construction of dm,h('»-) it
is very convenient to think of iy and ilNl to be the same node and to

apply the rules (2.7). Hence, for example,

dm,h(in+m-1»12) 2 d(intm-1,in+m) + d(iq,1i2)

and not d{ip4m-1,in+m) + A(ipsm,1iq) + Ad(iq,13)

@ finally let L(n)

n h be the length of the resulting path when all the
’

n white nodes are missing.
We can state the following two results; again the proofs are not
given since they are straightforward extensions of those in section 2.2

and subsection 2.3.2.
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Lemma 2.4:

Given a graph G with n white nodes, m black nodes -~ two of them
being iy and 1|N| - and a coverage probability p, the conditional
expected length of a Hamiltonian path h, given k white nodes are missing

from the original path, is:

(n) _
Lm'h if k=n

[

(i) E[thn missing nodes]

(ii) E[Lh|n-1 missing nodes] = (1/n) L(n-1 if k=n-~1

m,h

k
(1ii) E[Lh]k missing nodes] = (1/(2)) [£§0 (“;E;r) L;T;]

if k e [0..n-2]
This lemma leads to the next theorem:

Theorem 2.4:

Given a graph G with n white nodes, m black nodes - two of them
being iy and ilNl ~ and a coverage probability p, the expected length of
a Hamiltonian path h from i; to 1|N| iss

n-2

er, ) = o2 [ I (-7 1)

' n_
] + p(1-p)
r=0 m,h

1 _(n-1) n _(n)
Lm,h + (1-p) Lm,h
One can note that an alternative way of obtaining E[Lhp] is to
proceed as follows: first transform the Hamiltonian path h = (i4, ...,
1|Nl) into a tour t = (iy, ..., ilNl, i4) by adding the arc (|N|, 1)
then compute E[L4] by using Theorem 2.3; finally E[Ly] is obtained from

E[Ly] by subtracting d(iINl, i), i.e.

E(Lp) = E(L¢] - d(i|y|,i4)
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This approach cor: 2sponds to an alternative (but equivalent) definition

)
of Iérﬁ (in function of L(rl as defined by the rules (2.7)):
1

?

L;fﬁ - L;Tl (r+1) d(ilN"i1) for r € [0..n-1]
(n) _ _(n) _ ;
Lm,h - Lmat d(1|N|’i1)

Let us briefly mention a slightly modified version of the
Probabilistic Hamiltonian Path Problem for which no previous results can
be adequately used so that a special treatment is needed. This version
corresponds to the case in which all nodes (including 11 and ilNl) are
whites. Let h = (11""’in) be a hamiltonian path through n white nodes;
(r)

here again by defining n-1 quantities Lh (r € [0..n-2]) one can easily

show that E[Lh] can be obtained by using a closed-form expression

(r)

identical to the one given in Theorem 2.1 (replacing Lt by Lﬁr));
for this problem the L;r) are defined as follows:
(r) _ n—i-r -
L= L d(lj,ij+r+1) % r g [0..n-2]

Note:

° Lﬁ°) is still the length of h

° Lér) is composed of only n-i-r elements

® In the case of n white nodes and one black node (iy), the

Hamiltonian path h=(i4,...,in41) has an expected length given by Theorem

(r)

2.2 (replacing Lt ér) are defined as follows:

by L;r)); the L
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n-r r

¥ e Y ala,i, )+ Y oali i
321 37 3+ 520 1’

)

J+1 ¥ r g [0..n-1]

Before turning to the next section in which more general
probabilistic assumptions will be made, let us make a brief digression on
the efficiency of the computation of the expected length of a tour t or a
Hamiltonian path h (in a graph G with n white nodes and m black nodes)
using our previous results.

Let us take first the case of a Hamiltonian path h of G; although
Theorem 2.4 is very important for obtaining a closed-form expression for
the most general case, it might not be the only way of computing E[Lp]
numerically. Indeed it might be more efficient to decompose the original
Hamiltonian path into several non-overlapping sections, each of them
being a path with a starting black node, a finishing black node, and only
white nodes in the middle; then one can simply apply Theorem 2.4 (by
taking m=2) to each of these paths and then add their respective expected
lengths to obtain the desired answer. For example let us consider
h=(i4q,1i3,...,110) and assume that besides iy and iyg nodes i3, ig, and iy
are black; then either we compute E[Ly] by using Theorem 2.4 once with
n=5 m=5 or we can compute E[Lp] by splitting h into four paths: hy=(14,
in,1i3) hp=(i3,...,1ig);, h3=(16,i7), and hy=(i7,..,119) and then applying

Theorem 2.4 to each of them with m=2 giving:
4

E(L, ] = ) E[Lp, ]
i=1

This method may be more efficient if m is relatively large, i.e. when
the proportion of black nodes is not negligible. Formally the first method

requires an order o(n?m) steps and the second requires o(n2+m) steps.
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For the case of a tour t in G with |N1| = m, |N2| =n the same 1idea

applies: either we use Theorem 2.3 once, or Theorem 2.4 m times.

2.3.4 General Probabilistic Assumptions:

The combinatorial properties of the problems that led to the various
lemmas in sections 2.2 and 2.3 are still valid if one chooses a general
(instead of a binomial) pmf for W, the number of present nodes, provided
that these nodes are indistinguishable, in the sense that, given W takes
on the value k, the k present nodes are chosein at random from the set of
white nodes. Given this condition, Lemmas 2.1 to 2.4 remain valid for
the corresponding cases and Theorems 2.1 to 2.4 can be readily modified
by simply leaving Pr(W=k) in general form. For example, Theorem 2.1 would

result in the following:

s

) Lir)][Pr(W=n-k)]

o
[N

n-2-r
( k-r

I R

E[Lt]

(GG

~

]
I ~31

o

r=0

T

r

C1 (T (/) peliene)

This is still a closed-form expression giving the expected length of a
(r)

tour t as a weighted sum of the L{ "'s; the weights are now more
complicated but can be calculated very rapidly once we have Pr(W=k).
Theorems 2.2 to 2.4 lead to the same generalization.

The general pmf for W (together with the condition of indistinguish-
able nodes with respect to W) naturally includes cases where there are
dependences among nodes; for example if we specify Pr(w=0) = 1/2,

Pr(W=n) = 1/2 then if one white node has to be visited, this will be true

for the n-1 others. Hence the generalization of Theorem 2.4 along this

line provides a wide range of possibilities for modeling purposes.
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Oon the other hand this does not include cases where general node-
specific probabilities or correlations exist; one notable exception can
be exhibited from the following observation: k nodes, each with a
coverage probability p (independently of each other) and positioned at
the exact same location are in fact equivalent to a single node with a
coverage probability p'=1-(1—p)k. Hence for special cases of node~
specific probabilities (that is, each node j has to have a coverage
probability p4 of the form 1--(1--p)kj for a common p) one can use (by
duplicating nodes) the previous theorems. For modeling purposes, the
importance of the limitations imposed by these special node-specific
probability cases is reduced by the fact that, very often, we have only
rough estimates of the coverage probabilities. Most of the time we know
simply the relative frequency of visiting these nodes (i.e., node i is
visited more often than node j); we can then assume a coverage proba-
bility pi = 1—(1-p)ki for each node i of the graph (with kj > k4 if node
i is visited more often than node j).

For the general node-specific probability cases, one can use an
alternative method for efficiently computing the expected length of a
given tour which is based on recursive relationships; this method, how-
ever, does not provide closed-form expressions for the expected length.

For the PHPP, with n white nodes and two black nodes, let (1, 2, 3,
..., N+2) be the Hamiltonian path h under consideration, and let nodes
(1) and (n+2) be the black nodes betwegn which the path is defined
(assume the white nodes are indexed according to their order of
appearance along the patﬁ h). Let E[k! be the expected length of the

path (k, k+1, ..., n+2) for k € [1..n+1]. Then the following recursive

relationship holds:
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® E(n+1] = d{n+1, n+2)

(initial condition)

n+1-k =1
o ekl = 1 p [0 (-p  )laoekes) + Bteesn)
=1 i=1 (2.8)
n+1-k
+ [ 121 (1-pk+i)]d(k,n+2) % ke [1..n]

The reasoning for (2.8) is simple: starting from node k, the first
node to be reached is either k+j for j ¢ [1..n-1] (with probability
Pk+j{1-Pk+1) -.. (1-pk+j-1)) Or node n+2; in the first case, after
reaching node k+j, the remaining expected distance is simply E[k+j].

For a given k, E[k] can thus be obtained numerically in O((n+1-k)2)
steps. Hence E[1] (the expected length of the path) is obtained in O(nz)
steps.

Following the discussion oé section 2.3.3, the method presented here
(for the special case of a PHPP with n white nodes and two black nodes)
is sufficient to compute the expected length of any Hamiltonian path for
a graph with m > 2; it is also sufficient to compute the expected length
of any tour provided the graph contains at least one black node. For
graphs with no black node, one can use the previous method by proceeding
as follows:

let t = (1,2,...n,1) be the tour under consideration, then E[Lt] can

be obtained by considering the following steps:

step 1: k=0

step 2: k=k+1 ' (2.9)
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step 3: * consider ty = (k,k+1,k+2,...,n,k)

* assume k is a black node (it is a black node with
probability pg)

* compute E[Ltk] using (2.8)
step 4: if k = n-1 stop

otherwise go the step 2.

Then E[Lt] = p1 E[Lt1] + p2(1-p2) E[Lt2]

#eee # B (1P )i l1=p ) elug, ]

Since the computation of E[Ltk] requires 0((n—k)2) steps, E[Lt] requires
O(n3) steps.

It should be noted that the recursive approaches ((2.8) and (2.9))
could have been applied to the cases discussed in sections 2.3.1 - 2.3.3
and 2.2 (where py = p ¥ j); but the closed form expressions developed by
using specific combinatorial features of those special cases are equally
efficient computationally and are certainly much more powerful for

analytical purposes.

2.4 Conclusion

In this chapter we presented expressions giving the expected length
of any given tour in an efficient manner; for example Theorem 2.1 leads
to a reduction from O(nzn) (derived in'the introduction by considering
complete enumeration) to O(nz) number of steps t; calculate this expected
length (in fact it is worthwhile mentioning that for a general distance
matrix D, we cannot find a more efficient method since, to compute the

expected length of a tour, one must consider every elements of D and
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there are O(n2) such elements). Not only our results reduce substan-
tially the number of computations required to get the expected length of
a given tour, they do so through the derivation of closed-form
expressions that will prove useful, later on, for the development of
combinatorial properties and algorithmic procedures for the PTSP. Using
such expressions we demonstrated, through an example, that the optimal
TSP tgur can be a very poor solution for the corresponding PTSP (we will
present a generalization of this example in Chapter 3 during the

investigation of combinatorial properties of the PTSP).
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CHAPTER 3

GENERAL COMBINATORIAL PROPERTIES OF THE PTSP

3.1 Introduction; Preliminarie;

3.1.1 Content of Chapter 3

We have seen in Chapter 2 how to express efficiently the expected
length (in the PTSP sense) of a given tour of a complete graph G contain-
ing n white nodes (i.e., nodes which are present only probabilistically)
and m black nodes (i.e., nodes that are always present). The most
general result obtained assumed a general probability mass function
(p.m.f.) for W - the number of white nodes present - provided that white
nodes are "treated equally" in the probabilistic sense (that is, given W
takes on the value k, those k present white nodes are chosen at random
among the original n white nodes). Chapter 3 can be considered as a
companion to Chapter 2:  based on the results of the previous chapter, we
will derive general combinatorial properties of the PTSP and we will
provide insights into the peculiarities and, sometimes, counterintuitive
behavior of this problem.

Let us first give a general outline of the contents of Chapter 3 as
well as of the basic underlying ideas contained in our results. First,
in the rest of this introductory section, after discussing the case of a
non-complete (but connected) graph, we present a "weight-form" represen-
tation of every closed-form expression of Chapter 2 by means of a single
formula; this unified representation allows us to present all our results
in the most general way possible (assuming a general p.m.f. for W); we
conclude section 3.1 by giving some additional notation and conventions
which are subsequently used throughout the statements and proofs of our

results.
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In section 3.2 we take a close and systematic look at the expres-

sions derived in Chapter 2; to do so we derive properties of the two

(

classes of elements forming E[L,], first properties of the Ly

TL under
various conditions for the distance matrix D, then properties of the
weights; those properties are then used to derive lower and upper bounds
on the expected length of a tour E[L].

In section 3.3 we come back to a mores global view of the problem,
and using, in part, results from section 3.2, we try to obtain some use-
ful characterizations and/or exploitable nroperties of the problem struc-
ture; we first show that there are some manipulations of I that leave the
problem unchanged (paralleling similar characterizations of the TSP); we
then show that surprisingly the optimal PTSP tour in the Fuclidean plane
can intersect itself; we finally consider the behavior of the expected
length of a given tour with respect to perturbations of the graph such as
adding or deleting a node, switching the color of a node, etc.

Section 3.4 is then concerned in finding some relationships hetween
the optimal TSP tour (through all the demand points) and optimal PTSP
tour (the existence of relations between those tours can be expected,
since the TSP is a special case of the PTSP in which we have only black
nodes); we first show that for problems of small size the optimal TSP
tour can be the optimal PTSP tour for any probability assumptions for W;
we'then derive, using results from section 3.2, worst-case bounds on the
absolute difference between the expected length of the optimal TSP tour
and the expected length of the optimal PTSP tour; we discuss the tight-
ness of our bounds and finally provide an analysis of the limiting
behavior (as nsw) of our "star~-shaped" construction (introduced in

Chapter 2 for n=24); this section contains also a discussion on some very
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peculiar aspects of the PTSP problem.

In section 3.5 we merely point out that all our previous results are
also valid for the PHPP problem as originally defined in Chapter 2 (a
Hamiltonian path between two black nodes); we then present a useful
result based on the variation of the PHPP in which we do not require the
nodes between which the Hamiltonian path is to be found to be black. The
concluding section reviews the main results of this chapter and indicates
where in the subsequent material they play an important role.

It should be pointed out that section 3.2 is extremely "technical"
and that, despite its crucial importance for the development of the
subsequent sections, might not contain (depending on the reader's taste)

results as interesting as those obtained in section 3.3 and 3.4,

3.1.2 Preliminaries:

A. Case of a non-complete graph G:

The results presented in Chapter 2 all assumed that the given graph
G was complete; in fact, by definition of the quantities Léf% for a given
tour t any distance d(i,j) is used at least once in the computation of
E[Lt] - the expected length (in the PTSP sense) of a given tour t - and
thus it is necessary to require D to have a finite value in each of
its elements (except maybe the diagonal elements d(i,i) that do not need
to be specified by definition of the problem); indeed if any of the
elements of D is + « then E[Ly] will automatically be + o.

Let us then assume that we are given a non-complete graph G,

together with a tour and are asked to compute its expected length (see
Appendix B for more details on the discussion of non-complete graphs). A

natural way of doing this would be exactly as before by simple assuming

that if the arc (ij,1j4r4+1) does not exist we simply go from ij to ijir4q



53

using intermediary nodes that exist along the tour t (for example taking
the shortest path along the tour if several possibilities are offered).
One immediate inconvenience of this approach is that it is tour-
dependent; indeed, for each tour t we would need to find d(ij'ij+r+1)7
moreover, it introduces asymmetry even if the original graph was
symmetric since there is no reason why d(ij,ij+r+1) = d(ij+r+1’1j)'

All these problems lead to the following alternative approach that we
will assume from now on: if one is given a non—éomplete graph G, i.e., a
matrix D with some empty entries, then for each non-existent arc (i,j), we
create an artificial arc (i,j) whose length will be the shortest distance
(using arcs from the original graph G) from i to j; in other words, we
transform the matrix D into a matrix D' which will correspond to a
complete graph G'; we then define the expected length of the tour t on the
graph G to be the expected length of t in G' as it was previously defined
for a complete graph. Note that the transformation D » D' is tour-
independent and preserves some properties of D (i.e., if D is symmetric,
then D' is too).

Keeping this transformation in mind, we can now concentrate solely on
complete graphs; let us now present a unified approach for the
presentation of our results in subsequent sections.

B. Weight form notation:

Given a graph G = (Ny U N, A, D) with n white nodes (the set Nj)
and m black node (the set Nq), given a general p.m.f., for W - the number
of white nodes present -, and given a tour t of G, we have expressed the

expected length (in the PTSP sense) of t, E[Lt], as:

for m=0, E(Lt] = z Q LOft
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n-=2
for m=1, E[L;] = Z e, Lgr% +-l Pr(W=1)L%n;1)
r=0 ' n '
n=2 .
for m»2, E[Ly] = | Oar L;f% +-% Pr(W=1)Lé?21)+9r(w=o)Lé?L
r=
where:
n-2
-2
o= 1 (727 ()) er(wenk) # ¢ ¢ [0..n-2)
k=x (see section 2.3.4)
(r) n-+m
Lyt = L dp t(ij,i4414¢)  (where the dy ¢(.,.) are obtained from
=1

d(.,.) according to rules given in Chapter 2; the reader is reminded that
graphical illustrations of the Iéf%'s for the different cases are pro-
vided in Appendix A).
We will express E[L{] by means of a single formula valid for every
case (i.e., m=0,1 or m»2) as follows:
E[L¢l = ? % Im,t
r=0

with the following specific rules:

(n-1 (n . n) _
.Lo,t)=L0,%:=0' Lg’?‘:-—o .

°* o, =;11-Pr(W=1) ; @ = Pr(w=0) .
Note:

(1) When W has the originally used binomial p.m.f. (corresponding
to the cases for which each white point is present with a probability p,

independently of each other) &, takes the following more familiar form:

«  =p%(1-p)¥ % r ¢ [0..n-2]
a _ n-~1
h-1 = P(1-p)

@ = (1-p)" .
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(2) Given a general p.m.f. for W, it is easy to see that one can
recover individual probabilities as follows:
n
Prob{j specific nodes i1,12,..,ij are present} = 2 ((E)/(n))Pr(W=k)
k=3 1 K
{3.0)

C. Specific convention and usual definitions:

We end these preliminaries by defining a terminology that will be
adopted thrcughout this chapter (everything else is assumed to be as in
Chapter 2).

(1) vBinomial case" corresponds to the case where

n-k (that is, each white node is present with a

k
pr(u=k)=(" )Jo*(1-p)
probability p, independent of the other nodes).

(2) A metric is used in the traditional sense, that is, a function

d, mapping NxN into R such that:

d(i,j) =0 if and only if i=j

da(i,j) a(j,i) » ov i,j (symmetry)

d(i,j) < d(i,k) + d(k,j) # i,j,k (triangular inequality).

(3) We will always assume that n » 1; n+tm » 3,

Note that for n=0 the PTSP reduces to the traditional TSP and for
m+n < 2 we have a unique tour; both cases are obviously of little
interest for our purpose.

We are now ready to present our results.

In all cases a complete graph G is assumed and we are given a tour t

of G; two specific tours will play an important role in Section 3.4.

ty : optimal TSP tour

tp : optimal PTSP tour
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3.2 Analzsis of the Closed Form Expressions of Chapter 2

In this section we will be mainly concerned with analysing in detail

the component elements of E[L{] (for a given tour t of a given graph G

E[L{] = ? ¢, L;fi ) namely L;TL and @,..

r=0

. (r)
3.2.1 Properties of the Lm,t
We will proceed from properties valid under a general distance

matrix D to properties valid under some restrictions on D.

A. The distance matrix D is general:

. (r)
Fact 3.1: (Number of elements of D in Lp t )
Given a complete graph G with n white nodes, m black nodes, and
given a tour t, then:
(

(i) meé is composed of the addition of n+(r+1)m elements of the

matrix D and this is true:

® ¥ r g [0..n=-2] if m=0
® ¥r ¢ [0..n-1] if m > 1
(ii) Lé?% is composed of the sum of m elements % m » 2
(iii) for m = 0,1 every element of Léf% is distinct
Proof: by definition of the Léf%; for example let us give a formal

argument for (i) and m » 1 (the other cases are even simmpler to prove);

we have

+
Im,t = L dm,t (15,144r+1)
=1
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where dm,t(ij’ij+r+1) is by definition the sum of kj+1 elements kj being
the number of black nodes among {ij+1"'-»ij+r} hence the total number
of elements involved in the computation of L&f% is
n+m n+m
(ky+1) = nha + L kj
=1 i=1

and since each node of the tour t appears in r different sets

{ij+1""'ij+r} and as kj counts only the black nodes we have

+
z kj = mr 0.E.D.

. . (r)
Fact 3.2: (Summation Z Im,t )
r

Under the conditions of Fact 3.1 we have:

n
(i) 2 Léf% = constant independent of t if m = O.
r=0
' n
2 (r) . {n-1)
(ii) Lm,t is in general tour-dependent if m > 1, but L1,t and
r=0

Lé?% are tour-independent

J

Proof: Again this is obvious by definition of the Léf%:

. n=2 n
. r
for (1): ) 1" = L) Ay g = L Late,
r=0 r=0 j=1 k#4
for (ii) one can argue as follows: take for simplicity m=1 and assume

that i, is the black node; then, by definition of the L%f%'s, a(iq,ip)

will appear in all of them, d(iq,i3) in all but L%?%, etc. so that
E Léf% will be dependent on the order of the sequence of nodes (in other
r

words on the tour t). The cases of m » 2 can be proved identically.

Finally to show that L%?Z1) and Lé?% are tour-independent it suffices to
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remark that;

Lg?zl) = ? dq gliy,igen) = ) (d(i1'ik) * d(ik’i1)]

where i; is the black node, and that Lé?% is a tour through 2 points and

is then unique.
0.E.D.

Fact 3.3: (Network characterization of the Léf% )

(i) for m = 0, Léf% consists of g, distinct (i.e., without

comnon nodes) subtours, each of them containing g—-points, where
r
9, = G.C.D. (n,r+1).

(ii) for m = 1, L1f% consists of r+1 subtours having the black node
as a common node.

(iii) in general for any m ; O, Iéf% "visits" each white node once

*

and each black node (r+1) times.

Proof: The validity of (i) is best seen by writing Léf% as a function

of the cyclic permutation Il (determined uniquely by the tour t).

(r) _

r+1
Lo,t = I

a4,
:

(1)).

I~

3

Then it is a classical result (see, for example Bexrge [1971]) that
if T is a cyclic permutation on n objects (that is, with one cycle of
length n) then e+ is a permutation with gy cycles of length g; where
gr = G.C.D.{(n,x+1).

The proof of (ii) is obtained directly from the definition of L%f%

and an argument similar to the one used in Fact 3.1.
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(iii) 1is also straightforward to check and in the case of the black
nodes the argument parallels again the one used in Fact. 3.1.

0.E.D.

This fact will be of use now to obtain a lower bound on Lér%.
?

)

Lemma 3.1: (Lower bound on Lért )
-_— I

Given a graph G, an optimal TSP tour ty of G, and any other tour t

of G, we have:

(i) for m=0 Léf% > Lé?%l % r such that G.C.D.(n,r+1)=1

1§ 1 ;
1™l 53 1 (aih (h+alelin)) = Bgp, otherwise
3=1
(ii) for mp»1
(r) ! ) (M, . (1. 1 ) r§1 ( (k) . (k)
Im,t Y (din (3)+dout(3)) LY ( dijn (3) + dout(j)))
j white . j black k=1

for r ¢ [0..n-1]
where d{ﬁ)(j) (déﬁl(j)] is the length of the kth ghortest arc coming

into (out of ) node j.

Proof: this lemma is a direct consequence of Fact 3.3, Indeed for (i)
when G.C.D.(n,r+1)=1, then Léf% is the length of a single tour and thus
cannot be smaller than the length of the optimal TSP tour. For all the
other cases the bound is a direct consequence of part (iii) in Fact 3.3
(which states that there is a single arc going in and coming out of any
white node and (r+1) arcs in and out of black node). One can note that

for case (i) if n is prime then Lér%‘> Lé?il for all r,
1
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Facts 3.1 - 3.3 and Lemma 3.1 are properties of L&f% without any
assumptions on the distance matrix D. We now turn to additional
properties that can be obtained by restricting D to some specific cases:
we consider first D to be symmetric (i.e. each element of D is such that

d(i,j) = d(j,i)) and then assume that the triangular inequality holds.

.

B. The matrix D is symmetric:

By making this additional assumption, we obtain the following fact:

Fact 3.4: (Symmetric D)
Given a graph G with a symmetric distance matrix D and a tour t:

(1) 1§72 = 7]

true for Léf% when m > 1.

¥ r g [0..n-2] and this is (in general) not

(r) (n-1) (n) _
(ii) z L1t Lyt ’ and L3t all become tour-independent.
r

Proof:

® The validity of (i) can be seen by using the permutation defini-
tion of Léf%; indeed we have

(n-2-r) _
Lo,t =

u

ali, 2% (4))
1 i

I o~

n
b oa(mF gy, (2 )
=1

a(m™*1y,1) .
1

a(m*T (1), ™™1)) =
1 i

|
I ~—13
I o~

i

The fact that this is not true for m » 1 is obvious from the network
characterization of Léf% given in Fact 3.3.

® let us now consider part (ii). When D is symmetric there is a

single tour through 3 points and this implies that Lg?% is tour-~

(n-1)

nce we note that
2,t o W

independent; this also implies the same for L

L(n—1) can be written as:
2,t
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(n-1) _ y

Lyt (aCig,iq) + diq,ip) + dliy,ig))
k#1,2

where i, and i, are assumed to be the two black nodes. To show that

2 L%f% becomes tour-independent under the assumption of a symmetric
gistance matrix one simply has to note that now (assuming i, to still be
the black node) elements of the form d(i1,ik+2) will appear n+1 times in
total summation: indeed they will appear once in each of L%f% (for

r ¢ [k..n-1]) under the form d(i1,ik+2) and once in each of Lgf%

(r ¢ [0..k-1] and r = n-1) under the form d(ik+2,il); this is true

¥ k ¢ [0..n-1] which implies that

n=1
D oyfl = e § a0 +2 D1 aogp
r=0 k#1 Y

k$i1 Q#l]

Q.E.D.

C. The matrix D satisfies the trianqular inequality:

Under this additional restriction, we can state the following

result;

1

Lemma 3.2: (Another lower bound on Léf% for m > 1)
Given a graph G with a distance matrix D that satisfies the

triangular inequality and given a tour t of G, we have:

(o]
Lm,t > Lm,t, ¥m»1 % rel(0..n-1]

where tq is an optimal TSP tour of G)

.
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Proof: Let us consider first the case where m=1.

From Fact 3.3 we know that L%fl corresponds to the length of r+1
subtours having the black node in common; one can transform this set of
r+1 subtours into a single tour whose length will not be greater than
L%f% under the triangular inequality assumption; the length of this tour
is in turn not smaller than the length of the optimal PTSP tour; this

establishes Lemma 3.2 for m=1.

For m » 2 one can note that by the triangular inequality

éf% P L%f% (by keeping only one black node and turning the others

into white); this is true simply because Am, t(15,154p+1) 297 t(14,154041)

¥ j. We can then apply Lemma 3.2 on L%f% to obtain:

(r) (x) (o)
Im,t > Li,t > L1t

and since Lé?% 2 L% %1 Lemma 3.2 is proved.

1

(o]
’

Q.E.D.
In additionn to these lower bounds, the triangular inequality

r
assumption allows us to derive an upper bound on Lé,%:

Lemma 3.3: (Upper bound on Léf% )

Given a graph G with n white nodes and m black nodes and given any

tour t of G the following is true:

¥ ry,rp : r1 + rp = r-1
(r) (o)
As a consequence Im,t < (r+1) Lm,t ¥r e [1..n-1]

n+m
Proof: We have Léfi =1 An,t(15,344r41); now consider dp +(ij,144r4q)
3=1
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and ij+r1+1 with 0 < rq < r-1:

If ij+r1+1 is a black node then

dm,t(i5,144r41) = dm,t(ij»ij+r1+1) + dm,t(ij+r1+1vij+r+1)
If ij+r1+1 is a white node, let k; and k; be the black nodes immediately
preceeding and following ij+r1+1 along the sequence <ij’-°-vij+r+1)-

By the triangular inequality we have

d(kq,kp) < d(k1»ij+r1+1) + d(ij+r1+1’k2)

which implies iﬁ turn that:
An, tld5sd4re1) < dm el g3 50r0410) * e (gr 4101 540049)

With every case considered we thus obtain:

(r) n+m n+m
Lp,t = ) dn, t{i5,154r41) < 21 Am, t(15,154x9+1) +
j=‘| ' j=
n+m
t jz1 An, i j4rqe1 0 darer)
but since
n+m n+m
dm,t(1j+r1+1’ij+r+1) = X dm,t<ij»ij+r+1—r1—1)
j=1 j:‘]

we finally obtain

(rq) (xr-rq-1)
LiTL < Dt + Tmt
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Note: 1In the remainder of this chapter (and Thesis) we will always
assume that D satisfies the triangular inequality so that all our
previous results hold except Fact 3.4 for which D is required to be
symmetric. The triangular inequality is most often satisfied in practice
and one of the important cases where this assumption is automatically
true is when d(i,j) corresponds to the length of the shortest path from i
to j in the original given graph G.

Let us now turn our attention to properties of ©,, the other element

involved in the closed-form expressions of Chapter 2.

3.2.2 Properties of the Weights

As indicated in section 3.1 we will present our results assuming a
genéral probability mass function for W - the random variable represent-~
ing the total number of present white nodes. Most of the time we will
also indicate the form taken by our general results for the binomial‘
case. (These conventions are valid for the rest of this chapter).

The first property is concerned with the relative values of the

weights:

Fact 3.5: (Relative values of the weights)

Given any choice for the probability mass function of W we have:
Gr > Cp for 0 < r < r' < n-2

Proof: Before presenting the general proof, one can easily see that Fact
3.5 holds for the binomial case for which &, = p2(1-p)¥ since then

r!-r
% = (1-p) &, and 1-p<1.

n—2-r)/(n

k)) Pr(W=n-k) so that:
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n-2 (n—z—r) (n-3-r)
a-a o =pr(wen-r)/(") + 1 kor k=1 pr(Wen-k)
k=r+1 (n)
k
and since (n;f;r) - ::::7) = (n;f;r) , (3.1) becomes:
N33 n-3-ry,(n
G -0 1 = 2 (( et )/(k)) Pr(W=n-k) > O
k=r
This in turn implies Fact 3.5.
0.E.D.

One can also note that by applying the same logical step to &_.-Q

(3.1)

r r+1EBr

we obtain:

Br-Bry1 = § ((n;f;r)/(:)) Pr(W=n-k) » 0

(one can then apply that step to Yy = Br'Br+1 and so on..)
Our second result is concerned with summations of the QG,.'g,

Fact 3.6: (Summation of the Q,.'s)

Given any choice for the probability mass function of W we have:

¥ n 3 1

T E[W]
(1) § o = —
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Proof: First note that for n=1, Fact 3.6 is obvious; indeed (i) merely
reflects that %, = Pr{W=1) = E[W] and (ii) the trivial fact that
Pr(W=1) = 1 - Pr(W=0). Let us then concentrate on the non-trivial case
of n > 2:

1. to show (i) note that by definition of &,

2 n=2 n-2 e on
0 r=0 [kzr ( ’:r )/(k]) Pr (Wen-k) |

Il r~al
Q
H
i

which becomes, after reversing the summation,

n=2 n-2 n k ne2-1
I o= 1 ((eru=n-0/()) 1 (777)) (3.2)
r=0 k=0 r=0
X n-2-r n-1
mso, L (W)= (M) (3.3)
r=0
Hence (3.2) and (3.3) lead to: '
n=2 n-2
o = L (M) pr(wen-k) : (3.4)
r=0 k=0

Now, by replacing n-k by u in (3.4) we obtain:

n=2
Z e = E %-Pr(w=u) = [E[W] - Pr(w=1)]

5=

Pr(w=1) (1) of Fact 3.6 is proved.
n

2. It remains to show (ii):

We have
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n=2 n=2 n-=2 n=2-1\ .(n
oo, = 1 1 (7)) ety pr(wenio)
r=0 r=0 k=r
ns2
= I (er(wen-i0/(2)) ? (r+1)(n;f;r) : (3.5)
k=0 r=

Again it is easy to show that

ng2 n-2-r (n
R (e (7)< () (3.6)
so that (3.5) and (3.6) give the following:
n-2 n-2
I (r+no. = I Pr(Wen-k) = 1-Pr(W=0) - Pr(v=1) (3.7)
r=0 k=0

Now, since %, 4 = Pr(w=1)/n, (ii) is proved.
0.E.D.

We now have all the facts we need to prove the following result
which gives lower and upper bounds for the expected length of any given

tour t of a graph G.

3.2.3 Bounds on E[Ly])

Lemma 3.4: (Upper and Lower Bounds on E[Lt])
For any tour t through n white nodes and m black nodes, we have
(with t4 being an optimal TSP tour of the graph G):

(1) for m = 0
E[L¢) < Lé?% [1 - Pr(w=0) - Pr(w=1)]

E(Ly] > Lé?%, [ELW-Pr (W=

1)] if n prime

(c) [E[W]-Pr(w=1)

E[Lg] > % Lo, - - o, IBg;, otherwise
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(where Bgp = % (1)(3) + déll(j)) as defined in Lemma 3.1).

1

2 .,
J

(ii) for m = 1

B(Ly) < 1i°) [1 - pr(w=0)]

BL] » 1{%L, [l ]

(iii) for m 2

Proof: (i) follows from Lemma 3.1, Lemma 3.3, and Fact 3.6.
(ii) and (iii) follow from Lemma 3.2, Lemma 3.3 and Fact 3.6.
Q.E.D.
Before concluding section 3.2, one can note that the lower bound
given in Lemma 3.4 for the case m=0, n not prime can be improved by

(r)

considering a lower bound valid for z GrLgrL as a whole {and not for Lo ¢
1 ’
' r
individually). This is made possible by Fact 3.5.

Lemma 3.5: (Improved lower bound on E[L;] for m=0 n not prime)

n

X (@$® 5y + altln)

Define BSL =-%

where dig)(j) , d(ut(j) have the same definition as in Lemma 3.1.

Then we have:
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-2

(o) n (r)

E[Lt] 4 Go L1:t1 * 21 ar BSL :
J=

Proof: A consequence of Fact 3.1, Fact 3.3, and Fact 3.5.

0.E.D.

This concludes this somewhat overly technical section; it should,
however, be stressed that tAe results developed in this section will be
often used in later sections of this chapter as well as later on as, for
example, in Chapter 5.

Let us now take a slightly more "macroscopic" view in order to
obtain some useful characteristic of the combinatorial problems under

investigation.

3.3 Perturbation of the Graph and Exploitable Properties of the

Problem Structure

In this section we attempt to obtain some useful characterization of
the PTSP problem, such as specific properties of the problem structure;
in doing so, we sometimes compare the PTSP to the well-understood TSP.
Our first result is concerned with some "allowable" manipulations of

the distance matrix D.

Lemma 3.6:

Given a graph G and given a tour t of expected length E[Lt]l, if we
subtract a constant b from every element of the row i of the distance
matrix D, the tour to has a new expected length E'[Lt] which is obtained

from E[L{] as follows:

(1) m=0 E'[Ly] = E[Lg] - 2[E[W]-Pr(w=1) ]
n
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(ii) m =1
\ b
E'[L¢] = E[L¢) - E[W] if row i corresponds to a white node
E'[L¢] = E(L¢] - b[1 - Pr(w=0)] otherwise.

(iii) m » 2

E'[Ly] = E[Ly¢] —-% E[W] for a white node
E'[Ly] = E[Ly] - b otherwise.

Proof: There are more than one ways of proving this lemma; the simplest

one for a general p.m.f. for W is to use results from the previous

section. Let us first consider case (i) with no black node:

n-=2
If m =0 then E[L,] = z a. Léf{ .

r=0
From Fact 3.3 each Léf% r ¢ [0..n-2] "visits" node i exactly once so
that there is a single arc going out of node i that is included in each

Lérl ; since we subtract b from every surch arc we have
’

E'[Ly) = E[Lgl - L % b

and this together with Fact 3.6 prove the desired result.

For cases (ii) and (iii) the arguments parallel the one given above.

0.E.D.

5223:.(1)v By subtracting a constant b from a row irof a symmetric matrix
D, we end up with an asymhetric matrix D'; to avoid this possibly
annoying fact, one simply has to subtract the same constant b from the
column i of D and then Lemma 3.6 holds by replacing b by 2b. On the
other hand, one should be aware that the transformations of Lemma 3.6 do

- not necessarily preserve the triangular inequality.
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(2) An important consequence of Lemma 3.6 is that, by subtracting
constants from any row or column of D (for any number of times) we change
the expected length of any tour t by the same value (independent of the
tour t) and this implies in turn that solving the PTSP in the original
graph G is equivalent to solving it in the transformed graph G' (corres-~
ponding to the transformed matrix D'). This has the advantage of being
able to work with matrices with zero entries, a sometimes "computa-
tionally" useful factor.

The following result will give an interesting and surprising

characterization of the PTSP tour.

Lemma 3.7:

The optimal PTSP tour may intersect itself in the plane with the
Euclidean metric.
Proof: We are going to present a counterexample; the full set of
calculations is provided in Appendix C. This example corresponds to five
points on the plane, two of them being black (i.e., always present), the
other three being present only with a fixed probability p, independently
of each other; their relative position is shown in Figure 3.1; in Figure
3.2 we present the optimal PTSP tours for p » 0.75 in (a) and for
p < 0.25 in (b) (the proof that they are the optimal PTSP tours is given
in Appendix C). This example has been constructed for m=2; to see that
it alsc proves Lemma 3,7 for m=1 (or m=0) it suffices to replace one (ox
two) of the black nodes by a sufficiently large number of superimposed
white nodes so that the probability of not visiting anyone of them is

arbitrarily close to zero.
0.E.D.
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2 3
O )]
4
®
5
©
10
Figure 3.1: the set of five points
3.2a: Optimal tour (tour 1) 3.2b: Optimal tour (tour 2)
when p > 0.75 when p < 0.25

Figure 3.2: the optimal PTSP tours
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Note: This result, of course, does not have as positive a consequence as
the previous lemma (Lemma 3.6); indeed, for the TSP in the plane it is
easy to show that the optimal TSP tour does not intersect itself and this
property has often been exploited for developing and improving heuristic
algorithms to solve the TSP in the plane (see Larson and Odoni [1981] for
a discussion on this subject). For our problem this property of the TSP

is not true anymore and we cannot discard the tours that intersect

themselves from the pool of potential optimal PTSP tours.

We shall conclude this section with a somewhat different concern., Our
interest will be to explore what happens to the expected length of a given
tour t of a graph G after performing small perturbacions of this graph,

such as adding or deleting a node, and switching the color of a node.

Our main findings are contained in the following lemma:

Lemma 3.8:

Let G = (Ny U Np, A, D) be a given graph with m black nodes and n
white nodes and let t be a given tour of expected length E[Lt]. Assume
W is given by the "Binomial case". Then the following results are
obtained:

(a) if one node i is deleted from G, the resulting tour t!,
obtained from t by simply removing 1 from the sequence, has an expected

length E[L¢s] which satisfies:

E(Ly] - 2d3" < E{Lyi] < E[Lg] 4if 1 is black

- *
ElLt] - 245%p < E[Lg] « E[Ly] 4if 1 is white

(b) Lf one white node i of G becomes black then the new expected

length cf t, E'[Lt], is such that:
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E{L¢] < E'[Lg] < E[Ly] + 2d;%(1-p)

vhere di = max {d(i,3); da(3,1)}
j#i

Proof: To prove (a) or (b) we have several possibilities. One can use
the method of proof used in Lemma 3.6, but it seems easier to proceed
differently (and this approach also has the advantage of presenting a
method of proof very useful for problems containing probabilistic
elemants).

The idea is the following:

(1) Assume i to be a white node; then:

E[{Lt] = E[Ly|i present] pr{i is present!

+ E[Ltli absent] pr{i is absent! . (3.8)

The main observation here is that:
E[Ly|i present] is nothing else than E'[Ly] of part (b)

E[Lt|i absent] is nothing else than E[Lgi] of part (a) .
Now it is easy to verify that:

 E[Lt|i present] > E[L¢|i is absent] (3.9)

E[Ly|i present] < E[Ly|i is absent] + 2d4;"* . (3.10)

(To see the validity of (3.10) it suffices to realize that

E[Lt|i present] corresponds to the expected length of a tour throﬁgh n-1
white nodes and m+1 black nodes and that E[Ltli absent] corresponds to
the same tour but with only n-1 white nodes and m black nodes; hence for

each subsets of the n~1 white nodes the two tours will differ at most by

*
2d4, which implies (3.10)).
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Now: (3.8) and (3.9) imply:

E[L:] > E[LtIi is absent] = E[L¢.]

E[Ly] < E[Lg|i is present] = E'[Ly] .
Also, (3.8) and (3.10) imply:

E[Ly] < E[Ly|i is absent] + 2d;"p = E[Lyi] + 2d;7p

E[Ly] » E[Ly|i is present] + 2d;*(1-p) = E'[Lgl + 24;"(1-p) .

This takes care of part (a) (i white) and part (b).
(2) To verify the validity of (a) when i is black it suffices to

note that under this condition

E[Ly|i is present] = E[Ly]

E[(Ly|i is absent] = E'[L] .

so that (3.9) and (3.10) give the desired result.

Note:
(1) If one node i is added to G, Lemma 3.8(a) remains valid if one
exchanges t! and t in the inequalities.
(2) If one black node i of G becomes white, Lemma 3.8(b) remains
valid if one exchanges E' and E in the inequalities.

(3) The results can be extended to the case of a general p.m.f. for
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3.4 Relation Between the TSP and PTSP

As pointed out in the introduction, the TSP is a special case of a
PTSP in which all nodes are black; it is then natural to investigate the
possible links between the two problems. We will be concerned with two
different (but related) issues in this section: first we would like to
determine conditions (if any) under which a PTSP problem is solved by an
optimal tour of the corresponding TSP problem; then following this
"qualitative" search we will analyze quantitatively the question of how
far the optimal TSP tour can be from optimality for the PTSP problem.

Lemma 3.9, which, in fact, will be mainly limited to very small size
problems, will provide elements of the answer to the first issue; Theorem
3.1 will then provide an upper bound on the abgolute "distance from

E[W]

optimality" of a TSP tour as a function of o , the "average percent-

age" of present nodes among the set of white nodes.
We will then provide, through Lemmas 3.10 and 3.11, some indications
concerning the sharpness of this bound and will also offer some insights

into additional peculiarities of this problem.

Lemma 3.9:
Let G = (Ny U Ny, A, D) be a given graph with m black nodes (N¢) and
n white nodes (N3); then we have the following:
(i) Provided that the distance matrix D is symmetric then for any G
of size up to 4 (n+m=4) we have t, = tp for any p.m.f. for W; in case m=0
heﬁ this is also true for n=5.
(ii) If D is not symmetric, or if ntm>5, or if m=0, n>6, then it is

possible to construct problem instances where t1¢tp for some p.m.f. for W.
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(iii) Let Convex(N1UN2) be the set of points of NyUN, that belong

to the convex hull of N¢UN, (Convex(NqUNy) C NqUNy); if D corresponds to

the Eucllidean metric and if Convex(N1UN2) = NqUNp then t; = tp ¥ n¥m

and for any p.m.f. for W.

Proof: Let us consider the three cases separately:

(i): if m+tn<3 and D symmetric then we have a single tour, hence (i)
is trivially true.

if m+n=4: then we have either (discarding n=0)

m=0 => E[L,] aoLé?{ + “1L81% + azLé?%

(o) (1) (2)
%Ly, t + MLy, + %Lqt

me3 => E[L4]

(o
%oL3, ¢ + *L3 ¢ .

But from Facts 3.2 and 3.4 we have that:

for m=0, % Léf% = constant and Lé?% = Lé?%;

r=0

)

2
r
constant and z Lg,t = constant;
r=0

]

for m=1, L%?%

)}

for m=2, L2,t constant Lé?% = constant;

for m=3, L3,t = constant .
Hence, for every case, E[Lf] = KlLé?% + Kg

where: for m=0, K4 = ao+a2_2a1=(ao_a1)-(al-az) which 1is positive from

Fact 3.5;



78
for m=1, Kq = 00-“1 also positive from Fact 3.5;

for m=2 and m=3, Ky = &; » 0.

So for all cases min E[Ly] = min Léoi and this establishes (i) when
t t
m+n=4,

Let us now look at the case m=0 n=5, We have:
et (0) e (1) e (2) L 4 o (3)
E{Ly] olo,t * *1Lo,t + %Llo )t + %3Lp )t

and now from Facts 3.2 and 3.4 we have

(x) (3) _ (o) _(2) (n
% LO,t = constant and LO,t = LO,t’ LO,t = LO,t .
r=0

This implies again that E[Lt] = K1Lé°i + K, and this time
’
K1=(%g+G3)=(A+Ay) = (%5-G¢)-(%y-%3) and since G%p-G&1 > &-0y 5 Gy-Q3 from

Fact 3.5 we proved the last case of (i)

(ii) to prove (ii) we will provide a counterexample for each of the

two following cases: 0

(1) m=0, n=6, D euclidean, W binomial with p=0.8

(2) m=1, n=4, D euclidean, W binomial with p=0.8

(One can also find an example when D is asymmetric and m=0, n=4.)
Figures 3.3, 3.4 provide graphical illustrations of the examples;

the exact calculations are provided in Appendix D.

(iii) To show this part we use the following well-known property for
the Euclidean TSP: the order in which the points on the convex hull

appear in the optimal TSP tour must be the same as the order in which
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ARNg

Optimal TSP tour Optimal PTSP tour forx
p < 0.66
tour 1 tour 2

Figure 3.3: Illustrations for m=1 n=4

A Lz

Optimal TSP tour: Optimal PTSP tour
for any p
tour 3 tour 4

Figure 3.4: Illustrations for m=0 n=6
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these points appear on the convex hull; this property follows directly
from the fact that the optimal TSP tour does not intersect itself when D
corresponds to the Euclidean metric.
Now, when Convex(N4qUNj) = N{UNy, the TSP tour through NqUNjp is
simply the sequence of points appearing along Convex(N,UNz).
If we drop any set of points from Ny (white nodes), say A, then it

is easy to see that
Convex(N1UN2) = N1UN2 => Convex(N1U(N2-—A)) = N1U(N2~A)

which impiies that by simply skipping those points from the original TSP
tour, we still end up with the optimal TSP tour through the restricted
set of points (without reoptimizing) hence (iii) is provead.

Q.E.D.
Note: It is interesting to note that (iii) constitutes a case for which
not only tp'E ty butvalso for which the expected length in the PTSP sense
is identical to the expected length assuming reoptimization on every
instance of the problem.

Let us now turn our attention to the general case for which t1¢tp
E[Lt1] - E[Ltp]

that is a worst-case ratio for
E[Ltp]

and give an upper bound on

the TSP tour.

Theorem 3.1:
Let G be a given graph with n white nodes and m black nodes; then we

have:

ElLe,] - Blle ) ngrw) _ 1-E[W1/n '

(1)
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- L, < 1-E[W]/n
(o) (E[W2]-E[W])/n(n-1)

¥m 3 1 ¥ n

and m=0 % n prime .

Proof: (i) From Lemma 3.4 we have:

for m»1 E[Lt1] < Lé?%1

E(Lg,] > Lé?%1 -E%ﬂl

which proves (i) for mj>1.

for m=0 and n prime

E[Lt1] < Lé?%1 [1—Pr(W=0)-Pr(W=1)] :

E(Ly,] > Lé?% [ELWI-Pr(W=1) ]

1 n

BlLg,] - ElLg ]

Hence
E[Lt ]
P

(1—E[W]/n)(1-(nPr(W=0)+(n—1)Pr(W=1))/(n—E[W]))
E[W]/n 1-Prob(W=1)/E[W]

and, since Pr(wW=1) < E[W][Pr(w=0)+Pr(wW=1)1,

nPr(W=0)+(n-1)Px(wW=1)
n-E[W]

Pr(w=1)
E[W]

this implies 1 - <1 -

and hence proves (i) for m=0 and n prime. (We conjecture that (1) is
still valid for n not prime, but we haven't been able to prove it, since

now Lemma 3.4 is of no use anymore.)
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(ii) We will prove this part for m»2. The other cases can be

proved by exactly the same method. We have

n
(o) ) (r)
+ o L .
m, tp =1 r-m,tp

st ) = L oanlf) = o (3.11)

I~ 8
o

r

Now from Lemma 3.2 together with Fact 3.6, we have

ElLt,] > “obé?%p + Lé?i1 [E[ﬁ] - %] (3.12)

From Lemma 3.4 we still have

E[Lg,] < Lé?%1 (3.13)

and by definition of the optimal FTSP tour t, we have:

Hence (3.12), (3.13), and (3.14) lead to:

(o)

ol (1 o o - 2] - )

- aOLm,tp >0

which in turn implies:

(o) (o)
fm,tp ~ Ym,ty 1 - B[WI/n

a
o,

(3.15)
0

It remains to evaluate ®3. We have by definition:

n-2

% = kEO [(niz)/(ﬁ)] Pr(W=n-k)

which becomes, by setting u=n-k and noticing (::i)/(nfu) (;)/(2),
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uy,(n 1 9
% = ? ((2)/(2)) Pr(W=u) = nn-1) ) u(u-1)Pr(w=u) .
u=2 u=1
1
Hence %; = YR (Etw2) - mrw)

Comments:

1. When W is a binomial random variable with parameter p, i.e.,

Pr(W=k)=(;) pk(1--p)n—k , Theorem 3.1 gives:

(o) (o)
ElLg,) = E(Le ] Le, = Lt 1-p
< and <
E[Ltp] P L1(:0) p2
1

2. For the general case

E£W] represents the "average percentage of
present white nodes" to be expected.

3. When E%ﬂl approaches zero the upper bounds of Theorem 3.1

approach + o .

An interesting question concerns the sharpness of the bounds

provided by Theorem 3.1; it is reasonable to assume that when E%El is

close to 1 the bounds of Theorem 3.1 are quite good; what can we say

when E%El is close to zero?

Theorem 3.1(1) has been established by bounding E[Lt1] from above

and E[Ltp] from below using results from Lemma 3.4. For example, for

(o)

(o)  E[W]
E[L ——
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Our next lemma (3.10) shows that those bounds are the best possible
in the sense that for each of them we can construct problem instances for
which E[L; ] = 1,;!?1):1 or E[Ltp] = Llfl?%‘ Ef‘w—] (but not both at the same
time!).
Oon the other hand, another lemma (3.11) will give more insight into

why it is highly improbable (we conjecture impossible) that we can

construct a problem instance where the TSP tour is "arbitrarily bad" for

1-E[W]/n E[W]
E[{W]/n n

We will conclude the discussion by pointing out some additional

the PTSP (i.e., for which is met with arbitrarily small).

peculiarities of the PTSP.

Lemma 3.10:

The lower and upper bounds given in Lemma 3.4 are the best possible
in the sense that:

(i) there exists a problem instance Gqy(n,m) such that E[Lt1] equals
the upper bounds given in Lemma 3.4. '

(ii) there exists a problem instance G,(n,m) such that E[Ltp] equals

the lower bounds given in Lemma 3.4.

Proof: The constructions are given in Figure 3.5 and Figure 3.6.

(i) for this part we will assume for simplicity that W is a binomial
random variable with parameter p and that m=0.

In this example, the graph Gy contains n white nodes that are
positioned at the vertices of a n-gon and D is given by the Euclidean
distance between the nodes; we choose the distance between th successive
vertices of the n-gon to be %-. It is then easy to see that the distance

between cne vertex and its rth subsequent vertex (clockwise or not) 1is

given by:
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Figure 3.5: The Graph G

1

£

Figure 3.6: The Graph G2
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sin(rfl/n)

n
nsin("/n) for r e [1"t§J]

(r)

Hence, by definition of the Lo ty we have:

L(r) _ sin((r+1)ﬂ/n)

for r e [0..[7]-1]

0,ty = " sin(M/n)
(remember that .LiM72"T) = (r) ) which implies that:
0,t1 0,t1 *

Lé?%1 = 1 for any n,

and lim L(r) = (r+1) (for any finite r).
0,1‘.1

Ny

Together with the fact that lim (1-p)r(r+1) = 0 for any Ogp<1, we
X 400
finally have (the exact derivations are similar to the ones given in

Appendix E for our next lemma):

€ > .
¥ >0 ®0g<p¢g1 3 Np, et ¥ n > Np.

BlLg ] > 1604, - © .

Q.E.D.

(ii) For this case the construction is much simpler. For any n
white nodes and m black nodes, construct a graph G, such that the m black
nodes and n-1 white nodes are at almost the same position and the
remaining white node is positioned at a distance x from this agglomera-

tion of n+m-1 nodes.

We obviously have Lé?%1 = 2x and Léf%l = 2Xx ¥ r. So

_ (o) EW]

Bllepl = Blhe ] = To ¢y 70
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We have thus been able to construct problem instances for which

E[Lt1] - Lé?11 in one case and E[Ltp] ~ L;?l1 E£W]

in the other case,
However, this does not imply that we can find one problem instance for
which both bounds are met at the same time, hence providing a case where
the optimal TSP tour can be made arbitrarily bad for the PTSP problem.

In fact the conjecture here is that this cannot be done and that one of
the worst cases against the TSP is given by the following lemma (based on

the limiting behavior, i.e. n+w, os the "star-shaped construction"

introduced in Chapter 2 for n=24):

Lemma 3.11:
For any 0<p<!1 and €>0 there exists a natural number Np o such that

for any n)Np, one can construct a graph Gz with n white nodes for

[oR4

which:

2
E[Lt1]( 1 _ p(1-p) ]

1
- E —_— [
5 o < E[Lt ] € E[Lt1 ] 3 +

-p

Proof: First, when p=1 Lemma 3.11 is obvious. Let us then concentrate
on 0<p<1.

Consider the following extension of the construction given in
Chapter 2 in which a graph G3 contains 2n white nodes positioned at the
vertices of two concentric regular n-gons (see Figure 2.2). Consider as
before tour  a and tour b; assume thag the distance between successive
vertices of the outside n-gons is 1/n and then choose the distance

between successive vertices of the inside n-gons dy such that (we want a

to be the optimal TSP tour):
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(o)

1% = (n-1) E% +d,] + 20 ¢ 2n = Lé°’ (3.16)

1
=72 sin T/n [V(1/n)2 + d% - (2/n) d2 cos T/n (3.17)

Using calculus or~ can show that

dy =-% (kn - K2 - 7] gives £{® = 1{®) % n

L 2T
1 4+ cos o cos by
where K, = > .
cos —
n

It is then a matter of somewhat lengthly calculus (see Appendix E for

details) to show that:

(x)

lim Ly ° = 2(x+1) for any finite =«

nre (3.18)
lim Lér) = 2/r2-r+1 for any finite r

naw

and then to deduce thet:

‘V‘€1 > 0 'V€2> 0% 0 < p < 1 (hence ¥ € = €1/(2_p)+62)

3.19
E| NP,E : ¥ n > Np’e 2—61 < E[La] < 2 + 51 ( 19)

2
p(1-p) 2
2-p ] - & < BlLp] < 7p t %2

2[21p -
0.E.D
Note: Lemma 3.11 implies that by choosing p very small one can construct
examples where the optimal TSP tour has an expected length (in the sense
of the PTSP) twice as big as the expected length of the optimal PTSP tour

(that is, a worst case behavior of 100%).
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In the process of proving Lemmas 3.10 and 3.11 we obtained the
following interesting fact:
For graphs with white nodes and with W a binomial random variable
with parameter p, no matter how small p is (p=€>0) one can constuct

examples where:

(1) E[Ly] = Lfc°) (Lemma 3.10)

(ii) E[Lt1] -2 E[Ltp] (Lemma 3.11)

On the other hand, when p=0, then the expected length of any tour t
of any arbitrary graph G is zero.
In other words:
for p = 0, the PTSP for any graph G is trivially solved.
for p > 0, no matter how small p is, there exists graphs G
where the difference in expected length between tours is not negligible,
implying that even for p very small different tours might not be (almbst)
equivalent with respect to the PTSP.
This can be explained very easily by noticing that given p is very

small (but strictly positive), one can always choose n so that

E[W] = np is arbitrarily large (however for p=0 E[W] = 0 % n).
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3.5 The PHPP.

All the results of the previous sections can be directly applied to
the Probabilistic Hamiltonian Path Problem as originally defined in
Chapter 2 (that is, Hamiltonian paths between two black nodes); this is
true since, as mentioned in Chapter 2, one can always transform a path
h =(i1,...,i|N|) into a tour t = (i1,...,i|N|) with expected lengths

(under the assumption that ij and i|N| are black nodes)’such that;
E[LL] = E[L¢] - d(i|N|,11)

For the variation of the PHPP in which iy and ilNl are not
necessarily black one can conduct an analysis similar to the one in the
previous sections. We give now an additional lemma for this case of

graphs without black nodes.

Lemma 2.12:

*

Let h = (iy,...,in) be a path through n white nodes; let h = hy®hj

where

hy = (i9,.00,ik), hp = (ig,.+.»ip) for 1<k<r.;
then E[Lh1®h2] ? E[Lh.’] + E[Lh2]
Proof:

E
E[Lh1@h2] = ,E[Lh1@h2|1k is present] —r[;-v-q-]-
(3.20)
+ E[Lh1€h2|1k is absent] (1 - EiW]) .

° E[Lh1eh2|ik is present] corresonds to i being black and as we

have seen in Chapter 2 we then have
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E[Lh1$m2|ik is present] = E[Lh1|ik is present]+E[Lh2|ik is present]

® on the other hand

E[Lhﬁﬁhzlik is absent] > E[Lh1|ik is absent]+E[Lh2|ik is absent]

Since the left-hand-side term is equal to the right hand side term plus
the expected length of the segment joining the last node of hy to the
first node of hy (which is > 0).

Q.E.D.

3.6 Conclusion

More than any other chapter of this thesis, this one presents a host
of "technical" results.

In summary the impcrtant points are:

1. Tge development of upper and lower bounds on E[L4] (Lemma 3.4)
that can be shown to be the best possible (Lemma 3.10).

2. The entire section 3.3 in which properties of the optimal PTSP
tour have been established (Lemmas 3.6, 3.7, and 3.8).

3. The entire section 3.4 in which we compare the optimal PTSP tour
with the optimal TSP tour (Lemmas 3.9, 3.11, Theorem 3.1).

4. The lemma concerning the 'Ynon-additivity" of E[L] (Lemma 3.12).

All these results will play key role in Chapter 5, the chapter

dealing with the development of solution procedures for the PTSP.



92
CHAPTER 4

BOUNDS AND ASYMPTOTIC ANALYSIS FOR THE PTSP IN THE PLANE

4.1 Introduction; Notation

The methods of analysis considered in this chapter are considerably
different from those of the previous two chapters. An asymptotic
analysis is performed in which set-theoretic concepts are used instead of

graph-theoretic ones. The main objective of this chapter is to obtain

strong (i.e., concerned with convergence with probability 1) limit laws
for the PTSP similar to the celebrated result for the TSP obtained by
Beardwood et al. [1959]. Informally stated, this result states that the
value of the optimal TSP through n points drawn from a uniform distribu-~
tion in the unit square is almost surely (with probability 1) asympto-
tic to B/n. (The constant B has been estimated to be approximately
0.765; see Stein [1977]). 1In fact, this result can bhe extended to an
arbitrary Lebesgue measureable set of a d-dimensioned Fuclidean space and
with an arbitrary probability distribution for the location of the
points; the constant of interest B(d) depands only on the space dimen-
sionality and not on the shape of the set considered.

This theorgtical result has become widerly recognized to be at the
heart of the probabilistic evaluation of the performance of heuristic
glgorithms for vehicle routing problems. In fact it was used as the main
argument in the probabilistic analysis of heuristics for the TSP (Karp
{1977]1). Because of those algorithmic applications, results like that of
Beardwood et al. have gained considerable practical interest. Steele
{1981a] uses the theory of independent subadditive processes to obtain
strong limit laws for a class of problems in geometrical probability that

exhibit nonlinear growth (Steele's theorem will be essential in the
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development of some of our results).

Before presenting the notation to be used in the statements and
proofs of our results, let us briefly sketch the outline of this chapter.
First we consider a set of points in 2-dimensional Euclidean space Rz,
assuming the distance between points to be the ordinary Euclidean
distance. In section 4.2 we present an upper bound on the expected
length of the optimal PTSP tour for an arbitrary sequence of n points
lying in a square of side r. Assuming the points are uniformly and
independently distributed over the square, we obtain another upper bound
as well as a lower bound on the expected length of the optimal PTSP tour.
These results apply to problems with a finite set of n points; in section
4.3 we turn our attention to asymptotic behavior (i.e., niw). In a first
subsection we present the asymptotic behavior of the expected value given
by the strategy of reoptimizing the optimal tour for each realization of
the random variables (i.e., for each subset of the points that will
actually need a visit on a particular instance, we construct the optimal
TSP tour and compute its length); this, of course, constitutes a lower
bound on the expected length of the optimal PTSP tour. The second
subsection contains the most important theoretical result of this
chapter: we show that the expected length (in the PTSP sense) of the
optimal PTSP tour (coverage probability p) through n points drawn from a
uniform distribution in the unit square is almost surely (with
prébability 1) asymptotic to c(p)/;, where c(p) is a constant depending
on the coverage probability p; the third subsection of section 4.3 is
then conce;;ed with the derivation of bounds (upper and lower) on c(p).

We then present, in section 4.4, generalizations of our results in

several directions: first, we notice that all our previous results
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extend to the case where one of the points is always present (a depot);
we then present extensions for cases where more than one point is

always present (we also briefly mention similar results for the PHPP).
Then we discuss extensions of our results to any bounded Lebesgue measur-
able set of a d-dimensioned Euclidean space. Finally, we conclude the
chapter with a brief discussion of the practical implications of our

results.

Notation:
® R2 denotes the 2-dimensional Euclidean space.
° [o,r]2 is the square of side r (r being a positive real number)
® x = {x1,x2,...} represents a (countably infinite) sequence of
points on R2; x(n) indicates the first n points of x, i.e.,
x(n) = {xq,%x5,...,x,}. If the positions of the points are random, the
s;quence will be denoted by upper-case letters, i.e., X = fx1,x2,...}.
© given a sequence x, t(x(n)) represents a tour through the points
of the sequence x(M); L. (x(n)) is the length of the tour t(x("));
ELt(x(n),p) is the expected length (in the PTSP sense) of the tour
t(x(n)) when each point of the sequence x(N) requires a visit only with

probability p, independently of each other. Two specific tours will play

a key role in our derivations:

t(x(n)) is the optimal TSP tour through x(n);

(i.e., the tour ty that solves min (Lt(x(")))
t

tp(x(“) )bis the optimal PTSP tour through x(n)

when the coverage probazbility is p;

(i.e., the tour t, that solves min (ELt(x(n),p))).
t
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® | is the random variable representing the total number of points
to be visited (0 €@ < n);“S is the random variable representing the
specific subset of the points of x(n) that actually need a visit (there
are 20 possible subsets s4); hence we have for any subset sj of

cardinality |s4|=k
pr(s=sy) = 1/(}) Pr(w=k) (4.1)

® if for each realization of S, say 55, we construct the optimal

TSP tour t1(sj), the expected value is:

n

I o~

elre (9] = 1 1y (sy) pr(s=sy) (4.2)

j=1

together with (4.1), this expression becomes:

Il 3

(/0N L 1 mgeyy] pewen) (4.3)

* E[Lt1<S>] =
k=0 Sj,|5j|=k

[Note the difference between Eft1(x(n),p) and E[Ltl(S)]. The former
is the expecged length (in the 22§£ sense) of the optimal TSP tour
through x{1) when points are present only with probability p; the latter
quantity represents the expected length computed under the strategy of
reoptimizing the tour for each subset 854 (and we have:

E[Lt1(5)] < ELtp(x(n),P) < ELt1(x(n),P))-]

In fact this notation is not specific to ty; for any algorithm A

which, given a set of points on the plane, produces a feasible tour ta,

we write:
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ELtA(x(n),p) for the expected length (in the PTSP sense) of

tA(x(n)), and

E[LtA(S)] for the expected length obtained under the strategy

of applying the algorithm A for each realization's=sj (to get tA(sj)).

[Note that in general E[LtA(S)] ¥ ELtA(x(n),p)],

® Tt is useful to note that our notation implies some very specific

rules:

Lt(x(n)) is a real number

Lt(x(“)) is a random variable (according to the position of

the points)
also ELt(x(n),p) is a real number but
ELt(X(“),p) is a random variable.

So when we take the expectation of our random variables (°) with
respect to the position of the points we will use the Eu[(°*)] to avoid
confusion with the other type of expectation (with respect to which point

has to be visited).

® Fpinally:

x(n) - S5 denotes the set of points of x(n) that do not belong

to 59

= g(n)
g(n) = o(f(n)) means lim £(n)

N0

= 0 ,
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h(n) =» 0O(£f(n)) means that there exists a constant & > o

such that h(n) < @f(n) for all n ? 1.

4.2 Bounds for Sequence of Points in !o!rlz

4.2.1 Case of an Arbitrary Sequence X

Lemma 4.1
Let x be an arbitrary sequence of points in [o,r]2 and p be the
coverage probability for each point, then the expected length of the

optimal PTSP tour satisfies:

(1) 5L, (x'™,p) < (Y2(np-2) +li-) r ¥ np * 2.5
(ii) ELtp(x(n),p) < GE% + 3) r % np < 2.5

Proof: If p=0 then ELto(x(n),O) 2 0 and the lemma is trivially verified;
so let us suppose 0 < p < 1. The demonstration of this lemma involves
the construction of two tours tcl(x(“)) and tcz(x(“)) (a similar
construction was used by Few [1955] to improve an upper bound for the TSP
developed by Verblunsky [1951]). The construction goes as follows: (see
Figure 4.1 for a graphical description).

Divide the initial square [o,r]2 into 2h rows of equal width (h 1s a
positive integer to be chosen latér); there are then 2h+1 horizontal
1ines‘and 2 vertical lines on the square. Starting from the top
horizontal line and moving downward discard every other horizontal 1line;
connect each point of x(n) to the nearest of the remaining h+1 horizontal

lines by a double vertical 1link, then connect each of the h+!1 horizontal
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Construction of a Tour

Figure 4.1:
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lines to a line immediately above and/or below it by using some portion
of the two vertical sides of the square to finally obtain a hamiltonian
path through x{n) | construct a similar Hamiltonian path using the other
h horizontal lines (previously discarded). Thea extend each of these two
hamiltonian paths to a tour by adding appropriate horizontal and vertical
segments (giving respectively t,q and tgp). Those two tours have the
following properties:

(a) given any subset 55 of x(n) (j € [1..27]), the construction of
tci(sj) gives the same tour as the resulting process of skipping the

(n) (n))

points of (x - sj) from tci(x (in the PTSP sense). This is because

the position of each point along the tour tci(x(n)) depends only on its
location within the square and not on the locations or presence of the

other points. This property implies that

ceny, (x(m),p) = ele (5]

(b) given the number of points present is k, then Ltc1‘sj) +

(n)
Ltcz(sj) is constant for all subsets S5 of x

containing k points ((;)
such subsets) that is, it does not depend on which pointé are present
{this is so by construction; indeed taking any point within the square
[o,r]z, the sum of the double vertical 1links that connect it to tyy and
the double vertical link that connect it to t,, is exactly'ﬁ, hence
independent of its exact location). So if we call this constant lk when

the number of points present is k, then this property implies (using

(4.3)) |

n
ElLey, (8) + Ly ,(8)] = kX % Pr(W=k) . (4.4)
=0
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These two properties and their consequences imply that

(n)

[ e )

n
Ly, (x' "' ,p) = kzo B Pr(W=k) (4.5)

1

and since tp(x(n)) is the optimal PTSP tour

EL¢ (x(n),p) S ELg ,(x(“),p) for i = 1,2
P ci
hence
n 1
EL, x'™ p) <3 ? % Pr(w=k) . (4.6)
P k=0
It remains to evaluate ﬂk-¥ k € [0..n]: from the construction of ts¢ and

tep, we can see that %4 is given by:

zk = A(k) + B where A(k) is the sum of the two Hamiltonian paths
and B the sum of the additionél segments to modify the two paths into
tours.

® for any choice of h (odd or even) B is easily seen to be 3r --ﬁ

® using property (ii), we obtain:

r r
A(k) = (2h+1)x + k(;) + 2(r -75)
+ + +
horizontal lines connections vertical side
of point sections
hence % = r[2h +-l(k-2) + 6] (4.7)
h

replacing in (4.6) we get
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e (x™,p) £ [2n + <+ [Brw1-2] + 6] (4.8)
p 2 h
and this bound is valid for any integer h 2 1.

Let us find the best integer h* (h* 2 1):

Note that if E[W]-2 € 0 then h* = 1.

If E[W]-2 > 0, h* should be the nearest integer to ViE[w]~2)/2,

except in the case where ViE[W]—2)/2 is closer to 0 than to 1 since

'

h* » 1. The threshold will then be given by

ViE[W]—Zi/z = 0.5 or E[W] = 2.5

Hence if:
® E(w] € 2.5, then h* = 1 and in replacing h=1 and E[W] = np in

(4.8) we get part (ii) of Lemma 4.1

® E[W] ? 2.5, h* satisfies (h* + 6)2 - E[Z]—2

number such that |6 ‘-% . The right hand side of (4.8) becomes:

where ¢ is a real

r 1 2 r 262
= [2n* + o 2(hea0)” 4 6] = z [a(n*+0 + = 6]

and since h* > 1 and |9| <-% we get:
ELtp(x (m)5) <Z [4 MTEWI2)72 + 2 % + 6] .

Since E[W] = np, part (i) of Lemma 4.1 is verified.
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Lemma 4.1 is concerned with arbitrary sequences in [0,r]2 and thus
under such conditions, the only valid lower bound on ELtp(x(n),p) is 0
¥ p (take the sequgnce x consisting of points positioned at the exact
same location). 1In the next subsection we are going to sharpen both the
upper and the lower bound under the additional assumption that the
sequence X is i.i.d. uniform over [o,r]2 (this time, of course,

considering Eu[ELf_p(X(n) ,p)])

4.2.2 Case of a Uniform Sequence X

Lemma 4.2:
Let X be an infinite sequence of points independently and uniformly
distributed over [o,r]2 and p be the coverage probability for each point,

then we have:
(1) Eu[EIJtp(x‘“’.p)] < (/{4737 (mp=37 + 12+ 7 Z) r  if np > 3.75

(i1) Eu[ELtp(X(n),p” < (£ +-§ + 7 2) ¢ if np < 3.75 .

Proof: here again the demonstration involves the construction of a tour
through x(n) obtained by dividing the square [o,r]2 in almost the same
way as before; more precisely (see Figure 4.2 forx a graphical illustra-
tion), divide the initial square into h equal-width (r/h) columns. Con-
struct the tour tc3(x(“)] as follows: start from the point in the left-
most column having the largest vertical coordinate, then visit the point
in the same column having the next lower vertical coordinate, and so on;
from the lowest point of this column we go to the lowest point in the

next column and visit the points in that column upward. We continue this
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Figure 4.2: Construction a Tour
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process until we reach the last point; we complete the tour by connecting
the first and last point by a straight line (a similar construction was
proposed and used for studying the TSP in Beardwood et al. [1959]; more
specifically, this construction was essential in the proof of their lemmas
4 and 10). It is easy to see that t,3 possesses a property similar to
(b):

(b') given the number of points present in k then E“[Ltc3(5j)] =
Eu[Ltc3(sj')] for all subsets sj and Sy of x‘“) containing k points.
The reason for (b') is that Ltc3(sj) and Ltc3(sj') have exactly the same
p.d.f. since both of them are tours through k points (even if different

in the two subsets) that are distributed identically and independently

over [o,r]z.

So, finally, (a) and (b') imply that:

Eu[ELtp(X(n),p]] < Eu[ELtc3(X(n) ,p)] Eu[E[Ltca(S)]

1.

tp is the optimal (
PTSP tour

B 5o

n
and mulelre .(s1]1] = ) mulne 0] Prow=x)
c3 c3
+ k=0
(b")
where Eu[Ltc3(k)] is the generic term that corresponds to Eu[Ltc3(sj)]
~for any subset 84 of X(n)“of cardinality k.
It remains now to evaluate Eu[Ltc3(k)]:
first note that the last segment connecting the first and last point has
an expected length less that Y2 r.

For the k-1 other 1links, it is convenient to project them on the

horizontal Y-axis and vertical Z-axis.
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® the projection of those k-1 links on the Y-axis gives a total

expected length of = Glll r + k-h r)
h 3h
+ +
{h—1 between column distances} {k-h within column distances}
of expected length r/h of expected length r/3h

® the projection on the Z-axis is bounded from above by hr
(h column and for each column an upper bound of r).

It follows that:

Eu[Ltc3(k)] < (-}ll-:-l+§—;-}—1-+ h+72)r =

= [z + 2

k-3
5) + h +-§K—] r .

Hence we finally obtain

2 -3
Fu[EL, ™ p)] < (Y2 +2 +n , EWI=3y (4.9)
P 3 3h
By following a procedure similar to the one described in the proof
of Lemma 4.1 we then obtain the optimum value of the integer h*. Here

the threshold corresponds to

V{EIWI-3)/3 = 0.5 or E[W] = 3.75 .

Hence if:
@ E[W] € 3.75 then h*=1 and we get (using (4.9)) part (ii) of
Lemma 4.2

® E[W] ? 3.75 then h* satisfies

EWI=3 here 6 1s a real nunber/ | 6 <'% :

(h* + 8)% = 3
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The right hand side of (4.9) becomes:

2 (h*+8)2 62 2
r[V2 + 3+ h* o+ _—TFT—_—] = r[2(h*+8) + wtrI3t V2]

< £(YTa73) (5Iw13) + 5 + 72) .

Q.E.D.

Let us now give a lower bound on Eu[ELtp(x(“),p]]
Lemma 4.3:

Lgt X be a sequence of points independently and uniformly
distributed over [o,r]2. Then we have:

- V2 : -
Eu[ELtp(X(n),p)] > Lg(E[/ﬁ] - n{1-p)™ " )4 (v --%gg)n(n-1)p2(1-p)n 2z

s
2:52 +-% tn(14Y2) = 0.5214.

for all positive integers n and with Y =

Proof: First, since the strategy of reoptimizing the tour, (given that
the subset S=sj of x(N) has 1o be visited on a particular instance) is
the strategy corresponding to perfect information, it provides a lower
bound on ELtp(x(“),p). We then have ELtp(x(n),p) > E[Lt1(S)] (note that
this inequality is concerned with random variables). The argument

labeled (b') in the proof of Lemma 2 is still valid for tq; hence we have

(n) )
Eu[ELtp(X M)l > 1
k=0

Bulry (k)] Pr(wek)
where again Eu[Lt1(k)] is the generic term for Eu[Lt1(sj)] for any subset
(k))]

s; of X(n) of cardinality k. [Formally Eu[L (k)] = Eu[L (Y where
j t1 t1

Y is i.i.d. uniform over [o,r]z.]
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Now it remains to evaluate Eu[Lt1(k)]:

for x=0,1 Eulpy ()] =0 .

EEE k=2, Eu[Lt1(2)] is twice the expected distance.between two
points independently and uniformly distributed over [o,r]z; this expected

distance is given by:

Yr = [2+6 + % wn(1+72)] r = 0.5214r

(see Gilbert [1965], for example).

for k ? 3, one can use Lemma 3 of Beardwood et al. [1959] to

obtain:

EulLe, (k) ] >§ K r.

Since the argument used to derive this result for the TSP h;s been
used over and over again for obtaining lower bounds for other Euclidean
network design problem (see Papadamitriou [1978]), it might be worthwhile
to sketch it briefly: the main observation here is that as the shbrtest
tour through all points does not visit any point twice, the sum of the
lengths of the two segments of this tour that terminate at a given point
is at least as large as the sum of the distance from this point to its
first and second nearest points. Let y(k) = {Y1,Y2,..,Yk} be the set of
points uniformly and independently located over {o,r12; let £1j and 22j
be the distances of Y4 to its nearest and second nearest point (respec-
tively). We then have Eu[Lt1(Y(k))] >'% ? Eu[11j + zzj]

Eu[Lt1(Y(k))] >-% ? Eu[£1j + zzj] = g'E3T111 + 221] (by symmetry).

3=1

'
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We can evaluate Eu[211 + 221] by noting that

Vz n-~1

Prob(f'” ? 2’) = (1 "“—2)
r

where Vg is the area of the intersection of the square [o,r]2 and the

disc of center Yy and radius %, and

Prob(221 » 2) = (1 - ——J + n-1 C‘—)(1 "—‘) )

0
so that Eu[111 + 221] e f (Pr(211 ? 2) + Pr(l,z ? 2)]d2.
o
By using some tedious calculus, we can then obtain a lower bound on
Eu[211 + 221] (see Beardwood et al. [1959] p. 309-310) and get the

desired result.

So finally by combining the three cases we get

n
pulene (x™,p)] > [2Y pr(w=2) +2 ) Yk pr(w=k)] r .
P 8 k=3
The right hand side can be written as
n
Ei 2 'k Pr(W=k)+(2Y —-gfz)Pr(w=2) --2 Pr(w=1)]r
8 X=0 8 8
n
and since: 2 Yk Pr(w=k) = E[/W].
k=0

Pr(W=2) = 21%111 p2(1-p)n—2, and

Pr(W=1) = np (1-p)™7 7,
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we obtain the desired bound.

0.E.D.
Note:
o /x> X % x¢ {o,n] .
/n
Hence E[JW] » E['ﬂ] = ELW] = P/;
/n /n

Hence Lemma 4.3 can be simplified to (but at the cost of a smaller

lower bound):

Eu[ELtp(X(n),p)] >§ p'n [1 - /@ (-p™ e

4.3 Asxggtotic Analysis

In section 4.2 we were interested in results valid for problems of
finite size, i.e., lower and upper bounds for any values of n (for an
arbitrary sequence x or uniform sequence X). Let us now concentrate on

asymptotic results.

4.3.1 Asymptotic Behavior of the "Strategy of Reoptimizing"

We are interested, in this section, in the behavior of the random
variable E[Lt1(s)] (that is, corresponding to the case in thich we

construct the optimal TSP tour for each subset of points 84 of X(n) that

actually are present on a given instance) when n + «. The following



theorem is proved using the results of Beardwood et al. (presented in our

introduction).

Theorem 4.1:
Let X be an infinite sequence of points independently and uniformly

distributed over [0,1]2 and p be the coverage probability for each point.

Then we have:

elLe, (9]

1im = B/p (a.s.)

N 4o '/;

# p e [0,1]1, where B is the "TSP constant".

Proof: ® First note that, when p=1, E[Lt1(s)] = Lt1(x(n)) and Theorem
4.1 corresponds to the result of Beardwood et al. {1959].

® Also, when p=0, Theorem 4.1 is trivially valid.

® Tet us then consider the non-trivial case 0 < p < 1.

From the Weak Law of Large Number, we have:

% €5 0 JNe: ¥ n ? Ng, Pr([g - p| > e) < ¢ or,
(4.10)

# €3> 0 3 Ne: % n ? Ng, Pr(n(p-e) <y < n(P+e)) > 1-€

by taking € small enough so that |n(p+€)| + 1 < n, we can write (4.3)

(in view of (4.10)):

Elre, ()] [n(pge)]-1 Ley (k) [P(RFE] e, (o)
kit R — L pr(Wek) + ) ——— pr(¥=k)
’n k=0 n k=[n(p-6)] 'n
n L, (k)
+ ) —  pr(w=k)

k=|n(p+€)J+1 'n



1/(;) ) Ly, (s5) (4.11)
s.
j

|s5]=k

where Lt1(k)

r a ] is the smallest integer greater or equal to &

L @ | is the largest integer smaller or equal to @

from Lemma 4.1 (taking r=1, p=1), we can easily show that there exists a

constant b such that

Ly, (s3) < b ' (4.12)

for all sy such that |Sj| = k k € [0..n]

(in fact any b ? 3.5 would do).

(4.10), (4.11), and (4.12) imply:

¥ €5> 0 INe : % n ? Ne

Inte+e)] 1 0 Blig, ()] PO ] ne (k)
Pr(Wek) € ——— < I 7 ——— pr(w=k)
k=[n(p-©)] 7n /m xk=[n(p-8)] ’n
+ bE . (4.13)

From Beardwood et al. [1959], we have:

¥ eg>0 T K, : ¥k ?K (B-e)v’E<L (s)<(8+e)"1? (4.14)
€ € t1'®)
(a.s.)

for all s4 such that |sj| =k .

Hence (4.10), (4.13), and (4.14) imply:
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Ke

¥ e>0 Mg = max{Ns. ;:g} :¥n 2 Mg
elry, (s)]
(1-€)(g-€) Y(p-€) <-__j;r——— < (B+E) Yp+€ + bE (a.s.) (4.15)
n

since € is arbitrarily small the theorem is proved.

Corollary 4.1

Under the condition of Theorem 4.1, we have:

EylElLy, (5)1]
lim 2 ! =B /;
1 0 /n

Proof:

E(L,(8)]  Eng (x(n),p)
We have 0 < < P .
’n /n

ELtp(X(n) p)
‘/; ol

independent of n, so the almost sure convergence of Theorem 4.1 implies

From Lemma 4.1, is bounded from above by a constant

(by the dominated convergence theorem)

By [BlLg, (8)1]
1lim =

B/p .
nso 'n

Let us now turn to the asymptotic behavior of the optimal PTSP tour

and present one of the most important theoretical results of this chapter.
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4.3.2 Expected Length of the Optimal PTSP Tour When n*®

Theorem 4.2:

Let X be an infinite sequence of points independently and uniformly

distributed over [0,1]2 and p be the coverage probability for each point.

1 Then there exists a constant c(p) such that:

BL, (x(n),p)
¥ pe [0,1] lim P = c(p) (a.s.) .
1 Ny 1

\ Proof: We are going to use a very interesting recent result by Steele
[1981a]. Steele proved the following:

Let ¢ be any real-valued function of the finite subsets of R2
(i.e., a valuation, mapping finite sets to the reals) with the following
properties:

(a) ¢ is Euclidean; i.e. linear and invariant under translation

(b) ¢ is monotone; i.e., ¢({zlua) » ¢(a) for any z e Rz‘and finite
subsets A of R?

(c) ¢ has bounded variance, under the uniform distribution; i.e.,
var[¢(x(“))] < ® whenever the points of x(n) are independent and
uniformly distributed in [0,1]2

2
m
(d) ¢ ts subadditive; i.e. if {Qi} is a partition of the unit

square [0,1]2 into squares with edges parallel to the axis and of length
1/m and if rQj = {n:n=rg £ ¢ Qi}, then there exists a constant C > 0
such that for all positive integers m and positive reals r one has:

m2

$(x(m  10,r12) < 121 #(x(Mnroy) + cem .
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Then, if X is a sequence of points independently and uniformly

distributed over [0,1]2, there exists a constant B(9) such that

lim M-)—)- = B(d)

Ti>00 /;

(a.s.)

(Steele proved this theorem for rRd, @ » 2).

Since no confusion can arise throughout the proof of Theorem 4.2, let
us simplify our notation:

Let ¢p(x(“)) = ELtp(x(n),p); i.e., the expected length of the optimal
PTSP tour going through x(n) = {x1,x2,...,xn} when each point is present
only with probability p.

Let us show that ¢p verifies the axioms (a), (b), (c), (d): first
note that, when p=1, ¢1(x(n)) is nothing but the length of the optimal TSP
tour through x{N) and we know that Theorem 4.2 is valid (Beardwood et al.
[1959]); also, for p=0, ¢°(x(“)) Z 0 % x hence Theorem 4.2 is trivially
valid.

Let us then concentrate on ¢ with 0 < p < 1.

® 1t is trivial to verify that

¢p(0x(n)) = “¢p(x(n)) # sequence of point x
¥ real number &
where 0x(n) is the sequence of points (®xq,...,%p); (i.e., each points of
the sequence has its coordinates magnified by the real ®); indeed by
changing the coordinates of each point by a factor @, we multiply each
distance between two points by & and since ¢p is function of those

distances in a linear way we get the result.

also ¢, (x(m)+g) = bo(x(m)) g er? .
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Hence (a) is satisfied and ¢p is Euclidean.

® Tt is also obvious that (b) is satisfied; indeed given we have
the optimal PTSP tour through n points, its expected length will always
be less than or equal to the expected length of the optimal PTSP tour
through the union of the same n previous points with an additional one
(by contradiction). '

® Again (c) is obviously satisfied by ¢p for any p.

® fFor the verification of (d) we need a more elaborate analysis:

We have seen in the proof of Theorem 4.1 that as a consequence of
Lemma 4.1 there exists a constant b such that Lt1(x(“)) < b'n r for any

sequence x within [o,r]2 (in fact any constant b # 3.5 can do);

hence we have

¥n ¢y (x(n)) ELt,‘(xSn)) <b/nr . (4.16)

Now consider the following tour through the sequence x(“)f\[o,rlz (see
Figure 4.3 for an illustration): first construct the optimal PTSP tours
in each "subsquare" through x(Mnr Qi, each of expected length

¢p(x(n) N rQi) (i € [1..m2]). Then, in each square rQj where x(n) N rQy
is not the empty set, choose one point from x(n) rQ4y and consider this
point to be always present (we turned a "white" point into a "black"
point, using the terminology of Chapters 2 and 3); if we let

¢$(x(n)!\ rQi) denote the new expected length of the PTSP tour initially

constructed in rQ;, we have:

¢§(x(“) n rQi) > ¢p(x(“) n rQi) (since now, one point always

has to be visited)



%

(1) The PTSP tours through

x(n)(\ r Qi

\

I /A\/

AN

(3) construction of the TSP
through black points

Q ]
D
¥
\
——D

I r/m

(5) A spanning walk of expected

length less than in (4)
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<> .

(2) turn one point in "black"
in each subsquare

D

(4) combination of (2) and (3)

SN

\

N,

AN

(6) A tour of expected length
less than in (5)

Figure 4.3: the subadditivity of ¢P
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In each square rQ; where x(n) N rQ; is not the empty set we have
a black point so that we have at most a total of m? such points from
x(MN\[o,x]2.

Construct a TSP tour through these points; from (4.16) with n = m?2

we have:
¢1(black points) <p Ym? r = bmr . (4.17)

Now the expected length of the combination of the TSP and the PTSP
tours is (since we have black points, the expectation of the combination

is the sum of the expectations of each part):
2
? ¢§(x(n){1 rQi) + ¢1(black points )
i=1

(and this corresponds to a spanning walk).

Now if we turn each black point back into a white point, the
expected 1engthlof the spanning walk decreases, and so does it if we
transform this spanning walk into a tour; but then this tour goes through
all points of x(n)ﬂ [o,r]z, hence its expected length cannot be smaller

than ¢p(x(“)(\[o,r]2) (Optimum PTSP). Hence we have
m2
¢p(x(“)f\[0,r]2) < 121 ¢§(x(n)(\rQi) + ¢1(black points )
and using (4.17)

2
¢p(x(n)(\[o,r]2) < ? ¢§(x(n)f\rQi) + bmr . (4.18)
1=1

We need a last result: assume that the optimal PTSP through the points

of x(M) ro; is (X1,%2,...,%ky ,X1) Where kj = [x(M) N\ rQi| (assume of
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course that kj # 0). Now consider xq to be always present.

From Lemma 3.8 part b we have:

¢é(x(“)n rQi) < ¢p(x(")f\rQi) + 2d*(1-p) (4.19)
where 4d* = max d(x1,xj).
1<3j <kj

Since rQ; has an edge of r/m

arx < /2 (r/m) (diagonal of rQ;)
so finally
b (x(m Argy) < oy (x(MNxes) + 272 T (1-p) . (4.20)

This is true for any i ¢ [1..m2], so combining (4.18) and (4.20) we

obtain:

2
m
¢, (x(m) n[o,r12) < Lod(xtmInrgy) + -((1-p)z/§-;-)m2+bmr (4.21)

i=1
so by choosing C = (1-p) 22 + b in (4.21) the subadditivity requirement
is verified.
Q.E.D.
For all similar asymptotic results (the TSP, the matching problem,
the spanning tree problem) it is interesting to note that the respective
1imiting constants are unknown and only bounds have been established:
® the best bounds for the TSP (=B) are found in Beardwood
et al. [1959] 0.625 < B < 0.9204 and B has been estimated to be
~ 0.765 (Stein [1977]) (it was previously estimated to be 0.75
in Beardw;od et al. [1959])

® for the matching problem Papadimitriou [1978] has established

that 0.25 € M € 0.401 and estimated H to be ® 0.35



119

® for the minimum spanning tree problem Gilbert [1965] showed that

0.5 € BMST € 0.707 and estimated BMST to be ® 0.68 (in Bentley

and Saxe [1980] Bygp has been estimated to be 0.66)

Our problem is no exception and the next section will be concerned with

bounds on c(p).

First, however, we present a corollary to Theorem 4.2 similar to the

one given for Theorem 4.1.

Corollary 4.2

Under the condition of Theorem 4.2 we have:

Eu[ELtp(x(“’,p)]

1im = c(p)
n->o /;

Proof: Identical to the one for Corollary 4.1.

4.3.3 Bounds on the Constant c(p)

The lemmas of section 4.2 give immediately bounds for c(p):
ELy (x(M),p
o P </'_
From Lemma 4.1 we have lim sup 2p for an
N 'n

arbitrary sequence x lying in [0,1]2; together with Theorem 4.2

this result implies that c(p) < V2p .

® FrFrom Lemma 4.2 and Corollary 4.2 we can imprqQve this upper
EuTELt x(n) p 1
bound; indeed we got lim sup P < Y(4/3) p
n+o /n

which implies (Corollary 4.2) that c(p) < Y(4/3) p .

® From Lemma 4.3 and Corollary 4.2 we get (see end of proof of

Lemma 4.3)
Eu[ELtp(x(n),p)] .
Lemma 4.3: => lim inf ?=p .
Vo 8
n o n

Corollary 4.2: => c(p) >-§ p -
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In fact during the proof of Lemma 4.3 we got a sharper bound when

n is very big; indeed we showed that

5 -
Eu[ELtp(X‘“).p)] > = [et/) - n(1-p)" '] (4.25)

(for X sequence of points independently and uniformly distributed within
[0,112);

By Weak Law of Large Numbers,-% * p in probability

and since g{(x) = Yx is continuous YW/n * /E in probability. (4.26)

Since {Vw/n} is a sequence of uniformly bounded random variables,

convergence in probability implies convergence in quadratic mean (Lukacs

[1968]) which in turn implies that:

1im E[’W/n] = /p . (4.27)
Hence (4) (6) and Corollary 4.2 imply that: c(p) >-§ /; . (4.28)

Finally, with the best of (4.22), (4.23), (4.24) and (4.28), we obtain:

¥ 0 <p <1

0.625 'p =

®|w

/p < c(p) € ¥2/3 Yp = 1.155 'p X (4.29)

This result was obtained directly from section 4.2; let us now

present the best bounds for c(p):
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Lemma 4.4:
The constant c(p) of the asymptotic result given by Theorem 4.2 is

bounded as follows:
B/p < c(p) < min{B,0.9204 Yp} % p e [0,1]

where B is the "TSP constant".

Proof:

E[Lt1(S)] L, (x(n),p)
® gsince the variables ———— are lower bounds on

/n 'n

for any n (see proof of Lemma 4.3), Theorem 4.1 implies c(p) » B/E .

[Note that the best known lower bound on B is 0.625 and thus this gives
the same result as in (4.29); however B/E is certainly a better lower
bound than in (4.29) since any improvement on B would directly be of
interest for c(p)].

° Iit remains to verify the upper bounds: the construction given in
Lemma 4.2 was used in the proof of Lemma 10 of Beardwood et al. [1959]
from which one can infer the following property: (using our notation)

E [LtcB(x(n))]

1im sup — < 0.9204 (4.30)
n+o 'n

where X is a sequence of points independently and uniformly distributed
over [0,1]2

This result comes from two major parts in Beardwood et al. (the
interested reader is referred to Beardwood et al. [1959], Lemma 5 and
Lemma 10 for a precise statement of the proof):

(1) Consider a Poisson point process T in R2 with uniform intensity

parameter 1; call ﬂ([o,r]z) the random set of points in [o,r]2 and let
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tq (“([o,r]z)) be the TSP tour through W([o,rlz), then the TSP constant B

is the limiting value (as r » =) of the expected distance between

successive points on t1(“([o,r]2).

(2) Using the same construction as in Lemma 4.2, we obtain
tc3(“([o,r]2)) (here we divide the square into r/m equal-width (m)
columns and we keep m fixed as r » »); by showing that the total expected
length of the "within-column" distances and the expected length of the
return link from the end of the last column tc the beginning of the first
contribute a negligible amount to the total path length of tc3(W([o,r]2))
as r + =, we obtain (4.30) by computing A(m) - the expected distance
between two successive points (drawn from W) in an infinite column of
side m - and then by choosing the best value m*. (The obtention of 0.9204
resorts to numerical quadrature and special function calculations).

Now as mentioned in our proof of Lemma 4.2 (properties (a) and (b)')
we have:

BylELy , (x(0),p)] = klio BalLe 00 ] Pr(v=k) (4.31)

By using (4.30), (4.31), and the fact that

g'* p (a.s.) (Strong Law of Large Number), one can prove

(using the same techniques as in the proof of Theorem 4.1) that:

e [ry_,(x(n),p)]
1im sup — fe3 ’ < o0.9204 'p .
ns o f;

This implies that c(p) € 0.9204 /S.

To obtain the other upper bound it suffices to note that:
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Eu[ELtp(x(“%p)] < mylefry ()] < gylog, (x(m))]

E (L, (x(n))]
and that 1lim ut = B
naw /a

from Beardwood et al. [1959].
Q.E.D.

This completes section 4.3. 1In the next section we shall present
generalizations of the results developed in sections 4.2, 4.3: in the
first part we present similar results to the slightly different problems
where one (or more) of the points must always be visited (depot), and to
the PHPP problem (see Chapter 2). We then show in a second subsection
that the results of section 4.2 and 4.3 can be extended to the cases of
bounded Lebesgue measurable sets in d-dimensional Euclidean space rd.

Finally we mention the use of other metrics.

4.3.4 Generalizations

A. Extensions to problems with n white points and m black points:

So far we have been concerned with sequence (x) of points which are
present only with a probability p, independently of each other; let us
generalize our result to the case where some of the points always require
a visit. To do so, we introduce another sequence of points y of "always
present" (black) points (x remains a sequence of "white" points); we will

consider problem instances with n white points (x(n)) and m black points

(Y(m)); the union of the n+m points will be written x(n) ¢y y(m); we will

assume m to be a non-decreasing function of n (possibly a constant)

mapping the set of natural integers into itself.
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In a first part we will present straightforward extensions of
sections 4.2 and 4.3 to the case of n white points and 1 black point (a
depot or a customer). Then in a second part we will mention similar
extensions of our finite size results to the case of m black points and
we will present generalizations of Theorem 4.1 and Theorem 4.2.

(1) Case of n white points and one black point:

It is very easy to extend lemmas 4.1 - 4.3 to this case:

® We obtain the following bounds for ELtp(x(n) u y(1,p):

(V2(np-1) +—1%) r if np ? 1.5
Lemma 4.1 =>

np . 7 <

( 5 + 2) r if np 1.5 .

® Under the condition of Lemma 4.2 Eu[ELtp(X(n) U y(1),P)] is

bounded from above by:

(YTa73)Y(np-3) + -1—% +372) ¢ if np ? 3.75
(3§+§+3"5)r if np < 3.75 .

® lemma 4.3 gives the same lower bound.
For the asymptotic results of section 4.3 it is easy to check that
Theorem 4.1 and Theorem 4.2 not only remain valid, but lead (respectively)

to the same asymptotic constant; this can best be seen from:

= Elng (o] . ElLg, (s v y(1)] T (E[Lt1(s)]  273)

‘/nt1 Vn /n+1 /n+1 ’n n

(which also holds for ELtp(x(n) u y(1),p))
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/5
together with Theorem 4.1 (Theorem 4.2) and with lim _2—3 = 0.

n o '/;
Before turning to the general case of m black points one may remark

(1)

that we assumed the position of y to be fixed (i.e. a depot); we can
obtain the same extensions if the position is random (we even get
slightly better bounds for Lemma 4.2 and Lemma 4.3).

(2) Case of n white points and m black points:

Since it is straightforward to extend the lemmas of section 4.2 to

this case, we will only be concerned with the extensions of Theorem 4.1

and Theorem 4.2:

Tﬁeorem 4.3: (generalization of Theorem 4.1)

Let X and Y be two infinite sequences of points independently and
uniformly distributed over [0,1]2, each point of X being present only
with a probability p, each point of Y being always present, then we have:

B/B if m = o(n)

elre, (s v v(m]]
1im ={( B if n

n-»w Yn+m -
BY(p+E)/(1+5) if lim = = £

n oo

[}

o(m)

with probability 1 ((a.s.)) .

Proof: Using the same argument as in the proof of Theorem 4.1, one can

show that:

¥ e>0 Ne : ¥ n ? Ng

E[Lt1(s u y(m )]

Yn+m

(8-8)(1-6){;:—m(p-5)+ = <

n m ]
< (Bee !I;::,;‘P-e’* am T Pe . (a.s.)
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Since € > 0 is arbitrarily small, the three cases of Theorem 4.3 can be
obtained.
0.E.D.
Theorem 4.4: (generalization of Theorem 4.2)
Let X and Y be two infinite sequences of points independently and
uniformly distributed over [0,1]2, each point of X being present only
with a probability p, each point of Y being always present, then we

have:

c(p) if m = o(n)
gLy (x(m) u y(m) p)
lim —2 =( B if n = o(m)
N Yn+m

c'(p,&) if 1lim % = &
N o0

with probability 1 ((a.s.)) .

Proof: Let us consider the three cases separately:

(i) m = o(n):
consider tp(x(n)); by assuming one of the points of x(n) to be always
present, one can then show (following an argument presented in the proof

of the subadditivity of ¢, in Theorem 4.2) that

ELtp(X(n) u y(m) p) < ELtp(X(“),p)+ 272 + b'mt+1 (4.32)

(where b is the same constant as presented in the proof of Theorem 4.2).

Also ELtp(X(n) u y(m),p) > ELtp(X(n),p). (4.33)

The first part of Theorem 4.4 is proved by using Theorem 4.1, the fact

that m=o(n), and the following inequality from (4.32) and (4.33)
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x(n) (n) (m) (n)
[ [ELtp( .p)] e s [ELtp(x ,p)
n+m Yn Verm n+m o

2v2 b‘/m+1]

+ == +

’n /n

(ii) if n = o(m):
the result of Theorem 4.4 is obtained directly from Theorem 4.3 and from

the classical result of Beardwood et al. [1959] after noticing that:

E[Lt1(s u y(m))] ) ELtp(X(“) u v(m) p) . Ly, (x(n) U y(m))

Y n+m Y n+m Yn+m

(iii) if 11m-§’1-= E:
Nnayo

.for this last case one can proceed exactly as in the proof of Theorem 4.2

to show the existence of a constant c'(p,&).
0.E.D.

Using the same techniques as in the proof of Lemma 4.4, one can
»

easily show that
BY(p+E)/(1+E) < c'(p,E) € min {B, 0.9204 (e /1+8) | . (4.34)

Finally one should note that all the previous results are also valid
(with the same asymptotic constant) for the PHPP (as defined in Chapter
2) since for any set of points K in [0,1]2 (K can be any combination of

black and white points) one has (with the obvious extension of notation):
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el 0] 5 . ele,, (0] . BlL,, ()]
x| /x| 7] Y]
(4.35)
ELtp(K,p) ) Y3 ) Eth(K.p) ‘ ELtp(K.p) .
7 k] 7] a3 k]

B. d-dimensional Euclidean Space Rd and Lebesgue measurable sets;

We will be concerned with generalizations as n»w. So far we
presented all our results for sequences of points lying in a square
[o,r]2 of a 2-dimensional Eudlidean Space R?

(i) In fact all our results can be extended to the case of sequence
of points x, lying in a d-cube [0,1]d of a d-dimensional Euclidean Space
RA: for example

® Lemma 4.1 gives: (for @ ? 3)

Ya Y d —'d—)

o (n) < d
as n» ELtp(x ,p) (z(d_1))(d-1)/2d (E[w]) + O(E[W] (4.36)

(the proof is a generalization of the method of section 4.1 and is based
on a construction that was suggested in Few [1955] for the TSP).

@ Theorem 4.1 gives: (using a similar extension in Beardwood et al.
[1959])

E[Lt1(S)] a-1

d
lim;m' = B(d) (p) (a.s.) . (4.37)

n o

® Theorem 4.2 remains valid; indeed using the general result for
Lemma 4.1 (given above) and the generalization for d-dimensions of

Steele's result, the proof of Theorem 4.2 remains unchanged and we get:
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pLe (x(n),p)

1lim n(d"1)/d = cd(p) (a.s.). (4.38)

<00

One can also generalize Lemma 4.4 and the bounds on cyg(p). We obtain:
‘VPS[O,1],Vd>3:
d-1 1 1 d-1

B(a) pd < cglp) ¢ (]2 1224 pd (4.39)

ola

1 1

dHy2 2d
where (g) * 12 is obtained through a generalization of the construc-~

tion of t to a d-dimensional space. (all results of 4.3.4 A. can also

€3

.

be generalized)

(ii) It is also true that the extensions given in (i) remain valid
when the sequence‘of points lies in any bounded Lebesgue measurable set A
with Lebesgue measure (= d-volume) v(A) provided we multiply each right
hand side by v(A)1/d; this is true for Theorem 4.1 due to a similar
extension in Beardwood et al. [1959]; for Lemma 4.1 it comes from a
general result from Mathematical Analysis (see for example von Neumann
[1950]) saying that we can cover A with a finite number (say m(€)) of

€

disjoint d-cubes [o,ri]d such that m§ )v([o,ri]d) S v(A) + E. fThis
fact together with the subadditiviti=lf the functional (see proof of
Theorem 4.2) imply the claim; then for Theorem 4.2 it follows from the

previous extension of Lemma 4.1 and the result from Steele [1981a].

(Again similar extensions are valid for the results of section 4.3.4 A.)

c. Other metrics:

It is interesting to note that all the asymptotic results of this

chapter are not restricted to the Euclidean metric; all results remain
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valid (of course with different asymptotic constant) if one chooses the
Lo metric (rectilinear metric) or more generally the Iy metric (k 2 1)
d

k11/k
(i.e., lIx—y“k = [ X (x3-yy) ] where d is the dimension of the
i=1

'

space considered).

4.4 Conclusion:

In addition to its theoretical interest, Theorem 4.2 should prove to
be extremely useful in assessing the "goodness" of heuristics for the
PTSP through a probabilistic analysis (in the same fashion as the result
of Beardwood et al. [1959] for the TSP); besides this algorithmic
application, Theorem 4.2, together with an estimation ;(p) of the
constant c(p), provid;s an approximation formula useful to predict with
high probability the expected length of an optimal PTSP tour, if the
number of points is large.

Also the approximation formulas based on Theorem 4.1 and Theorem 4.2
(assuming an estimation ;(p)) provide an important practical "by-product"
(take B = 0.765):

(é(p) - 0.765 /5) Yna represents an estimation of the penalty one
has to pay when n customers have to be served within a region R of area a
(each of them present only with some fixed probability p) and when the
route is not recptimized for each realization of the problem.

(Note that, from Theorem 4.3 and Theorem 4.4, the two strategies
- "PTSP or reoptimization" - are asymptotically equivalent when n = o(m),

i.e. when the number of white points is negligible compared to the number

of black points).
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CHAPTER 5

ALGORITHMIC INVESTIGATION
5.1 Introduction

5.1.1 Focus of Chapter 5

Chapters 2, 3, and 4 have been mainly concerned with theoretical
aspects of the PTSP; in Chapter 2 we derived closed-form expressions that
efficiently give the expected length (in the PTSP sense) of a given tour
of a graph G under various conditions; then, partly based on Chapter 2,
we derived, in Chapter 3, general combinatorial properties of the PTSP;
finally we presented, in chapter 4, several bounds and an asymptotic
analysis for the PTSP in the plane - one of the main theoretical results
being the derivation of strong limit laws for the PTSP (i.e. concerned
with almost sure convergence).

It is now time to use this extensive theoretical investigation to
develop solution procedures for solving the PTSP; this will be the main
concern of Chapter 5.

Our emphasis is on the conceptualization of solution procedures
built upon the understanding of fhe problem that has been obtained
through the previous chapters. As such, all the proposed algorithms are
based on a theoretical foundation and all contain some kind of rationale
behind their design. We are, however, not concerned with the practical
implementation of those algorithms here (i.e., with computer codes),
neither with experimental testing of their validity and relative merits;
we will provide, on the other hand, discussions (whenever possible) of
those procedures based on the theoretical results of the previous

chapters and on some additional theoretical results presented during the
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development in Chapter 5.

In conclusion, our aim, here, is principally methodological and is
motivated by the desire to apply the analytical developments in order to
present diverse solution strategies.

Finally, one should note at the outset that the PTSP is certainly
"harder" than its deterministic counterpart (TSP) which itself belongs
to the notorious class of NP-hard problems (in fact it is very easy to
show formally that the recognition version of the PTSP is NP-complete;
see Garey and Johnson [1979] for a good introduction to the NP-complete
notion). There is strong evidence to suggest that problems from this
class of difficult combinatorial problems cannot be solved optimally with
an algorithm which is guaranteed to run in polynomial time. Our approach
to the large-scale PTSP will then be to seek fast heuristic algorithms
with polynomial time bounds. Nevertheless, for problems of smaller si.e

we will attempt to give some guidance on the design of exact procedures.

.

5.1.2 Contents of Chapter 5

First, we briefly provide, at the end of this subsection, some
clarifications on the notation adopted throughout the development of this
chapter; this is then followed by the main sections; our results are
divided into two parts: in section 5.2 we are concerned with exact
optimization methods for solving the PTSP; we first show how one can
formulate the PTSP (for each case, m=0, m=1, m»2) as an Integer nonlinear
programming problem (with a nonlinear objective function - a polynomial
of order n, the number of white nodes - and linear constraints); then we
successively transform this formulation first, to a mixed integer linear

program, and, finally, to a pure integer linear program. In a third
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subsection, we discuss the relative merit of these three formulations and
propose a Branch-and-Bound procedure (believed to be one of the best
exact methods for tackling this specific problem) built upon similar
procedures for the traditional TSP. We conclude section 5.2 by showing
that the relationship between the PTSP and TSP is not as simple as one
could imagine based on the first part of that section. Indeed, we will
show that a seemingly natural extension of the dynamic programming
formulation of the TSP does not solve the PTSP, and that, in fact, one
cannot use dynamic programming approaches to provide an exact solution
procedure for this problem. The second main section (5.3) contains an
exposition of heuristic procedures (that is, not guaranteed to obtain an
optimal solution) after providing a brief discussion on the necessity of
developing such procedures for a complex problem like the PTSP, we first
present some theoretical preliminaries on which some of the proposed
procedures will be'directly built. (For example, we introduce easier
problems for which we derive worst case ratios between their optimal
solutions and the optimal PTSP solution). Based on those preliminaries,
we present a host of procedures under the generic term of Tour
construction procedures (a term originally used for the TSP); we present
an extension of the Clarke and Wright savings approach (see Golden et al.
[1980], for example) and label it the Supersaving Algorithm; we also
introduce the "Almost Nearest Neighbor" Algorithm and finally conclude
this section on. Tour conspruction procedures by 1istin§ several
vinsertion" procedures. In a second subsection, 5.3.3, we briefly
mention the use of "hill-climbing" methods (similar to the "2-opt" or
"3-.opt" heuristics proposed for the TSP). Finally, in a third subsection

we turn our attention to the case of the PTSP in the plane. Based mainly
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on results from Chapter 4, this section will analyze a recent heuristic
for the TSP based on spacefilling curves (see Platzman and Bartholdi
[1983]) and we will also look at procedures based on partitionning
approaches (see Karp [1977)).

We conclude Chapter 5 with a review of the most interesting results
and most promising approaches proposed to solve the PTSP.

Before presenting our results, let us first make some additional
comments on the notation and conventions used throughout this chapter.
All notation introduced in Chapters 2, 3, and 4 is valid and will be used
hereafter; more specifically, with the exception of the section
concerning the PTSP in the plane (5.3.4) which is based on Chapter 4, all
other sections are based on the graph-theoretic concepts of Chapters 2
and 3. Most of our analysis is conducted assuming a general p.m.f. for W
(the few results concerned with the binomial case will be explicitly
mentioned) and with only one exception, we will be mainly concerned with
the variation of the PTSP in which we have one black node and n white
nodes (the extension to m=0, or m»2 being readily obtainable, see
discussion at the beginning of section 5.2.3). We recall that the

distance matrix D is assumed to satisfy the triangular inequality; in

general D is assumed to be asymmetric except in some cases for which a
symmetric D will be assumed explicitly. By convention, we will assume
(especially for the formulations given in 5.2) that d(i,i) = +o for each

node of G.

5.2 Exact Optimization Methods

As mentioned in the introduction the emphasis in this section 1is on

the discussion of optimization-based methods for solving the PTSP (as
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opposed to heuristic procedures which are the subject of section 5.3).
Almost indispensable for such a goal is a mathematical
representation of the problem.
A very concise formulation of the problem for a graph G=(N,A,D) with

m black nodes and n white nodes is simply given by:

n
2
Q
L]
-
8
ct

min {E[Lt]
teT® r=0

(5.1)

where T is the set of all hamiltonian circuits or tours of the graph G,
and where the other terms of (5.1) were defined in Chapters 2 and 3;
although very convenient to represent the problem, (5.1) does not suggest

algorithmic strategies. Our first concern is then to formulate the

problem as a mathematical programming problem; that is the minimization

of an objective function subject to constraints. Here it is apparent
that the constraints are expressed in (5.1) under the form te¢T, hence the
same constraints as for the TSP (namely, the optimal solution has to be a
tour). This immediately suggests an assignment-based formulation of the
problem based on the introduction of the same decision variables as for
the TSP; that is let:

{1 if arc(i,j) is in the tour t

0 otherwise (5.2)

xij =

The familiar formulation of the TSP (see for example Golden and
Magnanti [1980]) based on those decision variables is given by (assuming
d(i,i) = +o» for any node of G, and |N|=n+m to be consistent with our

notation):
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n-+m n+m
Minimize ) L oaci,irxsy
i=1 §=1
n+m
subject to: ) Xjq =1 (3 € [1..n+m])
i=1
n+m
Looxgqy =1 (i e [1..n+m]) (5.3)
j=1

X = (x34) €8
Xy§ = 0 or 1 (i, e (1..n+m])

where the first two sets of constraints represent the traditional
constraints of an assignment problem and merely ensure, for this problen,
that each node of G has one and only one arc coming into it and one and
only one arc going out of it; S represents any restrictions that
prohibits subtour solutions satisfying the other constraint. For example
S can be defined as:

S = {(xij): z 2 Xij » 1 for every nonempty Q C N} (5.4)

180 JEN-Q

This is of course not the only way to express the set S; indeed,
alternative forms for expressing S frequently constitute the major
difference among various algorithms (see for example Parker and Rardin
(1983]).

Now that the constraints t ¢ T of (5.1) have been expressed in
function of X4 (see formulation (5.3)), it remains to express E[L{] as a

function of xi§y to obtain a mathematical programming formulation of the

PTSP. This will be the main concern of our first subsection.
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5.2.1 Integer nonlinear programming formulation of the PTSP

We will distinguish the case where G has no black node (i.e., m=0)
from the cases where G has at least one black node (i.e., m»1)

A. Case of a graph G with no black node: let us state our main

result:

Lemma 5.1

Let G = (N,A,D) be a graph with no black node and with n white
nodes, let t be a given tour of G, and let Xj4 be the 0-1 decision
variables defined in (5.2). Then one can express the expected length

E[Ly] of the tour t as follows:

n n n-2
: r
E[L] = ) ) @, da(i,j) xgj)

i=1 3=1 =0
where: '

(o) =

® xi3 F Xy
(r) -
® xij = ? Xik1 xk1k2 P xkrj
k‘,-.,kr=1
¥ r e [1..n=-2]
Proof:
ng? (r) (r)
From Chapter 3 we have E[L{] = 2 r LO " where L, t's have been defined
r=0 1 ’
in (2.3). We noted that Léol was simply the length of the tour t; hence
’
from (5.3) we have:
(0) n n
o) =
Lyoy § 1oa,3) xyg (5.5)

1 3=
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(x)

For r ¢ [1..n-2] define the variables Xj4 as:

{1 if d(1,) is part of L)

Xj§ = (5.6)
0 otherwise
Then we have:
n n
Lérl = 1l aei,i) x§§’ (5.7}
)
i=1  j§=1

But now from the construction of the Lérl we have the following equiva-~

’

lences (see Chapter 2):

{d(i.j) is part of Léfl}

<=> {there exist r distinct nodes k4,..,ky such that the path}

(i,kq4,..,ky,3) belongs to the tour t

{there exist r distinct nodes kq,..,ky such that}

<=>
xik1=1, xk1k2=1, ..., and xkrj=1

so finally (5.6) can be expressed as:
(r) {1 if there exists kq,..,k, such that x1k1=1,.., and xkrj=1
x =
i3

0 otherwise (5.8)

It is then a matter of "boolean logic!" to express x(r)in function of

ij

x1k1, ey xkrj (the expression "and" corresponding to a multiplication,

and "or" corresponding to an addition):

n

(r) _
xij = . zk 1 xik1 xk"kz .o xkrj (5.9)
1,.., r=
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Using (5.7) and (5.9) we obtain the desired result.

Note:

(5.9) allows us to readily verify Fact 3.2 (i) and Fact 3.3 (iii);

for example for Fact 3.3 (iii) we have:

n ( ) n n
r
2 xij = E Z xik1 .o Xkrj
j=1 J=1 Ky, .., kp=1 -
n n
- ) Xiky -+ Mootk L %ked
k1,a-,kr=1
n

n
Xikq ** Xkp_iky since .X xkrj=1 by (5.3)
k1 ,..,kr=1 =1

I
©~

and so successivel§ applying this fact we obtain for all r e [0..n-2]

n
Z xig) =1 ¥+ ie [1..n]

(5.10)

n
) x§§ =1 * 3 e {1..n]

Lemma 5.1 together with the constraints of (5.3) constitute an
Integexr nonlinear programming formulation of the PTSP with a nonlinear
objective function which is polynomial in xj4 of order n-1 and with

linear constraints.

The following fact reduces the order of the polynomial by half:
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Fact 5.1
Given a graph G = (N,A,D) and a tour t, the variables xig) defined
in Lemma 5.1 are such that:

x(n--2-r) - x(r)

ij ji
(for D not necessarily symmetric)

Proof:

To prove this fact one has to show that:

(n-2-xr) _ _ (r)

xij = 1 => xji =1
(n-2-r) _ _ (r)

and i = 0 => xji =0

0f course, this is equivalent to showing that:

(n=2-r) _
*i3 ji

i
-
N

I
v
»®

I
—

Following the proof of Lemma 5.1, we showed that:

(n-2-1) there exist n-2-r distinct nodes kq¢,..,kp_2-r
xij =1 <= {such that the path (i,ky,..,kp_2_r,]J) belongs to }
to the tour t
By definition of a tour this, in turn, is equivalent to saying that there
exist r distinct nodes along the tour between j and i, and this is again
equivalent to:

(r) _ 4

X
Ji Q.E.D.
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Note: A consequence of Fact 5.1 is the following:

® if n-2 = 2q

n n q-1
(r) (r) (q)

16 0 D NS M- TE U DY (D N TP P L L PP

1=1 3=1 pmo A TTITE T3l A
® if n-2 = 2g+1

n n q
sired = L 1 oa,n (1 (o (P von 5 x(7))

1=1  j=1 r=0 J

Hence we need only consider the xig) up to E%%gj; that is, E[Ly] is
a polynomial in x;; of order EE:% + 1
poly ij 2 .

Let us now consider the more complicated cases where the grapn G

contains black nodes.

B. Case of a graph G with m » 1 black nodes:

For this section it will be necessary to distinguish between black
and white nodes; we will present our result for a general m (m » 2) and
will briefly indicate at the end the specificity of the case m=1.
Without loss of generality we will assume that the n white nodes are
labeled 1,2,...,n and m black nodés n+1,...,n+m. Our main result is

contained in the following lemma:

Lemma 5.2

Let G = (N,A,D) be a graph with m black nodes and n white nodes

(assume the white nodes are labeled 1,2,..,n), let t be a given tour of G

and let X4 j be the 0~1 decision variables defined in (5.2). Then:

n+m n-+m

n
(r
E[L,.] = X ] @ d
t 121 521 re0 T (1,3) vij

)
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where:
(o) =
(1) Y33 Xy for all i,j
(xr)
15 if 1 <1, < n
r
(2) Y(?) = Z (r+1-k) xfk’ if n+1 < i,j € n+m
ij ij
k=0
r
E x;g) otherwise
k=0 7
¥re[1..n=1]
n
z xfk) if n+t1 < 1i,j < ntm
1)
' (m) 2} <7°
(3) Yij =
0 otherwise
(x) E
r
and xij = 2 xik1 ,xk1k2..xkrj
k1,.e,ke=1
¥r e [1..n]
Proof:

We proceed as with Lemma 5.1; we have

n

E{Ly] = L O L;rl (5.11)
r=0 '

For r € [1..n] define the variables xig) and yig) as:

1 if there exist exactly r white nodes between 1 and }J
along the tour t.
(r) F
xij = (F.12)
0 otherwise

yi§)= {number of times d(i,j) is a part of L;rl} (5.13)

P P s L e 2 g e L AR W PARISy b AT (461 e e mE P e e o e 4
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We then have (by definition of L;ri):
’

m n+m

ii

n

L;rl aci,j) yif) (5.14)
T ]

From the proof of Lemma 5.1 we know that (5.12) can be expressed as:

n
x(?) = z Xikqo+ Xk 3 {(5.15)
ij _ 1 xJ
kq,..,ke=1

To conclude the proof of Lemma 5.2 it remains to establish the

(r) and x(f)

1 15 for the different cases (note that we

relationships between y

will implicitly use results from Chapter 3):

-0 - (o) (o)= 1 1f (i,j) belongs to the tour
(1) £=0; by definition of L %L,y ] {0 e d)

(o) _
hence yij xij

(2) r e [1..n-1]; we have three subcases:

® if i and j are white nodes; then d(i,j) appears at most once in

L;rl; is appears only when i and j are separated by r white

(r) _ (r)

nodes: hence yij = X5

@ if i and j are black nodes; then d(i,j) can appear up to (r+1)

times in L(r)'

m, ¢’ in fact it appears exactly k times if i and j

are separated exclusively by r+1-k white nodes along the tour t,

(r+1-k)

that is when xij = 1; hence,
r+1
(r)= (r+1-k)
yi5 z k% (5.16)

k=1
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and by setting r+1-k = u we get the desired result.
® if one node is white and one black; then d(i,j) appears at most
one and it does appear when i and j are separated exclusively by
not more than r white nodes; hence
r
k
yi?) = 1 x;.) (5.17)
J k=0 ]
(3) r=n; then again d(i,j) appears at most once and only one when i

and j are both black and if they are separated exclusively by white nodes

(up to n of them). Hence,

n
) xfk) if n+1 < 1,5 < n+m
ij !
k=0
(n)
yij
0 otherwise
Q.E.D.

Note:

It is easy (but somewhat cumbersome) to verify that:

nim (r) _ 1 if 1< j <n
Yij -
i=1 r+1 otherwise
(5.18)
nim (r) 1 if 1 <1ig<n
Yij =
=1 r+1 otherwise

for all r ¢ [0..n-1]

For the case of only one black node Lemma 5.2 still holds, but we

only have to consider case (1) and case (2).
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Also one should note that when m > 1, there is no analogous result
to Fact 5.1 obtained for m=0.

In conclusion, we have seen that every case of the PTSP (i.e., m=0,
m»1) can be formulated as an integer nonlinear programming problem with a
nonlinear objéctive function and with the same linear constraints as for
the traditional TSP formulation.

In our next subsection we will present two possible linearizations

of the formulation.

5.2.2 Linearizations:

We will present our results for the case m=0 and will briefly
mention how to extend them to the cases m31.

A. Graph G with no black node:

(1) first linearization: mixed integer linear programming

formulatigﬁ:

(r)
ij

function of products of xij's (see (5.9)); however, this is not the

In the previous section we expressed x given by (5.8) as a
only way of expressing this boolean expression, and an alternative method
is presented in the next lemma. First we need to state the following

simple fact (the simple proof is omitted):

Fact 5.2:
Let Xy, Y1, X3, Y2 be four boolean variables (i.e., 0-1 variables)

then the variable

1 if (X4=1 and Yqy=1) or (Xp=1 and ¥y=1)

0 otherwise

can be expressed by the following inequalities:
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X1+Y1-1<Z<1

X2+Y2-1<Z<1

O<Z<Y1+Y2
We can now state our main result:

Lemma 5.3:

The variables x(r) defined in (5.8) can be expressed by the

ij
following set of inequalities (r ¢ [1..n-2])

(r) (r-1)

(r-1)
+ x 1 < %4 4 <1+

x1k K3 - 1 <k <n

Xk *%3

Proof:
First let us prove Lemma 5.3 for r=1. One can express (5.8) in the
following form:

1 if (x34=1 and x1j=1) or (xjp=1 and x2j=1) [0} S

x(1) - eeeeaess (x4p=1 and xnj=1)

13 0 otherwise

From Fact 5.2 the set of inequalities

(n

i3 <1 1 <k <n

xik+xkj-1<x

force x;;) to be 1 if there exists a node k € [1..n] such that Xy = 1
and Xgq = 1. To express that xig) has to be zero if there is no such

node k, according to Fact 5.2 we would need many inequalities of the

form
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:
§j) < L oxge ) Xk § (5.19)

kes k¢S

0 <X

for any subset S of N={1,2,...,n}

In fact we know that ((5.10)):

o= 1 for all j

I o~
»
.-l
3.

i=1

x4 =1 for all i
1

i o~

Hence the right-hand side inequality of (5.19) is equivalent to:

Ioxge v 1= 1 xg
kes kes

=1 + 2 (x5 - xkj) for any subset S C N
kes
From there it is easy to see that it suffices to consider only the subset
S containing one element (i.e. s={k} k ¢ N) since xi;) = 0 implies we

must have one k such that

xjk = 0 and xxq4 = 1.

(1
ij

hence 0 ¢ x <1 + Xik - Xkj 1 <k <n (5.20)

are a sufficient set of inequalities to force xi;) to 0, in case xi;)* 1.

This has proved Lemma 5.3 for r=1.

For r > 1 one can note that we have:
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n
(r) _ (r-1) ,
i3 ‘}21 ®ik k3 (5.21)
n
2 x§§_1) = 1 for all j
i=1
(5.22)
n
2 x;§-1) =1 for all i

j=1

Hence one can proceed exactly as before to obtain the desired result.

Q.E.D.

Consequence:
Lemma 5.3 allows us to formulate the PTSP (with m=0) as a mixed

integer linear program; the decision variables are the 0-~1 variables X4 5

(r)

and the contiquous.variables xij .

The constraints are, in addition to the ones of the integer
nonlinear program given previously, those given in Lemma 5.3; the

objective function is still given by Lemma 5.1.
]
Compared to the integer nonlinear programming formulation, this new

formulation is linear but adds n2(n-2) new gontinuous variables

(r)

(xij r ¢ [1..n-2]) and for each of them we have 2n constraints, i.e.

a total of 2n3(n—2) new constraints. (Note: one can use Fact 5.1 to

reduce the number of new variables and additional constraints

respectively to n2CE§a) and n3(n-2)).

In any case we have 0(n3) additional continuous variables and 0O(n4)

additional constraints compared to the original formulation.
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Let us present another linearization that will require fewer
constraints and that will give a pure integer linear programming

formulation of the PTSP.

(2) Second linearization: pure integer linear programming

formulation: The result of this section is contained in the following

lemma:

Lemma 5.4:

(r)

i3 defined in (5.8) can be expressed by the follow-

The variables x

ing set of inequalities (r ¢ {1..n-2])

(r) (r-1)
e iJ <1 - zij
® ig) <1 + zi? )

(r-1)]

(r) 1
° all 5 [1 + (n-1) 243

ij

(r-1)]

e glx) >;11- [1 = (n-1) 24

where z

Proof:
As in the proof of Lemma 5.3, let us first consider the case r=1:
The main idea is the following: 1f one assigns a distinct number

(say &) to each node k of G, then the quantity Z Ek(xik'xkj) will

k=1
take on the value 0 only if there exists a k ¢ [1..n] such that xji=1 and
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xkj=1; indeed from (5.3) we know that:
® there exists a unique % such that Xig = 1 for a given i.
® there exists a unique ¢' such that xg,y = 1 for a given j.

Hence:

n
2 gk(xik‘xkj) = gg = Ez. which is zero only if g=g'.

k=1

The quantity Zj 4 defined in Lemma 5.4 simply corresponds to the
choice &x=k (the natural number k) and is divided by n-1 for
normalization (so that -1 < zj345 < 1).

Now we have the following logical relationships:

. o (1) _

if zij = 0 => xij =1 (5.23)

Lf 25 0 = x'1) =0 (5.24)
ij ij *

(1

ij) € {0,1} then (5.24) can be expressed by:

® Assuming that x

M) <1 -z

ij ij

(1)
%44

<1+ =z

ij

® 7o express (5.23) one has to introduce two new 0~1 variables

“(!) and 3(1) as follows:

ij ij
if 235 > 0 => ai;) =1 : (5.25)
Lf 234 < 0 = Bi;) -1 (5.26)
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Now (5.23) can be equivalently stated as:

if o}~ 1 and BJ= 1 o k() < (5.27)

Finally (5.25), (5.26), and (5.27) can be expressed by the following

inequalities:

(1 .1
aij > (1 + (n-1) zij]

(1) 1
Bij >4 [1 - (n-1) zij]

xg;) R “i;) . Bi;) e
The case r=1 is now proved. The general case (r > 1) follow
immediately (for the same reasons as given in Lemma 5.3).
Q.E.D.
Consequence:
Lemma 5.4 leads to a pure integer linear programming formulation

for the PTSP (m=0); the decision variables are the 0-~1 variables

(r)

(x) (r)
xij s ]

(r ¢ [0..n-2]) ij ’ ij

(r ¢ [1..n=2]); the constraints are,
in addition to the traditional TSP formulation's constraints, those given

in Lemma 5.4; the objective function is expressed as in Lemma 5.1.

Compared to the integer nonlinear programming formulation, one now

(r)  o(x) glx)

2(n- -
has 3n4(n-2) new 0-1 variables (xij v %330 Pig

r ¢ [1..n-2]) and
8n2(n-2) addtional constraints.
Before going to the next section, let us briefly look at the

linearizations of the PSTP when m > 1.
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B. Graph G with black nodes:
n
(r) Z (r-1)
= X X, .
ij k=1 ik kj

(1)
i3

We saw in part A. that x allowed us to obtain

first the linearizations of x and then to obtain linearizations of

(r)
X553

One can see that the yig) defined in Lemma 5.2 can be obtained by

similar recursive relationships; for example for r ¢ [1..n~1)] one has:

gy(r-”xk 1 <1i,j < n
3 1
k=1 ik 3
n

(r-1) (r=1) .

13 + xij + kz1 Yik xkj n+tl < i,) < ntm
(r)

(r-1) . § _(r-1) 1 <i<n

+

13 kz, Vik kg Unet <5 % aem

(r-1) . E N (§—1) { n+l ¢ i ¢ n+m

ij o ik Tk3 1 <3 <n

So as before, one has to linearize (1) for the case r=1 only, and
’ yij ’

then generalize it to r > 1.

For yig) one can use similar linearization ideas as the ones
developed for m=0; we will however not present any detailed derivations
since they would not add anything new compared to previous results.

Let us now turn our attention to the discussion of exact solution

methods.
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5.2.3 Discussion of Exact Methods:

Based on the mathematical programming formulations of the previous
two subsections (5.2.1 and 5.2.2), we shall analyze in the remainder of
section 5.2 what seem to be the more promising strategies for finding
optimal solutions to the PTSP. This subsection is organized in three
parts: we provide first a discussion of the relative merits of the three
formulations; this is followed by the presentation of a Branch-and-Bound
approach which we consider one of the few "feasible" approaches; finally
in the last part we will show how a seemingly natural dynamic programming
formulation of the PTSP is in fact not valid.

For the rest of section 5.2 (except part A) we will concentrate our
analysis on the case in which the graph G has n white nodes and one black
node (a depot); based on 5f2" and 5.2.2 the other cases can be similarly
treated. One of the reasons for our choice is that the case of one black
node and n white nodes is the first }n the series of PTSPs for which we
have a depot (which is almost always the case in practical applications).

A. General Discussion:

For this part, where general comments are sought, it is more
convenient to place our discussion in the context of m=0; this 1is done,
however, without loss of generality.

For completeness the three mathematical programming formulations are
given in Appendix F and we will refer to them as follows:

Fq1 : Integer Nonlinear Programming Formulation

Fyp : Mixed Integer Linear Programming Formulation
F3 : Pure Integer Linear Programming Formulation.

Also included in Appendix F is & numerical table giving for some

chosen values of n respectively the number of variables and constraints
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for Py, Fy, and F3.

As one can see from this numerical table, there is little hope of
solving exactly problems of size of more than 6 nodes using a general
integer programming code on Fy and F3. In both these formulations the
numbers of constraints and of integer variables become rapidly too large;
moreover for problems of such small size, complete enumeration would
possibly be faster.

on the other hand, Fq has the same set of constraints as the TSP and
this has a double advantage (over Fy and'F3):

1. those constraints have been analyzed over and over again by many
authors and they define a feasible region (polytope) of which we begin to
have some understanding (see Klee [1980] for a general discussion).

2. a large number of papers have been published on the development
of exact solution procedures for the TSP and the accumulated experience
within this area should be taken advantagas of.

Moreover in formulations Fp and F3 we lose an important advantage,
namely that whenever a feasible set of x;4 is obtained, the other
variables are all automatically determined; this is of course also
achieved by our linear constraints, but only indirectly (and
"inefficiently").

In summary, a general integer linear programming code (for Fy or F3)
has to be automatically discarded because, given the current state-of-
the~art, it could solve problem sizes so small that either the results
from Chapter 3 would have already told us that the TSP tour solves the
problem, or the problem could be solved by complete enumeration. Hence

one should concentrate on specially designed algorithms; for F4 one

should benefit from results for the TSP; as for Fy and F3 N diat
no immediate
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special structure seems to appear (one may simply note that F3 is a
3~dimensional assignment problem with additional constraints, and this
does not help much!). Based on this brief discussion it seems natural to

concentrate on Fq; this is the concern of the next section.

B. Branch-and-Bound Approaches:

Following the argument in part A, we will analyze in somewhat more
detail the formulation Fq; as stated, we shall concentrate on the
variation of the PTSP with one black node and n white nodes.

Fq is an Integer Nonlinear programming problem with a nonlinear
objective function polynomial of order n in the Xj4's (see (5.8) and
Lemma 5.2) and with a set of linear constraints identical to the TSP
formulation (see (5.3)).

The general idea (adapted from Lawler [1963]) can be expressed as

follows (let X = (xij)):

Suppose that our objective function £(X) (see Lemma 5.2) can be
decomposed as the sum of a low-order polynomial function g(X) and another
function h(X) that is "less important" than g(X). Suppose a lower bound
(of course independent of X) on h(X) is available - say h -~ and suppose'§
is a known feasible solution to the problem. Then one can reduce the
feasible region (i.e., defined by the set of all tours) by limiting our
search for an optimal PTSP tour among the tours such that

S = {X:g(x)+h<f(§)}; in other words one can discard all tours such that
g(Xx) + h > £(X) (5.28)

A branch-and-bound procedure would then be based on the minimization

of g(X), a task certainly easier than the minimization of f£(X).
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Let us see how one can apply this general strategy in the context of
the PTSP. Let X = {xj;} with xj4 the 0-1 variables defined in (5.2);

from Lemma 5.2 one can express the objective function as:

G R L)

L(X) ¥ E[Lg] = ) oLy, F I an'™(x)

r=0 r=0
where L(r)kx) is a polynomial of order r+1.

Now we saw in Chapter 3 that the weights &, form a non-increasing
sequence (i.e., ®.,4 < % % r ¢ [0..n-3]); so, depending on the choice of
W, only the first terms of L(X) are likely to be important.

We will 1limit our investigation to the very particular cases where
0"OL(‘-")(X) (i.e. the linear term) is dominant; for example if W is a
binomial random variable corresponding to a coverage probability p=0.9,
then ®3=0.81, ®1=0.081, ®5=0.0081 etc. These are cases which we believe
can be'solved by directly usiﬁg techniques developed for the TSP (i.e.
Held and Karp [1970] [1971] for symmetric problems, and Balas and

Christofides [1981] for asymmetric problems) for problems of relatively

modest size.

Comment:

When the cases considered necessitate consideration of the quadratic
term as well (or higher-order polynomials) we will not be able to use
exact methods developed for the TSP and entirely new methods should then
have to be considered. This is outside of the scope of the thesis as
argued in the introduction. Moreover it is very likely that not one but
several different schemes have to be developed to solve PTSPs of

non-trivially small size, depending on the distribution of W and the
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vrelative values of the objective function's weights. When one notes that
the TSP is a PTSP that corresponds to a very specific case for W (namely
Pr(W=n)=1) and that the most efficient exact methods for this problem
have been built on more than two decades of intensive research, one
realizes that this area must be left as a topic for future research.

(end of comment)

Coming back to cases of the PTSP which are in some sense close to

L(o)

the TSP (i.e. &
( 071,t

is dominant), one should be able to obtain good
results; those will depend on the quality of the lower bound on
n=-1

(r)

) o‘1“1‘1,1:
r=1

From Chapter 3 we have two possibilities based either on Lemma 3.1
or Lemma 3.2; the bound developed using Lemma 3.2 might be better than
the one from Lemma 3.1 but it requires obtaining the length of the
corresponding optimal TSP tour (its length) first.

Let us conclude this section on exact methods by showing that some
procedures proposed to solve the TSP cannot be applied to the PTSP, even

for cases "close" to the TSP (i.e. p close to 1).

C. The Inadequacy of a Dynamic Programming Approach for the PTSP

In previous sections, recognizing that the PTSP could be formulated
in exactly the same manner as the TSP apart from a different objective
function, we took advantage of this relationship to propose some
procedufes based on the most efficient known exact method for the TSP.

Here we will provide an illustration of the truly complex
relationship between the TSP and the PTSP and will show that one cannot
always extend results developed for the TSP (which is a specilal case of

the PTSP) to the general PTSP.
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We have seen in Chapter 2 that the expected length of a tour t can
be computed using the recursive relationships (2.8). These relationships
suggest, at first glance, a straightforward extension of the dynamic
programming formulation for the TSP to the PTSP; unfortunately as we will
soon see this approach does not work.

(i) Let us first briefly present for completeness the classical
dynamic programming formulation for the TSP (see Held and Karp [1962]) in
terms of our notation:

Let G = (N3NqUNy,A,D) where Nq={1} Np=1{2,3..,n+1}.

Given a set Q C Ny and k € Q, we let L(Q,k) be the length of the
shortest path starting from node k, visiting all the nodes in Q, and
ending at node 1; the length of an optimal TSP tour will then be given by
L(No,1).

We begin by finding L(Q,k) for |Q|=0, which is simply

L($,k) = d(k,1) ¥ k ¢ N

To calculate L(Q,k) for |Q| > 0, we argue that the corresponding
shortest path is obtained by first going to a node ¢ (% e Q) and then by

looking up L(Q—{z},g) in our preceeding table. Thus

L(Q,k) = min [d(k,8) + L(Q-{g}, #)] (5.29)
Leg
It is clear that one has to calculate L(Q,k) for all sets Q of a
given size and for each possible node of N-Q, before one can go to the
next step. Hence if we count each value of L(Q,k) as one storage

location, we need space equal to:
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n

n
I (nt1-q) (") = 2n 4+ n2n=1 = (n+2)2n-1 = o(n2M)

q=0 4

and a number of additions and comparisons equal to

2 n n=1 n-1
2 (n+1-q)(n-q)[ ] = n (n+1-q)( )
q=0

= n[2M+(n-1)2""2] = 0(n22M)

(ii) Assume now that N1={1} corresponds to a black node and Nj is
the set of n white nodes; also assume for simplicity that W is a binomial
random variable corresponding to a coverage probability p. To solve this
corresponding PTSP, it seems natural (based on the recursive relationship
(2.8)) to extend the dynamic programming formulation of the TSP as
follows:

Given, as before, a set Q C Ny and k ¢ Q,

let E(Q,k) be the expected length (in the PTSP sense) of the optimal
path starting from node k, visiting all the nodes in Q, and ending at
node 1; also let F(Q,k) be the node following immediately k on such an
optimal path. Then the value of the optimal solution for the PTSP is
given by E(Nj,k).

Now it is true that E(%,k) = d(k,1) for all k ¢ N

F($,k) = 1

For Q such that |Q| » 0, one could argue as in the derivation of
(2.8), and claim that the following recursive relationships hold (note
that they are indeed natural extensions of (5.29), see Figure 5.1 for an

illustration):



(:> the set Q
O

(:) decision (:)

" variable

Figure 5.1: An illustration of a D.P. Approach
for the PTSP
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o] x
(k) = min {p I (1-p)™ " (atk, 240~ v {25},2,))
£1€Q r=1 j 1

(5.30)
+ (-m 12 a1y )

r-
where %, = F(Q - U1{xj}, 2r-1) for r ¢ [2..]0]]
j=1

This approach is seen to have the same space requirement as for the
TSP (i.e. 0(n2M)) and an order O(n) more of additions and comparisons
(i.e. o(n32m).

However, this approach does not work; to be more precise the
recursive relationships (5.30) are not valid. (We provide in Appendix H
a numerical example demonstrating this.)

(5.30) is based on Bellman's famous principle of optimality (Bellman
[{19571) which states: "An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the
first decision". At first glance this seems to be a paradox, but in fact
it can be explained by the fact that this principle applies only to
problems that can be decomposed into stages, with a decision required at
each stage. Indeed the PTSP is not such a problem and we have already at
least two earlier results that.point out this fact. One can simply
néte that the objective function is not separable in the xj4's as shown
in Lemma 5.2 (which also explains why the DP approach works for the TSP).
In fact, more generally, one cannot solve the PTSP by any stage-
decomposition approach, since the underlying structure of the problem is

exactly in the opposite direction; namely the optimal solution can be

discovered only by looking at the problem as a whole (see for example
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Lemma 3.12).

This concludes the discussion of exact optimization methods to solve
the PTSP; as indicated in the introductory section the main goals of this
section were to provide several mathematical programming formulations for
the problem (this, by itself, requiring some elaborate analysis) and to
discuss possible directions for valid approaches.

As could be expected for a thesis whose main emphasis is not on
algorithmic design, the discussion was general and the main message to bhe
drawn is that the PTSP is an extremely difficult combinatorial problem
for which one should definitely not count on any unique exact scheme to
solve problems of even very modest size for all possible p.m.f.'s for W.
For some cases (i.e., p close to 1 in the binomial case) we are, however,
confident that procedures developed for the TSP can be used profitably to
tackle our problem.

We now turn our attention to heuristic procedures.

5.3 Heuristic Procedures

As mentioned in the introductory section (5.1.1) and as demonstrated
in section 5.2, the PTSP belongs to a class of difficult combinatorial
optimization problems whose exact solutions seem to require a non-
polynomial (as a function of the input) amount of time. Hence for
problems of medium and large size it seems reasonable to concentrate on
procedures which, although not guaranteed to find the optimal solution,
will provide "good" approximate solutions. This is the concern of this
section. Before presenting and analyzing such procedures, let us first
give some theoretical preliminaries upon which some procedures will be

based. Also, let us recall that we shall concentrate on the PTSP with
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one black node and n white nodes.

Finally, to complete the preliminaries, recall that from Lemma 3.9
we also know that, for any graph G of size up to n=3, we have t15tp for
any p.m.f. for W, provided that the distance matrix D is symmetric; for
asymmetric D the same result holds up to n=2.

Hence, from now on, we will assume that n33 (n»4 if D symmetric).

5.3.1 Theoretical Preliminaries

A. Solving the PTSP by solving easier problems; worst-case ratios.

We have G=(N{UN2,D,A) |N1|=1, |N2'=n. Let t be a given tour of G; we
know from Chapters 2 and 3 that the expected length (in the PTSP sense)
of t is given by:

n-—
E(Ly] = L @ Ly (5.31)

In Chapters 3 and 4 we already introduced two particular tours, namely:

® the optimal TSP tour tq of G, which solves min{ao L:ol}
t ’

n-1
® the optimal PTSP tour t, of G, which solves min{E[Ly] = ) arLgrt):}
t ’
r=0
(note that from Fact 3.2 in Chapter 3 we know that Lgn;1) is
n-2 !
tour-independent, hence % solves also min{ X o Lzrl})'
t ’
r=0

In fact (5.31) suggests the introduction of (n-1) different
optimization problems of increasing difficulty (we will be more precise
later on), each of them seeking a specific tour, the TSP and PTSP being
too extremes (respectively the easiest and the hardest of them); this can
be seen as follows:

For k € [0..n-2] define vy to be a tour that solves the following

minimization problem:
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min{ } @ L:ri} (5.32)

Then we have v, = ty and vy_p = t;. Each intermediate problem and its
solution (i.e., vx, k € [1..n-3]) does not possess a physical
interpretation (as the TSP or PTSP do), but they can certainly be of
great help with respect to finding heuristic procedures for the PTSP. 1In
fact the strategy of solving the PTSP by finding vy (k € [0..n-~3]) already
provides n-2 different heuristics (of increasing difficulty as k
increases); 1if one considers in turn that each of these intermediate
problems can be solved either exactly or by heuristic procedures, we then
have at hand a great number of possibilities for designing heuristic
procedures for the PTSP.

Before discussing in more detail which strategy to choose (this will
of course depend on the p.m.f. for W), let us first derive upper bounds
on "how far" from the optimal value of the PTSP tour a tour vy can be;
that is, we assume that we are given the tour vk, and we want to compute
the largest percentage above optimality that may be attained with vy
éi.e., the worst case ratio); we already derive such a bound for v05t1:
in Chapter 3 (Theorem 3.1) we obtained the following result

ElLg,] - ElLg ] ¢ J=El¥l/n
E[Lq ] E[W]/n

(5.33)

It seems natural to expect this upper bound to improve (i.e., become
smaller) for tour vk, k » 1. Indeed tq is the tour that minimizes the
first element of E[L{], while vq minimizes the two first elements of

E[L¢] and so on.
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To illustrate this point we will formally obtain an upper bound on
E[LV1]—E[Lt ]

E[Ltp]

similar bounds for v, k > 1.

for a general pmf for W and we will briefly mention

Let us present our result for vy (recall that D is assumed to
satisfy the triangular inequality):
Lemma 5.5

Let G be a given graph with n white nodes and one black node; then
we have:

E[Lv1]-E[Ltp] ¢ £00+%1) (1-2%1) ~@OE([W]/n
E[Ltp] QO(E[W]/n+%1)

(1)

where 9y = (E[W2]-E[W])/n(n-1)

2 oy~ (E[W3]-3E[W2]+2E[W])/n(n-1) (n-2)

—
1"

(ii) for the binomial case (i) becomes: '

EltvyI7Elbe, ] 5(1-p)2
ElLy ] TP

Proof:

(1)

1.t hence we have:
’

® vy is a tour minimizing aOL:ol + 4L
’

n=1 n-1

E[Ltp] = 7 ol ,a L Lot

(r) :
L, 5.34)
=0 r 1,tp 0 1,vq 1 1,vq (

p
r=2 htp

from Chapter 3 (Lemma 3.2) we have:

(r) (o)
L > L Y re [0..n=-1] for any given tour t
1,t 1,t4

(5.34) can then be rewritten as follows:
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-1
(o) (1) (o) "
Blle ] > %Ly + ALy oo+ 1T [rEZ o ] (5.35)
® from Lemma 3.3 we have:
(o) (1) (o) ("% :
E[Lv1] < 00L1,v1 * a1L1,v1 * L],v1 [rzz (r+1) arJ (5.36)

® If we combine (5.35) and (5.36) we obtain:

n-1 n

BLy ) - ElLe 1 < 1{®) [] (ren) o] =2l [] o] (5.37)
1 P 1,V1 r=2 1’t1 =

(©)  Lith n'®

® If remains, now, to compare L :
1,vq 1,4

By definition of t4 we know that:

(o) < L(0)

L
1,t1 1’V1

(5.38)

(5.38) is however of no help here, since we need to have L:O) bounded
’

V1
(o)

. This is done as follows:
1,1t

from above by a function of L

By definition of vy:

(o) (1) (o) (1)
a o Q. o

From Lemma 3.3

(o) (1) (o)
a a < (a 420 .
0L1,t1 + 1L1,t1 ( 0+2 1) L‘,t‘ (5.40)
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From Lemma 3.2

(1) (o) (o)

[
> 00L1 + 1L1’t1 (5.41)

(o) L
V1

a1,
0 1,vq 1,v1

Finally from (5.39), (5.40), and (5.41) we have:

(o) 0__ (o)

1ty v (5.42)

GO+Q1

L(1) 5 L(o)

also
1,V1 1’t1

(5.43)

® In conclusion using (5.35), (5.37), (5.42), and (5.43) we obtain
the desired results. The expressions given for ®; and ®; are obtained
through a straightforward computation from the definition of &, (see
Chapter 3, 3.1.2 B.,). When W is a binomial random variable corresponding
to a coverage probability p, we know from Chapter 2 that a0=p2,
“1=p2(1—p), and E[W]/h=p. It suffices then to substitute for these
quantities in the general formula.

0.E.D.

Notes:

(1) Lemma 5.5 is also valid for m > 1. (the proof is identical)

(2) As argued, the upper bound given by Lemma 5.5 improves on the
one given by Theorem 3.1; for example for the binomial case, we have
Uy = EL%:ELE < Ug = léR (for p=0.9, Uy = 0.022, Uy = 0.111).

' (3) One should however be warned that Theorem 3.1 and Lemma 5.5

together imply only that "in the worst-case sense" finding vy 1s "better"

than finding vg=ty as a heuristic procedure for the PTSP; indeed one can
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easily construct examples where E[Lt1] < E[LV1]. Theorem 3.1 and
Lemma 5.5 show that v4 is guaranteed to be "closer" than tq to the
optimal PTSP tour.

(4) We can derive the same kind of bound for Vks kK » 2. The
derivation is in fact identical to the one leading to Lemma 5.5 and will
be omitted. The quality (i.e. th; tightness) of the upper bounds (say

for vi) depends very much on the quality of the established bounds

(o) and L(O)

between L
1’Vk 1,t1

(see (5.42) for the case of vq) and one can

show that for general vy, we have:

k
toa, 2> (o0 (oor 1 oxean) e

r=1

(o)

L
1,vk

(5.44)

{5) General discussion:

It is now clear that solving (5.32) for é given k (as a heuristic
procedure for the PTSP) is an increasingly difficult task as k increases,
but a task guaranteed (in terms of worst-case) to give a solution in-
creasingly close to the optimal PTSP tour; the best choice in this
tradeoff will of course depend on W and its p.m.f. To illustrate the
discussion, consider the binomial case with a coverage probability p;
then if p is close enough to 1 (for example p=0.95) finding vgZtg (i.e.,

the TSP tonr) would be good enough with a percentage above optimality

0.05

0.95 ~ 6%.

less than or equal to

Clearly for p not so close to 1 (for example p=0.8) it might be
worthwhile to look for vy instead (for p=0.8 the upper bounds for the

0.2
worst-case ratio for vy and vy are respectively'a—a ~ 25% and

2x0.04

0.8 "~ 10%). This is however based on relative worst case ratios so
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that the best strategy for this case would be to find both vy and vy and
then choose the tour with the smallest expected length (note that if we
register a major decrease from E[LVO] to E[LVI], this denotes a case where
the TSP tour is not at all adequate as a solution to the PTSP). One can
argue the same way for an even smaller p by considering v, and so on.

Of course the worst-case ratios assume that we solve for vy through
exact method; based on our discussion of section S.é we know that, as soon
as k > 1, solving for vy is not an easy task (for vy the objective function
is already quadratic in Xjj, SO that either the branch-and-bound approach
can be applied or one of the linearizations for very small size); in fact
except for vg (i.e. the TSP) for which one can count on exact procedures
for up to 200 nodes, one probably has to rely on heuristics to solve for
Vg, as well.

We shall return to this point in Section 5.5.2 where we concentrate on
procédures for finding vy that can be extended easily to vk k>1 (sometimes
at some cost in computational speed, but, depending on W, with possibly
greater savings in routing). Before doing this, let us present two

interesting results.

B. The expected length of subtours of a graph G:

In this section we would like to find the expected length in the
PTSP sense of a subtour tj (that is, not includiny every node) of a graph
G containing a black node and n white nodes; let n+1 be the black node
and suppose tq=(n+1,1,2,...,nq,n+1) is the subtour (ny < n). If W
corresponds to the binomial case for which each white node is present
with probability p, independently of each other, it is then obvious that

E[Lt1] is obtained using Theorem 2.2 by defining the ny quantities Lif)
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r ¢ [0..n9=1]. On the other hand if W has a general p.m.f., as defined in
section 2.3.4 and used throughout Chapter 3 (that is, defined on the
entire set of white nodes), the problem is not as trivial and we need a

more elaborate analysis:

Lemma 5.6
Given a graph G with n white nodes, one black node (say node n+1);
consider a general p.m.f. for W - the number of white nodes present - ;

consider a subtour tjy containing only nq white nodes (nq < n):
ty = (n+1,1,2,...,n7,n+1)

then E[Lt1] can be computed atternatively as follows:
(1) obtain Pr(Wy=k) [where Wy is the number of present white nodes
out of the set of n{ nodes] from Pr(W=k), then obtain the corresponding

weights ®. and compute E[Lg,] by the traditional formula

ni-1
1 r=0 oty

(ii) “"work directly with Pr(Ww=k)" and apply the following formula:

ny-2 n-1
(nq-1)
r
BlLe, ] = 1 o i) 4 (1 o)
1 1,t1 1,t1
r=0 r=nq-1

Proof:

® rpor (i) it suffices to note that W is defined on the set of all n
white nodes and, as we are concerned with only nq{ of them in the subtour
tq, we simply have to define the random variable Wy corresponding to this

subset of white nodes if we want to use results from Chapter 2; in fact

it is easy to show that
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n n-n1+j _
prwg=1) = (1) L (C701)/(2) ee(w=x) for § & [0..nq]

3 k=1 k-3 k

@ 1o prove (ii) the easiest way is to create a new graph
G'=(N',A,D!') obtained from G=(N,A,D) as follows:

First create a copy of the black node (i.e. the depot) -~ say n+2 -~
connected to all the other nodes belonging to t (except the depot)
exactly as was the original depot (with the same distances) and connected
to the remaining nodes (including the depot) by arcs of length 0. Then
modify D so that every distance between nodes not in the subtour tq (or
between the depot and each one of those nodes) is set to 0.

Consider now the following tour through each node of G!'
t = (n+1,1,2,...,n1,n+2,n1+1,...,n,n+1)
It is then obvious that by construction

E[Lt1] = E[L¢]

But now, E[Ly] can be obtained by using Theorem 2.3 with m=2:

(r)

n
B[Lyl = L oL

r=0

The lemma is then a consequence of:

(r) _ .(r)
Lt = Lt1 ¥ r e [0..n-1]
(r) _(mq-1) %
Lt = Lt1 r € [nq..n-1]
Lin) = d(n+1,n+2)+d(n+2,n+1) = 0

Q.E.D.
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Note:
Lemma 5.6 can be easily extended to the PTSP with a number of black

nodes greater than 1 (i.e., m > 1).

C. Merging subtours:

This section will be concerned with the demonstration of the

. following result (see Figure 5.2):

Lemma 5.7:

Given a graph G with n white nodes and one black node (say node n+1);
consider three subtours of G having only the black node in common and
spanning (together) every node of G; assume every node is relabeled so

that the threce éubtours are:

ty = (n+1,1,2,...,1¢,n+1)
ty = (n+1,i9+1,...,iz,n+1)
t3 = (n+1,is+1,...,n,n+1)

Consider now the "merging" of ty and t3 in a subtour tq3 as follows:

t12 = (n+1,1,2,...,19,i9+1,...,ig,n+1)

Then we have:

2
E[Ly ] + ElLg,] - ElLg, 1 = ) o g(r)
r=

with:

u
s'F) = 1 s(iq-k,iq41+0-k)
k=2



Figure 5.2: Merging of subtours
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where

s(i,j) = d(i,n+1)+d(n+1,3)-d(i,])

1l

2 max{O,i1+1+r—iz}

]

u min{r,i1—1} (and g < u)

Proof:

Lemma 5.7 is a direct consequence of the previous lemma (using part

(ii)). 1Indeed we have:

i4-2 -
_ 12 (r) (11_1) n-1
E(Le,] = LSS I e (5.45)
r=0 M "1 r=ig-1
ip-iq-2 : -1
-y o 1.(7) (ip-1q-1) "2 o
E[Lt,] = Lyp, t I . (5.46)
r=0 -2 12 r=iy-iq1-1
ig-2 -1
in-1 n
ElLt,,] = ) “rL:rl + L: i ) ) o (5.47)
r=0 1H12 112 r=ig-1
Now as
L(12-1) = L(i1—1) (ip-iq-1)
1,812 1,1t 1,ts

we finally get from (5.45), (5.46) and (5.47) (after some calculus)

ip-2
E[Ly, 1+E(Ly, 1-E(Ly ] = ZO @ s
r .

(r)

where S{¥) is defined in the statement of the lemma.

Q.E.D.

Note: s(o) = s(iq,1¢9+1) (i.e., the traditional savings)

5(1) = 5(11-1,i1+1) + S(i1,i1+2) and so on
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We are now in a position to present a host of procedures aimed at
giving some "good" solutions to the PTSP. As already mentioned we
consider the case of a graph G with one black node and n white nodes;
these procedures will be developed for a general p.m.f. for W except in
some cases where a binomial random variable will be assumed explicitly;
also D will be assumed to be symmetric (the case of non-symmetric D being
readlly solvable by similar treawment).

In the first two sections we will present heuristics following a
classification often adopted for the TSP (see Gnlden and Magnanti

[1980]), namely tour construction procedures and tour improvement

procedures. In a third subsection we will analyze the PTSP in the plane
by briefly looking at a Spacefilling Curve heuristic ané Partitioning

algorithms.

5.3.2 Tour Construction Procedures

In this subsection we present procedures that generate an
approximately optimal tour from the distance matrix as opposed to the
next subsection where we mention procedures that attempt to find a better

tour, given an initial tour.

A. Savings Approaches:

This part is a direct consequence of Lemma 5.7 and, based on the
discussion of 5.3.1 A., will lead to the "Supersavings Algorithms".

The principle is based on the Clarke-Wright "savings" approach which
is widely used in solving vehicle routing problems; its basic idea is
simple (we give the general idea in the context of the TSP, see Clarke
and Wright [1964] for other routing contexts.): suppose that, to begin

with, each node is linked in a subtour containing two arcs to the depot
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n
(see Figure 5.3a). The total tour length is then 2 E d(n+1,73)
n =1
[ X (d(n+1,j) + d(j,n+1)) if D is asymmetric). If now we link two nodes
i=1
- say i and j - we achieve savings of s(i,j) in travel distance equal to

(see Figure 5.3b)
s(i,3j) = d(n+1,i) + d(n+1,3) - d(i,3)

(d(i,n+1) + d(n+1,3j) - d(i,j) if D is asymmetric)

For every possible pair of nodes there is a corresponding savings;
we order these savings from largest to smallest and starting from the top
of the list we link nodes i and j which are end points, i.e. adjacent to
n+1, with maximum savings $i4-

The reasons for the popularity of this method is its flexibility in
including various constraints during the linking process (for example
constraints on maximum capacity of a vehicle, maximum distance etc.).

Lemma 5.7 allows us to generalize this idea to a PTSP; the results

given in this lemma indicate the savings in expected length that can be

achieved by linking two end-points nodes iy and ij+1, i.e.:

ip-2
) a. glr)
r=0

® Note that this expression reduces to the traditional C.W. savings
when %43=1, ®@,=0 ¥ r > 0 (i.e. each point always has to be visited, the
case of the TSP); indeed we then obtain:

(o) 9

E[Ly, 14E[Ly, 1-E[Ly,  1=5'C' 2 [ s(iy-k,iy+1-k) = s(iq,i,+1).

1 2 12 k=0

® Also if each of the two subtours that are merged contains only

one node (besides the depot) then Lemma 5.2 gives



a) initial setup

(:)

b) nodes i and j have been linked

Figure 5.3: (Tour aggregation)
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_ (0)
E[Lt1] + E[Lt2] - E[Lt12] = & S (5.48)

]

ao S(i1,11+1)

which again makes sense.

However to obtain an operational heuristic we need to rely on the
discussion given in part A of 5.3.1; indeed as clearly indicated by Lemma
5.7 the savings in expected length obtained when linking two end points i
and j do not depend on i and j only (as was the case for the TSP), but
also on all nodes that were part of the two subtours under consideration;
this prevents one from defining a-priori savings for pairs of nodes
(since these savings depend, as well, on the otheg nodes contained in the
subtours). In fact one would have to compute 22 qr S(r) for gggh
possible merging; this is a formidable task sinzzoit would require first
the computation of every s(i,j) (n2 such elements), then for each couple
of nodes (i,j) the determination of every possible savings depending on
the other nodes present in the subtours containing i and j.

If on the other hand we want to find vy instead of tj, the savings

associated with linking two end point nodes will be (from Lemma 5.7):
a, glo) 4 a1s(1) (5.49)

where s(°) = s(i,j)
and (1) = s(1-1,5) + s(i,3+1)
where i-1 is the node preceeding 1 on its subtour
and j+1 is the node following j on its subtour
[Note:

If i-1 is in fact the depot then, as:

TR e L PRI T T T T
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]
o

s(n41,3) = d{n+1,n+1) + d(n+1,j) - d(n+1,3)

s(1) reduces to s{1) = s(i,3+1)]

The idea is then the following:

(1) We start by forming subtours containing, in addition to the
depot (that belongs to all subtours), exactly two nodes; we will then
have t%] such subtours and possibly one additional subtour containing a
single node if n is odd. (A possibly way to form these subtours is to
use the Clarke-Wright savings algorithm by imposing the additional
constraints, during the linking process, that we cannot form subtours of
more than two nodes.)

(2) Once each node (except possibly one) has been associated with a
"companion" we are in a position to compute what we call the supersavings

which are (for linking node j and node k):
Sijrk& = % s(i,k) + %q(s(i,k) + s(3,%)) (5.50)

For each pair of nodes (i,j) and (k,%) we need to compute four such
savings when D is symmetric (i can be linked to k or %, the same being
true to j).

(3) We order then these supersavings from largest to smallest and
starting at the top of this list we form larger subtours by linking nodes
until a tour is formed.

Let us derive the number of computations involved in this procedure:
The calculation of s(i,j) requires about cn2 operations for some constant
c; their ordering requires cnzlgn comparisons and interchanges; the last
step of forming pairs involves at most n2 operations; hence the first

step of our algorithm requires O(nzzgn) computations. The second and
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third steps together will in fact require the same order of computations
so that the overall procedure requires on the order of nzlgn
computations, hence the same as for the Clarke~Wright algorithm for the
TSP.

Of course we have many other possibilities based on the same
principle: for example, instead of forming, in the first step, subtours
with two nodes, one could form subtours with three nodes and then compute
in the second step the following supersavings (again based on Lemma
5.7):

Sidk,Aqr = %0s(k,2)+31(s(3,%)+s(k,9))+%(s(1,%)+s(3,g)+s(k,x))

(5.51)
(for each merging of two "triplets" ijk and %gr we need to consider
again only four savings since only i,k,l, and r can be linked). The
.overall computational effort is still of order nzlgn. (The first step
would still be accomplished through the Clarke-Wright savings algorithm
by requiring subtours of three nodes). One can also consider first the
formation of subtours containing four nodes or more.

The tradeoff is the following: forming larger clusters of nodes
during the first step (based only on s(i,j)) "penalizes" the PTSP

savings criteria, but on the other hand, in the second step this allows

us to compute more accurate supersavings.
Note that if one wishes to form subtours of 4 nodes in the first
step, one can obtain better results by breaking this first step into two

steps as follows:
(1) form subtours of two nodes using the C.W. savings approach.

(2) define supersavings as before; then, based on those

supersavings, form subtours of four nodes.
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In conclusion the best strategy for solving the PTSP according to

savings criteria would be as follows: (The Supersavings Algorithm)

(R)

Based on the discussion of part A section 5.3.1 determine,

according to the p.m.f. of W (and the corresponding weights @.), k* such

that v+ is a good approximation for tp-

(B)

To determine the best tour corresponding to vy choose the best

among the k*+1 tours obtained as follows:

(1)
(2)

(3)

(4)

heuristic tour for vg: use Clarke-Wright savings algorithm
heuristic tour for vy:

@ form subtours of two nodes (using C.W. savings alg.)

® compute supersavings

® form the tour based on these supersavings

heuristic tour for vjp:

® form subtours of three nodes (using C.W. savings alg.)

. ® compute supersavings

@ ferm the tour based on these supersavings

heuristic tour for vj:

® form subtours of two nodes (using C.W. savings alg.)

® compute supersavings

® form subtours of four nodes (based on previous
supersavings)

® computer supersavings

® form the tour based on the last supersavings

etc.

This overall procedure has O(k*nzzgn) computations.
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B. "Almost" Nearest Neighbor Algorithms:

The tour construction procedure developed in this section 1is again
closely related to a similar heuristic for the TSP usually referred to as
the Nearest Neighbor algorithm; Let us briefly describe for completeness
the Nearest Neighbor method. Under this algorithm a tour is constructed
as follows:

1. Start with an arbitrary node.

2. Find the node not yet on the path which is closest to the node
last added and add to the path the arc connecting these two nodes.

3. When all nodes have been added to the path, join the first and
last nodes.

This algorithm requires on the order of n2 computations and if the
method is repeated every node of the graph as a starting node, the
overall procedure would run in an amount of time proportional to n3.

It will become clear later that one useful way of interpreting the
approach of this heuristic is the following: Suppose we are given a path
containing j nodes in addition to the depot - say (n+1,1,2,...,3). If we

N

add a node ~ say j+1 - to this path by adding the arc (j,j+1), then the

increase in length .will be d(j,j+1). The Nearest Neighbor algorithm

consists simply of choosing the minimum increase in length possible at

each step.

By finding the increase in expected length (in the PTSP sense) of

adding a node to a path, we can then define a strategy based on the

minimization of this expression. This rationale leads to algorithms that

we will call, for obvious reason, Almost Nearest Neighbor algorithms.
Here again, the discussion in part A of 5.3.1 implies that schemes

with increasing computational requirements but also improved performance
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can be developed:
Let us first look at the optimization problem corresponding to vq;
by adding node j+1 to the path (n+1,1,2,...,j) the increase in the

objective function is:
®od(F,3+1)+%d(F=1,3+1) (5.52)

since the increase will be equal to d(j,j+1) for L(0) and to da(i=1,3+1)
for L{1),
More generally the increase in the objective function corresponding

to vy will be:
if k < 3

@nd (5, 3+1)+%qd(F=1,3+1) .. .+%d( -k, 3+1)
(5.53)
if k > 3

Ad (3, J+1)+. . +%5_1d(1,3+1)+E3d(n+1, 5+1)

Based on previous results one can then propose a procedure as follows:
(1) choose k* as before (see savings methods)
(2) starting from node n+1 (i.e., the depot) add the nearest node
(3) use the minimization of increase in expected length as a
criterion as given by (5.53) to add successive nodes until the tour is
formed.
Note: As before the choice of k* depends strongly on W and the number of
nodes n.
In fact we are going to "improve" on this procedure on the basis of

the following fact:
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For a given tour, each arc belonging to the tour is weighted equally
(in fact each weight is 1) with respect to the TSP problem (i.e.,

minimization of L ). For the PTSP with no black node, this is again

(o)
t
true (the weight being %;). However as shown in Chapter 3 this is not
true anymore when the number of black nodes m>0 (see Appendix A). For
m=1 (our concern, here) we know, see proof of Fact 3.2, that for a given
tour (n+1,1,2,3,...,n,n+1) (n+1 being still the black node), d(n+1,1)

n-1
ir) r ¢ [0..n-1], and its weight will be z Q..

r=0

will appear in each L
The same is true of d(n,n+1). On the other hand d(j,j+1)
for j € [1..n-1]) has weight &5 only.

From this observation one can give a modified version of the
previous method in which:

® step (2) is replaced by: (2)' starting from node n+1 add its
nearest node and call it.node 1 so that we have d(n+1,1); then find the
second nearest node, call it n and connect n to n+1.

® and (3) is replaced by: (3)' proceed as in 3 in order to connect
1 to n.

(The idea is that since the two arcs adjacent to the depot have more
welght in the total objective function, one should minimize them first).

One can extend this modified version to the problem of finding wy
for a general k; here again one can proceed first by "growing two trees"
out of the depot until both of them contain k nodes, then by joining
the two trees acéording to the previous method (i.e. step (3)*' based on

5.53).
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C. Insertion methods:

Before concluding this section on tour construction procedures let
us briefly mention that, again, one can extend the rationale of a number
of insertion methods, proposed for the TSP, to the PTSP. A good
description of these insertion methods ~ Nearest Insertion, Cheapest
Insertion, Arbitrary Insertion, Farthest Insertion, - is given in Golden
et al. [1980]. Such a method takes a subtour on j nodes at iteration j
and attempts to determine which node not in the subtour should join the
subtour next (the selection step) and then decides where in the subtour
it should be inserted (the insertion step). The reader is referred to
Golden et al. [1980] for details on the different insertion schemes; for
our purpose one should simply notice that the insertion step (and
sometimes the selection step) is based on the consideration of the
already introduced notion of "sa?ings" associated with the insertion,
i.e., if node % is to be included in between nodes i and j this will

produce an increase in the length of:
a(i, %) + da(4,j) - a(i,3)
The following fact simply gives the increase corresponding to wvg.

Fact 5.3

Let G=(N,A,D) be a graph with one black node and n white nodes and
t = (n+1,1,...,nq,n+1) a subtour containing ny white nodes. Assume we
next include node j between node i and i+1.. We then have, calling this

new subtour t!':

M L @) ) nl
E[Lyi1-E[Ly] = oy - n )+ (1 o) 2a(mer,y)
r=0 r=nj
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Based on this fact and on the discussion in part A of 5.3.1 one can

obtain a host of insertion procedures for our problem.

5.3.3 Tour improvement procedures

As indicated in Golden et al. [1980], branch exchange heuristics are
among the best-known heuristics for the symmetric TSP. They work as
follows:

1. Find an initial tour - Generally, this tour is chosen randomly
from the set of all possible tours.

2. Improve the tour by a 2-change.

3. Continue 2 until no additional improvement can be made.

A f-change of a tour consists of the deletion of % arcs in the tour
and their replacement by £ other arcs to form a new tour. (A tour is
then called %-optimal if it is pot possible to improve the tour via a
f-change). One of the most effective implementations of this idea is
given in Lin and Kernighan [1973].

In fact tour improvement procedures belong to a general approach to
solve combinatorial optimizations problems sometimes referred;to as
“T,ocal Search" (see Papadimitriou and S£eiglitz [19821). Ong can
possibly think of similar procedures for the PTSP, although they would
certainly not be as effective (or fast) as for the TSP; indeed in the
case of the TSP one can check immediately if exchanging 2 arcs by 2 other
arcs leads to a decrease in the objective function (if (i,J) and (k,2)
are exchanged by (i,k) and (j,%) we have an improvement if
d(i,X) + da(j,*) < d(i,j)+d(k,%), assuming D is symmetric). For the same
case under the PTSP we have to recompute the entire expected length of

the new tour (0(n2) step). One can, of course, based as before on the



187

discussion contained in part A of 5.3.1, apply these tour improvement

procedures to solve for v (see (5.32)). For example assume that we want

(0) | o (M

to find vq4 - i.e. the tour that minimizes Q4L
1 0™, ¢ 1™ ,t

- through a
2-change procedure; assume the initial tour t is given by
t=(n+1,1,2,3,..,n,n+1) and that (i,i+1) and (j,j+1) (1<i¢n-3,1i+2<j<n~1)
are replaced by (i,j) and (i+1,j+1) (note that this is the only possibly

exchange; the choice of (i,j+1) and (i+1,3j) would break the initial tour

in two subtours). The new tour t' is then such that:

]
1
t
[

a(i,j)y+a(i+1,3+1)-d(i,i+1)~-4(j,i+1)

I

d(i~1,3)+d(i,§=-1)+d(i+1,3+2)+d(i+2,3+1)

d(i-1,i+1)-a(1,1+2)~-d(3-1,3+1)-a(3,J+2)

and it will be accepted only if

(o)

(1) (n
1,80 )

L

Qa -
O(L 1,t' 71,t

)+ o (o <0 (5.54)

o

2

This gives a procedure to approximate vq that can be carried out in
O(nz) computations; by extending this idea to obtain an approximate
solution for v by a !-change one has a procedure that is an o(kn%)
polynomial algorithm (hence to approximate the PTSP, the procedure is of
order n more costly than for approximating the TSP).

This concludes the discussion of heuristic methods for solving the
PTSP on a given graph G; we based most of our results on the theoretical

investigations of Chapters 2,3. Before concluding Chapter 5 let us now

look at the case of the PTSP in the plane.
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5.3.4 The PTSP in the plane

This section is basically inspired by Chapter 4 and as such, the
notation and terminology used in that chapter are assumed known and will
not be repeated here (see especially section 4.1).

We already mentioned in Chapter 4 the great interest of results like
that of Beardwood et al. [1959] for algorithmic applications (i.e.,

development and probabilistic evaluation of heuristic methods for

combinatorial optimization problems (see Karp [1976] and Karp [1977]).
For our purpose'Theorem 4.2 and its generalization Theorem 4.4 provide
the results necessary for a probabilistic analysis of heuristics.

This section contains two parts: in the first part we first briefly
present a heuristic based on spacefilling curves that has been recently
proposed to solve the TSP in the plane (Platzman and Bartholdi [1983]);
we then discuss the main characteristics that may make this heuristic a
good candidate for solving the PTSP in the plane. Finally in a second
part we mention the possibility of using partitioning algorithms for
solving large size PTSP problems in the plane, in much the same way they

have been proposed for the TSP in a seminal paper by Karp (Karp [1977]).

A. The Spacefilling Curve Heuristics:

We will not present the heuristic in detail; the interested reader
is referred to the original paper (Platzman and Bartholdi {1983]) for a
detailed treatment of the subject.

In general, spa;efilling curves are by definition continuous
mappings ¥ from the closed unit interval [0,1] onto a set A of dimension
2 or more; now, as pointed out in Platzman and Bartholdi [1983], if the

mappying ¥ is such that ¥(0) = ¥(1), then ¥(®) (& ¢ [0,1]) traces a "tour"
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of all the points of A as @ varies from 0 to 1. The general idea is then
as follows: given such a spacefilling curve Y and given a sequence x(n)
of n points in A, construct a tour by sequencing the points as they
appear along the spacefilling curve; that is, for each point X4 of the
sequence x(") of A to be visited, compute a &4 such that ¢(0j)=xj and
then sort the points by their corresponding Gj‘s. (This idea cérresponds
to solving the TSP in [0,1] instead of A.)

Platzman and Bartholdi define a particular spacefilling curve over
the unit square [0,1]2 and, showing how its inverse is computed, they
provide a specific heuristic to solve the TSP in the plane; this curve is
constructed recursively by dividing the square into four identical
subsquares, and filling each with a spacefilling curve that we link to
form a circuit. As noted by the authors this construction resembles (in
its principle) the partitioning algorithm of Karp (Karp [19771).

Let us now list, using our notation the main interesting points of
this specific heuristic (obtained in Platzman and Bartholdi [1983], refer
to that paper for proofs); before, let us simply mention that the
heuristic tour obtained by this spacefilling curve will be denocted as
te:

(1) This heuristic, since it is based on sorting, has the desirable
property (already met by most of our constructions in Chapter 4) that
given any subset sy of x(n) (3 ¢ [1..2"]) the construction of tf(sj)
through the spacefilling curve heuristic gives the same tour as the
resulting process of skipping in the PTSP sense the points of (x(n)-sj)
from tf(x(n>). (see property (a) given in the proof of Lemma 4.1)

(2) The heuristic requires 0(nfgn) operations, hence it is very

fast.
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(3) for any arbitrary sequence of points x in [0,r]2

(n)

Ltf(x ) < 2/;1- r

(4) for a uniform sequence of points X over [0,1]2

EylLe (x("))]

l1im sup < '
n-+o /;

EylLe (x(P))]
lim inf > B
n+o /;

(where B is the TSP constant)

(5) it has been estimated that, actually,

Eu(Le (x(M))]

1im sup < 1.006

n+e ’n
Eu[Ltf(X(n))]

1lim inf ? 0.906

n oo /;

(The authors indicate that the tour will be approximately 25%

longer than the optimal tour.)

Property (1) is of course very interesting with respect to the PTSP.
Based on this property one can analyze tg very easily and our results

are summarized in the following lemma:

Lemma 5.8
Let x be an arbitrary sequence of points in [0,1]2 and p be the
coverage probability for each point. Then the expected length of

tf(x(n)) (in the PTSP sense) satisfies:
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(1) ELy (x(M),p) < 2E(7W]
If the sequence is independently and uniformly distributed over [0,1]2

EylELy (x(7),p)]

(ii) 1im sup < 1.006 'p
n 4o /;
Eu[ELe (x(M),p)]
lim inf > 0.906 'p
n »oo G

Proof:
A consequence of properties 1,3, and 5 together with similar proofs

as in Lemma 4.1, Lemma 4.3 and section 4.3.3.

Consequences:

(1) (i) does not improve on the result given in Lemma 4.1 for the
upper bound on the expected length of the optimal PTSP tour; nevertheless
it is a worst-case guarantee for the expected length qof the heuristic
tour.

(2) From Corollary 4.2 and Lemma 4.4 one can induce that the space-
filling curve heuristic tour is approximately within 25% of optimally
for points uniformly distributed over [0,1]2.

(3) As already discussed in Chapter 4 and because of similar
generalities obtained in Platzman and Bartholdi, point (2) above remains
valid for any Lebesque set of dimension 2.

In conclusion this analysis points to the spacefilling curve
heuristic as an interesting solution procedure for the PTSP especially
because of its speed. One, however, has to realize that this heuristic

gives the same tour no matter what the p.m.f. of W is; in other words the
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determination of the tour is W-independent and this is certainly not very
desirable compared to our previous procedures in which the specific
p.m.f. of W was taken into account. 1In summary this heuristic is
interesting for obtaining very quickly a tour with some interesting,
although limited properties.

Let us conclude this section on the PTSP in the plane by briefly

mentioning the possibility of using partitioning algorithms, as well.

B. Partitioning Algorithms:

Following the paper by Karp (Karp [1977]), in which a partitioning
algorithm for the TSP in the plane has been devised, analyzed
probabilistically, and tested, there has been a proliferation of similar
analyses for other combinatorial optimization problems (see for example
Haimovitch and Rinnooy Kan [1983], Fisher and Hochbaum [1980], Hochbaum
and Steele [1982], Papadimitriou [1978], etc.)

Although the practicability of some of those procedures has been
questioned (see Psaraftis [1984]) the partitioning algorithm devised by
Karp for the TSP has been successful in solving very-large problems.
From a practical point of view, this procedure is a decomposition
algorithm for which the main idea is to partition a large rectangle (in
which the points to be visited are lying) into a number of subrectangles
and solve a TSP in each subrectangle. Let us briefly give an outline of
the procedure:

1. Let n be the number of nodes to visit and t an upper 5ound on
the number of nodes in a subrectangle. Define k=r2g((n—1)/(t-1))1.

2. Divide the original rectangle into subrectangles using the

following strategy: iteratively divide the subrectangles (containing,
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say, m nodes) at the '%]th node along the long side of the rectangle
until we get 2K subrectangles, each containing no more than t of the
nodes.

3. Solve the TSP in each subrectangle.

4. Convert the Eulerian cycle obtained in 3 to a Hamiltonian cycle
by virtue of the triangle inequality.

If step 3 is solved exactly this procedure can be shown to be
asymptotically optimal almost surely in the sense that: For any &>0
there is an algorithm A(€) based on partitioning such that

(i) it runs in time C(€)n + 0(nfgn) where C(€) is a constant

(ii) with probability 1 this algorithm yields a tour costing not
more than (1+€) times the cost of an optimal tour.

If step 3 is solved by a heuristic this procedure remains a valid one
even for extremely large problems.

It is easy to see that one can adopt the same procedure for the
PTSP, replacing TSP by PTSP in step 3. Based on the results of Chapter 4
one should be able (using the same analysis as in Karp {19771, and using
Theorem 4.2 in the place of the Beardwood et al.'s theorem ) to show
that this procedure is asymptotically optimal if step 3 is solved
exactly. Using heuristic procedures proposed in the previous sections
one should be able to handle nicely quite large problems through this

generic procedure.
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5.4 Conclusion

This chapter has presented some of the algorithmic consequences of
the set of theoretical investigations carried out in Chapters 2,3, and 4.
It contains results that are not only based on intuitive considerations
but on theoretical foundations as well.

We have concluded, that, although exact methods seem a little too
ambitious for a general PTSP, a Branch-and-Bound procedure presented in
section 5.2.3 could be appropriate for solving reasonable-size PTSP
problems that are in some sense "close" to the traditional TSP problems
(e.g., a coverage probability p close to 1, or a dominant number of black
nodes) .

It is however toward heuristic methods that we should turn our
attention for problems of practical size. With respect to those proce-
dures we presented a considerable variety by extending the rationale
behind the development of similar procedures for the TSP. The framework
introduced in section 5.3.1 A. together with some tour construction pro-
cedures seem the more appealing and promising directions. For very large
problems partitioning algorithms should also be considered seriously.
Finally if speed (and not so much accuracy) is sought the spacefilling
curve heuristic should provide reasonable tours.

We conclude by making a somewhat intuitive and positive point on
procedures based on partitioning (such as Karp's, or even some construc-
tion tours proposed in Chapter 4). These are such that they eliminate
the possibility of obtaining tours similar in shape to the star-shaped
example and thus eliminate tours that are, although of reasonable length,
behaving badly in terms of the PTSP. (by similar in shape we mean a tour

whose "interior" (shaded) has the following form; see Figure 5.4).
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—

Figure 5.4: "Non-Desirable" Type of Tour
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CHAPTER 6

FINAL REMARKS AND CONCLUSIONS

In this last chapter of the thesis we present first a suvmmary of the
principal contributions of this dissertation and then list topics for

further research.

6.1 Summary of Results

6.1.1 Methodological (Theoretical) Contributions

Perhaps this summary should start with the initial contribution of
this work; namely the definition and formulation, in Chapter 1, of the
PTSP, a problem which provides a conceptualization of many practical
situations likely to be encountered in various forms in several
application areas. Following introduction of the PTSP, we then presented
theoretical and algorithmic results for this new problem. We first
reduced in Chapter 2 the computational requirements for obtaining the
expected length of any tour through n points from 0(n2m) (naive
enumeration) to O(nz) via the derivation of closed-form expressions.
Based on this fundamental chapter, we then derived properties of optimum
PTSP tours together with useful bounds on their expected lengths. By
comparing the TSP and PTSP we have also shown how the introduction of
probabilistic elements into well-known combinatorial optimization
problems may change drastically the behavior of their optimal solutions
and of their combinatorial properties.

Next, motivated by theoretical results like that of Beardwood et al.
[1959] for algorithmic applications, we presented an analysis of the PTSP

in the plane. The main theoretical results include bounds on the
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expected length of the optimal PTSP tour through n points lying in a
square, asymptotic analysis of the "strategy of reoptimizing", and
finally, perhaps most importantly, the following strong limit law: the
expected length of the optimal PTSP tour through n points drawn from a
uniform distribution in the unit square is almost surely (with
probability 1) asymptotic to a constant times f;; this result being valid
for any general subset A of a d-dimensioned Euclidean space of measure
v(A) and different metrics, ’n being replaced by v(A)Vd n(d-1)/d,

Based on the theoretical resuits obtained in Chapters 2, 3, and 4 we
finally suggested several solution procedures to solve the PTSP. After
providing several mathematical programming formulations for the problem,
we proposed a branch-and-bound scheme believed to be one of the best
exact methods for tackling this specific problem; we also demonstrated
the inadequacy of dynamic programming approaches for the PTSP.
Recognizing the limitations of exact optimization methods for a complex
problem like the PTSP, we also presented a variety of heuristic
procedures. Based on the previous theoretical work and on the analysis
of the rationale behind some heuristics proposed for the TSP, we have
been able to design, using similar reasoning, several heuristics
including: tour construction procedures (Supersavings algorithm, Almost
Nearest Neighbor algorithm); "hill-climbing" methods; and partitioning

algorithms including a space-filling approach.

6.1.2 Discussion
We turn next to a discussion of the contributions of this work.
This section is divided in two parts: modeling first and applications

next.
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A. Modeling:

As already discussed in Chapter 2 the results obtained in this
thesis cover situations in which we have m black nodes (i.e., depot or
"always present" customers), n white nodes (i.e., "uncertain" customers)
with a general p.m.f. for W - the number of white nodes present. We also
discussed the possibility of using our results for instances in which we
have special cases of node-specific probabilities; that is, cases where
each white node j has a coverage probability P, independently of each
other, Pj being of the form 1—(1—p)kj for a common p (kj representing the
number of superimposed nodes with ccverage probability p).

For the general node-specific probability cases, we mentioned the
use of recursive relationships to compute the expected length of tours.
In fact by choosing p sufficiently small, one can see that
f(k) = 1—(1—p)k, k =0,1,2,.. can approximate (arbitrarily closely) any
given set of probabilities Pj, j e [1..n]. This, together with the
superimposing trick, imply that all the results (except for the
asymptotic analysis of Chapter 4), obtained in this dissertation, can be
used for cases with general node-specific probabilities.

In conclusion the different cases covered by the results of this

thesis offer a wide range of possibilities for modeling purposes.

B. Applications:

The PTSP has been introduced in the context of tactical routing,
that is, in the context of designing of optimal routes under some
uncertainty. This is, however, not the only context in which the PTSP

methodology can be used. Let us present two other areas of application:
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(i) "Strategic" Routing: Preliminary Planning Of Distribution
Systems

In preliminary planning of urban collection and delivery systems we
are very often interested in "sizing up" the requirements for vehicle
fleets, estimating the number of points that can be served with given
resources, etc. Those decisions are usually embedded in a hierarchical
planning process (as a first stage). The following situation arises very
frequently in practice: given a region, we have information on the set of
all potential customers for a specific service (the total number of
potential customers and their locations, but we know that on a daily
basis only a fraction of those customers will have to be served; the
problem is to obtain an estimate of the routing costs a company would
face if it decided to implement such a service. (This is a strategic
decision as opposed to the tactical decision of effectively routing the
vehicles that have been purchased.)

The usual way of handling this problem is by using an approximation
formula based on the Beardwood et al.'s theorem (already encountered many

vl

times along the development of the thesis; see, for example, Chapter 1,

Section 1.2.1). More specifically, assuming that the reglon has area A,

and that the average number of customers we would expect on a daily basis
per vehicle is n, we use 0.765/;X to obtain an éstimate of the routing
distance for a vehicle on a daily basis.

This approach, however, has major drawbacks:

* n has to be sufficiently large so that the asymptotic result
obtained in Beardwood et al. gives a good approximation.

* the distance between points has to follow the euclidean metric;

in urban areas this is often far from true, since the distances may not
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even be symmetric due to one-way streets, etc. (Of course Beardwood et
al.'s theorem can be extended to the rectilinear or other metrics, but
then the constant is different and one would need an estimate of it).

* the customers have to be "nicely" distributed within the area
(i.e., independeptly and identically distributed over the area
considered). A consequence of this is that, to be valid, the use of the
asymptotic formula necessarily imposes the condition that in estimating

n, one must assume independence between potential customers and an

identical behavior with respect to their being present or not.
* finally this formula does not provide any "guarantees" (lower or
upper bounds) regarding the eventual size of the actual routing costs.
However, by defining a probability mass function on the actual
number of customers to be visited on a specific day, this problem can be
modeled as a PTSP on the set of all potential customers. Hence by
determining a good PTSP tour (see Chapter 5 for solution procedures)
through all the customers, we can then use expressions from Chapter 2 to
compute the expected length of this tour; this, in turn, provides a good
upper bound on the size of actual routing costs the company will, on the
average, face every day. Moreover, this method does not impose any of
the restrictions necessitated by the traditional one. In other words, as
previously discussed, this approach can be used for cases where:
® the probability of coverage is not identical among customers
® there is possible dependence between the presence of these
customers
© the distance matrix can be arbitrary (not necessarily following
any particular metric)

® the number of customers can be arbitrary.
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(ii) ZLocation of Facilities

We assume that the reader has some familiarity with facility
location problems (see Larson and Odoni [1981] for an excellent
introduction to such problems). We place our discussion, here, in the
context of one of the most basic of these problems, namely, the problem
of locating a single new facility so as to serve a set of n potential
customers (most of the comments remain, however, valid for more general
problems as well).

The traditional approach is to locate this single facility under the
assumption that each time a customer places a request, he will be served
exclusively by one vehicle who visits this customer and then comes back
to the facility immediately; in other words we minimize the average
distance to or from the facility for the population of users considering
"radial" distances (that is, a weighted average of the distances between
the facility and each of the customers).

One can, however, find many practical situation where vehicles will
serve more than one customers per trip. The problem of locating a
facility under this condition has been introduced in Burness and White
[1976]; they considered the rather "formidable" task of locating the
facility assuming the construction of a traveling salesman tour through
each possible subset of the original n customers. The optimal location
required an iterative procedure (whose convergence was not proved) during
whicﬁ at each step 2n-1 traveling salesman problems had to be solved!

The merging of a highly strateglc decision (location of a facility)
and highly tactical decision (the design of a TSP for each subset of
customers) is very ambitious and might not in fact reflect adequately the

different nature of strategic and tactical decisions.
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Instead of this, one can see that an alternative approach is to
design an a-priori tour through all n customers assuming the PTSP
methodology, that is to locate the facility in order to minimize the
expected length (in the PTSP sense) of an a-priori tour through all

potential customers.

t

6.2 Further Research

n,..a highly finished paper, with all its theorems carefully proved,
all avenues explored, and all loose ends carefully snipped, may arouse
one's admiration; but its very perfection drains it of vitality, and
there is little one can do with it except file it. Papers are more
entertaining if they are still rich in conjectures.." (Hammersley
[1972]).

We hope that we have convinced the reader that a rigorous
mathematical analysis of combinatorial optimization problems containing
probabilistic elements can be performed, but that these problems deserve
very often special treatment due to the drastic change of their
properties when uncertainty is introduced.

One can add that the topics explored in this thesis appear to be so
rich in fruitful possibilities that a section on subjects for further

research is mandatory. Let us briefly list some important directions:

6.2.1 Algorithmic Implementation

It is important to implement the different solution strategies given
in Chapter 5. Besides the obvious reason of comparing the various
solution procedures proposed, this will allow one to obtain an estimate
(via the solution of a range of problems) of the constant c(p) introduced

in Chapter 4.
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6.2.2 Theoretical Investigation

There are several theoretical open-probhlems which were encountered
during the development of the thesis that need to pe addressed in the
future:

(A) Chapter 3:

9 Lemmas 3.4 and 3.5:

We conjecture but have not proved that the lower bound on E[Lt] for m=0
and n not prime is the same as the one obtained for n prime.

¢ Section 3.4:

Prove or disprove our conjecture on the worst-case behavior of an optimum
TSP tour when used as a solution to the corresponding PTSP problem (see

Lemmas 3.10 and 3.11 in particular).

(B) Chapter 4:

® 71t is easy-to see that Theérems 4.1 and 4.3 can be generalized to
the case in which the points are independently and identically
distributed (and not necessarily uniformly) over [0.1]2.

® To show that this is true also for Theorems 4.2 and 4.4 one has
to verify additional properties (given in Steele [1981a]) for ¢p. We
have already proved that ¢p verifies properties AG and A7 of Steele's

paper but have not been able to prove or disprove A8, the final step.

(C) Chapter 5:

The investigation of algorithms has been of an introductory nature
and more has to be done in terms of exact procedures and design of
heuristics. A deeper analysis of the relationships among the
intermediate problems (i.e., finding vk) introduced in section 5.3.1.A

should be undertaken.
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6.2.3 Applications of the PTSP Methodology

It is important to investigate in more detail uses of the PTSP
methodology in different areas of application such as preliminary

planning of distribution systems and location of facilities.

6.2.4 Further Research on the Integration of Uncertainty Into

Combinatorial Optimization Problems

Let us simply mention two other routing problems whose probabilistic
treatment might be conducted along lines similar to those developed in

this thesis:

A. The m-PTSP:

The m-PTSP is the natural extension of the PTSP (as the m-TSP was
for the TSP) corresponding to the design of a prespecified number m, of
distinct tours that collectively visit each of the nodes in a set exactly
'once, while having a black node (depot) in common. The objective is to

minimize the expected total length (in the PTSP sense) covered by the m

tours.

B. The Probabilistic Vehicle Routing Problem (PVRP)

This problem can be formulated as follows: consider a standard VRP
(see Chapter 1) but with demands which are probabilistic in nature,
rather than deterministic; the problem then is to determine a fixed
{before realization of the random variables) set of routes of minimal
expected total distance; this expectrnd total distance corresponds to the
total distance of the fixed set of routes (as in the deterministic case)
plus the expected value of the extra distance that might be required by a

particular realization of the random variables. The extra distances will
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be due to the fact the. demand on some routes may occasionally exceed the
capacity of the vehicles assigned to these routes and force vehicles to
go back to the depot before continuing on their routes. This problem
differs from the SVRP introduced in Chapter 1 (see Stewart and Golden
[(1983]) in the sense that here we are concerned only with routing costs
without the introduction of additional parameters. We have already made
some progress in analyzing this problem by showing that randomness can
1n?roduce surprising complications that go well beyond the additional
computational complexity resulting from the need to consider
multiple-valued variables (hence rendering doutful direct applications of
techniques developed for the VRP).

A safe general conclusion would be to assert that much ha yet to be

discovered in this very exciting and almost unexplored area of research.
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APPENDIX A
(x)

Graphical Illustrations of the Lm &

The purpose of this appendix is to provide a graphical aid for

. (1) (r)
understanding how the Ih,t (Lm,h

) are obtained from a given tour t
(path h) of a graph G. Our examples cover the cases m=0, m=1, and m=2 for
tours and m=0, m=1 for paths. To facilitate comparisons, the illustra-

tions start, in each case, with the same initial tour (path) through a

set of 10 points.

(o)
Lm,t

(The initial tour)
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(o) _
Lm,h m = 0, or 1

(The initial path)

The different cases considered correspond to various assumptions for the

color of the nodes.
A.1 Illustrations for tours:

(i) Every node is white (i.e., m=0)

(1) L
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(ii) Node 1 is black, the other nodes are white (i.e., m=1)

am

(iii) Nodes 1 and 10 are black, the other nodes are white (i.e., m=2)

(1)
Lot
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A.2 Illustrations for paths:

(i) All nodes are white (i.e., m=0)

.

(1)
Lon Lo,n

(ii) 1 is black, the other nodes are white (i.e., m=1)
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APPENDIX B

Case of a Non-Complete Graph G

This appendix is supplementary to the discussion of section 3.1
(3.1.27.).
Consider the following non-complete, (but connected) symmetric,

weighted graph G:

Consider the following two tours of G

1 > 2
5 <€ 3
tour 1 tour 2
(4,1,2,3,5,4) (4,2,3,5,1,4)

To be able to compute their expected length by using results of
Chapter 2 we need to define the strategy to follow when we wish to go
from a node i to a node j for which arc (i,j) does not exist (in other

words, we need to construct a complete graph).
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Strategy (1):

Go from i to j using intermediary nodes that exist along the tour t

(choosing the shortest path along the tour if several possibilities are

offered).
For our example : tour 1 => d(4,3) = 3+2=5
d(3,4) = 5+4=9
tour 2 => d(4,3) = 3+2=5
d(3,4) = 5+2+1=8

It is then apparent that this strateqgy is not very convenient since it is
tour~dependent; moreover it usually leads to an asymmetric complete
graph, even if the original non~-complete graph is symmetric.

Strateqgy (2):

For all non-existing arcs (i,j), compute the shortest path to go
from i to j using existing arcs. (Note: the presence or not of the
nodes has no influence on the a-priori construction of the complete
graph; if one wished to use only present nodes as intermediary nodes fox
finding the shortest path, the constructed complete graph would be
instance-dependent, & '"non-desirable" property).

For our example:

d(4,3) = d(3,4) = 3+2=5 (through node 2)

Following strategy 2 we can obtain a complete graph; for our example, the

final complete graph is as follows:
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APPENDIX C

The Optimal Fuclidean PTSP Tour May Intersect Itself:

An FExample

In this appendix we present the full set of calculations associated
with the counterexample (see Figures 3.1 and 3.2) provided in the proof

of Lemma 3.7.

C.1 Derivations Corresponding to Figures 3.1 and 3.2

The euclidean distances between points are as follows:

]

da(1,2) = da(1,3) = 7260

a(1,4) = Y160; da(1,5) = /388

d(2,3) = 4; d(2,4) = '52; 4(2,5) = V464
a(3,4) = Y20; 4(3,s) = Y320
d(4,5) = /212

In Figure 3.2 we presented two tours through the set of five points;
in fact we have (5-1)1/2 = 12 possible tours. The 10 remaining tours are
displayed at the end of this Appendix.

Using Theorem 2.3 with m=2 one can compute the expected length of the

12 tours as a in function of P. Let us give Lgr)

's for the 12 tours
3 e [1..12]. Note that from Facts 3.2, 3.4, ng) and L§3) are tour-
independent (i.e. independent of j) so that we do not need them to

compare the tours j.



L(0)

(o)

L(0)

(o)
L1o

(o)
L

(o)
12

i

14

n

58.854587

61.593553

65.22239

61.446473

68.874505

72.822046

65.394013

62.359621

69.046129

72.674965

71.908897

75.413932
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n

114

R

1

[

14

13

R

I

n

98.166568

94.514453

104.53437

98.019488

104.53437

91.480061

98.019488

98.019488

98.019488

98.019488

90.566912

98.019488

(c.1)
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We have:
siry] = o7 (2% + (1-p) 10V) w x for 3 e [(1..12]
where K = p(1-p)> L;Z) + (1-p)° L;3)

Elimation rule:

(1)

and Lj > L(1)

i

{o) (o)
If Lj > Li

length than tour j for any value of p which, in turn, implies that tour j

then tour i has a shorter expected

can be discarded.

Following this rule, one can see that only tours 1,2,4 and 11 have
to be considered as potential optimal PTSP tours (1 eliminates 3,5; 2
eliminates 7,8,9,10,12; 11 elimates 6).

From (C.1) we have the proof that for p=1 tour 1 is the optimal TSP

(0))-

tour (Lgo) is the smailest among Lj

For 0 < p < 1 we have:

E{Lq] - E(Ly] = p2[-2.738966 + 3.652115(1-p)] (C.2)
)

E[L1] - E[Lg] = p2[-2.591886 + 0.14708(1-p)] (c.3)

E[Lq] - E{L;q] = p2[-13.05431 + 7.599656(1-p)] (C.4)

Now, since 0 < (1-p) < 1, (C.3) and (C.4) are always negative (i.e.
for any p), which implies that 1 is always "better" than 4 and 11.
From C.2 one can see that:

2.738966

- 555775 - 0-25, tour 1 is better than tour 2,

if p> 1

if p < 0.25, tour 2 is better than tour 1.
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C.2 Case with one or no black nodes:

Following the discussion provided in the text, one can replace each
black nodes of Figure 3.1 by a large number of superimposed white nodes
so that tour 2 can still be the optimal PTSP tour for some values of p.

One can verify that tours 1 and 2, with nodes 4 and 5 both replaced

by 12 white nodes, are such that:

Lio) _ o) _ 5 738966
1 2
(1) _ (1) _
L, L, 3.652115
L:r) - L;r) = 0 forr g [2..11]

L:12) - L;12) = ~0.913149

Hence, using Theorem 2.1 and Fact 3.4, we have:
E(Ly]1-E[Ly] = p2[(14(1-p)25)(-2.738966) + ((1-p)+(1-p)24)(3.652115)
+ ((1-p)124(1-p) 13 )(~0.913149) ]

For p = 0.1 E[L4y]-E[Ly] = 0.1526134

Q.E.D.
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3
4
5
1
tour 1 tour 2
tour 3 tour 4

tour 5 tour 6
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tour 7 tour 8

tour 9 tour 10

tour 11 tour 12
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APPENDIX D

Exact Calculations for Lemma 3.9

This appendix provides the exact calculations corresponding to the
two counterexamples involved in the proof of Lemma 3.9(ii):

D.1 m=0, n=6, coverage probability p:

Consider the following complete graph (it corresponds to Figure 3.4):

The distance matrix D is as follows; (symmetric D).

a(1,3) = da(1,2) = d(2,3) = 4

a(4,5) = d(4,6) = d(5,6) = 0.4

a(1,6) = d(3,5) = d(2,4) = 2.54

a(1,4) = da(1,5) = 4(2,5) = d&(2,6) = d(3,4) = d(3,6) = 2.203
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The tour 3 (see Figure 3.4) is then such that:

L§°) = 13.206

i - 43.886
1{2) = 13.892

The tour 4 (see Figure 3.4) is such that:

(o) _
L, 13.206

(1 _
L3 13.212

(2) _
L4 = 15524

Thus, using the expression developed in Chapter 2, we obtain:

E[L31-E[Ls] = p2[((1-p)+(1-p)3)0.674~(1-p)21.348]

p4(1-p)[0.6741

which shows that:

® if p=1, 3 and 4 are of equal length (in fact they are optimal
TSP tours, since it it easy to verify that all possible tours have a
length at least as large as 13.206).

® if p < 1, the optimal TSP tour 3 is not the optimal PTSP tour

since then tour 4 has a smaller expected length.
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D.2 m=1, n=4, coverage probability p:

Considexr the following complete graph:

The distance matrix D (euclidean) is as follows:

d(1,2) = 4

a(1,3) = d(2,3) = d4(3,5) = d(4,5) = /5
a(1,4) = a(2,4) = /13

a(1,5) = d(3,4) = 2

d(2,5) = 25

Tours 1 and 2 are then such that:

O L) AT a5l <o

1 2

A N R R L
ng) - Léz) =4 - 275

EI I

1 2
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From the expressions of Chapter 2 we conclude, after some calculus,

that:

E(1q] - E(Lp] = p3[(375 + /73 = 10) - p(275 -4)]

Hence:

Vs + M3 -
® for p > 3vs + 113 LI 0.66
275 - 4

E[(Lq] - E[Lp] < O

implying 1 is "better"™ than 2 (in fact, 1 is the TSP tour)

® if p < 0.66,

2 is "better" than 1

Q.E.D.
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APPENDIX E

Calculus Associated with the Asymptotic Behavior of the

Star-Shaped Construction

In this appendix, we provide the detailed calculations associated

with the proof of Lemma 3.11 (refer to the text for definition).

E.1 Choice of d, so that L;O) = L£°) for all n

[Comment: L(o) = L(o)

N b means that both a and b are optimal TSP tours;

however Lemma 3.11 shows that tour b is much better than tour a with
respect to the PTSP (end of comment)]

In the text we showed that:

(o) _ . _4yv(1

1% = (n 1)(n + dz) + 20 (E.1)
(o) _

Lb = 2n® (E.2)
= E—EI%;7; ["(1/n)2+dg—(2/n)d2 cosﬂ/n] (E.3)

By replacing (E.3) in (E.1) and (E.2), Léo) = Léo) can be expressed as:

Q% +d,) sin/n = F/n) Z+aZ-(2/n)d, cosi/n (E.4)

By taking the square of both sides of (E.4) we can then solve for dy and

we obtain:
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1
4, == (kn - Y&nZ_7) (E.5)
T/n- 27
where Kn = 1+cosT/n-cos<T/n
cos2m/n

E.2 Limiting behavior of r'T), 1{¥)
b a

(r),
(1) Lb :

We have (from the construction of an n-~gon)

LT - 2pal®) (E.6)
b
where ot 1 [V(l/n)2+d2-(2/n)d cos(2r—1)“/n] (FE.7)
2 sinT/n 2 2 '
let a = cos-% b(r,n) = cos((2r-1)ﬂ/n) (E.B)'

Then after some manipulations (E.5), (E.6), (E.7), and (E.8) imply that:

(T=a_)(1+a )

Lér) = /&8 (E.9)
where

4 2,2 2 2 2

. - an + (1+an-an) +(1-an)(1+2an)-2b(r,n)an(1+an-an)
a 4
an(1—an)(1+an)
(E.10)
14+2a

2 n 2 2
B = X [b(r,n)an - (1+an-an)]

n
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When n » «: b(r,n) » 1 (for any finite r)
an + 1

® 1In fact when n +» o

2.2
21— L
b(r,n) ~ 1 _%
2n
1 r
a ~ - ———
n 2n

which implies:

2 2, _ (1
b(r,n) a - (1+an-an) = 0( )

2
n
¥1-a_ = Ocl)
n n
Hence 1lim B = 0 (E.10)
N o

® Also when n 3 o

N

b(r,n) ai§1+an-ai) ~ 1 = ((20-1)241)

N

2n

212
ah - 1 - 2
n

2
w

(1—a2)(1+2a ) ~-1—-
n n n2
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which implies:

2
i
— ((20-1)2+3)
n
A ~e
72 2 om2
— (2 - ——2')(1 - ‘—2]
2n 2n n
Hence 1im A = (2r—-1)2 + 3 = 4(r’-r+1) (E.11)
n-+w

Finally (E.9), (E.10), and (E.11) imply:

lim Lér) = 2Vr2 for any finite r

n+wo

(as claimed in the text)

. (r)
(ii) La

This case is much easier than the previous one: for finite r and n + «

L(r) behaves as twice L(r) of Lemma 3.10
a 0,t4
hence 1lim L;r) = 2(r+1) for any finite r
n-+o

E.3 The final step
n-2 5 (r)

We have E[Lt] = Z o) (1-p)r Ltr for t = a or b
r=0

Since for any 0 < p < 1 we have

1im 2(1-p)T (r+1) =0
r+o
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and 1im 2(1-p)" YrZ-r+1 = 0

I+
then
o0
lim B{L_] = ] 2p2 (1-p) E(z+1) = 2 (E.12)
n»o r=0
lim E[Lb] = z 2p2(1—p)rVr2-r+1 (E.13)
n 4o r=0
Since r-1 < Ye2r+1 < r

(E.13) becomes:

) < 1im E(L, ] < =2 (E.14)

2
( 1 p(1-p)
2 - 2-p
n+o

2-p 2-p
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APPENDIX F

The Three Mathematical Programming Formulations of the PTSP

In this appendix we present the three mathematical programming
formulations of the PTSP in the context of a graph G with n white nodes
and no black node. This is followed by a numerical table comparing the
number of variables and constraints in those formulations for some chosen

values of n. The definition of the variables is contained in section

5.2.
Fy1: 1Integer Nonlinear Programming Formulation:
n n np.2
Minimize DY L e ac,y xg)
i=1  j=1 =0
subject to: x{c};) = x4 (1,5 ¢ [1..n])
(r) =%
x{3 = Xiky Xkqky ** Xkpd (r ¢ [1..n=2])
k1,..,kr ’ ’j [ [‘--n])
n
2 Xj4 =1 (j e [1..n])
i=1
n
2 Xj4 =1 (L e [1..n])
j=1

X = (xij) e S

X34 = 0 or 1 (1,3 ¢ [1..n])
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Fp: Mixed Integer Linear Programming Formulation:

n n n-2
Minimize Z Z X ar da(i,j) xig)
i=1 3=1 «r=0
subject to: (o) =
Xij T %45
n
z xij =1
i=1
n
z xij = 1
i=1

(r) (r-1)

L (r=1)

ik + xkj -1« xij < 1 + xik - Xkj 1 <k <n
(r € [1..n—2])
1tj € [1..n]
X = (x54) €S
X34 = 0 or 1 (1,5 € [1..n])
xig) continuous (r ¢ [1..n=2], 1,5 € [1..n])

F3: Pure Integer Linear Programming Formulation:

n n. . p.2

Minimize ) ) @ da(i,3) xi;’
1=1 §=1 1r=0

subject to:’ (o)

(3 ¢ [1..n])

(i e [1..n])

(1,3 ¢ [1..n])
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n
z xi- =1

i=1 )

n

z xij = 1

3=1

(r) (r-1)
xij <1 - zij
xi§) <1 + z§§—1)

(r) (r) (r)
15 o+ B

0L(z")

Bi’j” >% [1 - (n-1) 2,3

n
(r-1) = (x-1)
zij (kz k(x

X = (xij) e S
Xjj = 0 or 1

{¥) qlx) glx)

150 %15 0 Piy =0 or 1

(3 € [1..n])

(L e [1..n])

(r € [l..n-z])
i’j e [1..n]

(1,3 € [1..n])

(r € [1..n-2])
i.j € [1oon]
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APPENDIX G

A General Branch-And-Bound Scheme for the PTSP

In this appendix we provide a general branch-and-bound scheme for
the PTSP based on subsection 5.2.3.B. We expraess this scheme in terms of
"pidgin algol", an informal language, as introduced in Papadimitriou and
Steiglitz [1982]. For the reader familiar with Pascal, Algol, or PL/I,
this language should be easy to understand.

This scheme is adapted from the basic branch-and-bound algorithm
given in Papadimitriou and Steiglitz [1982].

The additional notation is:

®,: weight of L:OL as in Chapter 3.

’

Ei: expected length in the PTSP sense of child i

n-1 (r)
h: lower bound on Z a 1
r=1 r 1,t

’
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begin
activeset: = {0}; (comment: "0" is the original problem)
U: = o
currentbest: = anything;
while activeset is not empty do
begin
choose a branching node, node k ¢ activeset;
remove node k from activeset;
generate the children of node k, child i, i=1,..,nq,
and the corresponding lower bounds, zj;
for i=1,..,n d4
begin
if =z >'%:E.£EEE kill child i
o
else if child i is a tour then
compute Ej
if E; < U then
U: = Ej, currentbest: = child i
else add child i to activeset
else add child i to activeset
end

end

end

Note: to obtain zj; one can use any method developed for the TSP (for

example Held and Karp [}970], [19711)

L‘- o e 3 ) e B
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APPENDIX H

The Inadequacy of a Dynamic Programming Approach for the

PTSP: A Simple Example

This appendix contains a numerical and graphical example
corresponding to the discussion contained in 5.2.3.C.

Consider the following complete, undirected, weighted graph:

Claim:
Assume the "coverage probability" p=0.5 for nodes 3,4,5 (node 1 is
the depot). Then using the terminology developed in subsection
5.2.3.C and applying the recursive formula given in (5.30) we

obtain:

E({3,4,5},2) = 287.5

and this corresponds to the "optimal" path (2,3,5,4,1). However the
expected length (in the PTSP sense) of the path (2,3,4,5,1) is 286

and this contradicts the validity of (5.30).
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Proof: Let us first compute E({3,4,5},2) by using (5.30)
(1) o = ¢:

E($,2) = 243; E($,3) = 210; E(%,4) = 89; E(9,5) = 89

(2) o = {3}

e({3},2) = 255.5; E({3},4) = 219; E({3},5) = 216; E({3},1) = 210

(3) o = {a}

E({a},2) = 246; E({4},3) = 219; E({4},5) = 129; ®((a},1) = 89

(4) o = {5}

E({5},2) = 255; E({5},3) = 216; E({5},4) = 129; E({5},1) = 89

(5) o = {3,4}

E({3,4},5) = min{240.5,257.5} = 240.5 <-> "opt." path (5,3,4,1)

(6) o = {3,5}

E({3,5},4) = min{242;257.5}

242 <-> "opt." path (4,3,5,1)

(7) o = {4,5} :

I

E({4,5},3) = min{242,240.5} = 240.5 <-> "opt." path (3,5,4,1)

+

(8) ¢ = {3,4,5}
E({3,4,5},3) = min{287.5;333.25;340} = 287.5

and the corresponding "opt" path is h*=(2,3,5,4,1)

To compute the expected length of the path h = (2,3,4,5,1) one can

use results from Chapter 2 (with two black nodes)
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We have L = 366
hy
L) 2 529
hy
(2) _
Lh1 784
(3) _
Lh1 243

(0.5)2 [366+(0.5)529] + 0.53(784+243)

Hence E[Lh1]

286

1

0.E.D.
Note:
It is not valid to use (5.30) to derive the optimal path but it is
valid to use it to obtain the expected length of a path. For example one

can check that E[Lhx] is indeed 287.5 by using techniques from Chapter 2.
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