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ABSTRACT

Large food-service companies typically support a wide range of
operations (catering, vending machines, repairs), each with differ-
ent operational characteristics (manpower, vehicles, tools, timing
constraints, etc.). While the advances in Internet-based technolo-
gies facilitate the adoption of automated scheduling systems, the
complexity and heterogeneity of the different operations hinders
the design of comprehensive optimization solutions. Indeed, our
collaboration with Compass Group, one of the largest food-service
companies in the world, reveals that many of its workforce assign-
ments are done manually due to the lack of scheduling solutions
that can accommodate the complexity of operational constraints.
Further, the diversity in the nature of operations prevents collab-
oration and sharing of resources among various services such as
catering and beverage distribution, leading to an inflated fleet size.

To address these challenges, we design a unified optimization
framework, which can be applied to various food-service oper-
ations. Our design combines neighborhood search methods and
Linear Programming techniques. We test our framework on real
food-service request data from a large Compass Group customer,
the Puget-Sound Microsoft Campus. Our results show that our ap-
proach scales well while yielding fleet size reductions of around 2x.
Further, using our unified framework to simultaneously schedule
the operations of two different divisions (catering, water distribu-
tion) yields 20% additional savings.
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1 INTRODUCTION

Operations routing and scheduling are at the core of diverse appli-
cations, including technician scheduling [34], health-care personnel
assignment [15], airline planning [3] and more. The automation
and the optimization of the underlying tasks is crucial both for
attracting and retaining customers, as well as for maintaining low
operation costs [8, 11, 12, 24]. An increasingly important sector
which has hitherto received less attention in the literature is non-
commercial food-services – distributing and serving food and bev-
erages for large organizations that span over multiple buildings
in the same geographical area. Examples for such organizations
include large enterprises and university campuses. The market-size
for this sector was estimated around 200 billion dollars already in
2012 [33].

The goal of this paper is to find automated and systematic ways
to optimize such onsite food-service operations. As we elaborate

below, some of the underlying operations give rise to very com-
plicated combinatorial optimization problems that, to the best of
our knowledge, have not been explicitly considered in prior work
(see §5 for discussion). Further, the diverse nature of the different
operations (e.g., food catering vs. water/beverage distribution) of-
ten forces the maintenance and management of independent fleets
for each service. This leads to inflated fleet sizes, and in turn, high
capital expenditures and maintenance costs.

Our study is particularly inspired by observing and analyzing
the onsite food-services within our own campus, the Microsoft
Puget Sound campus, which accommodates tens of thousands of
Microsoft employees. Geographically, the campus includes more
than 100 buildings spread over an area of around 200 square miles in
West Washington state (see Figure 4). The food-service operations
in our campus are run by Compass Group – a large field service
company, which employs many thousands of people worldwide.
Compass Group (or Compass in short) focuses mostly on food
services, including enterprise dining, catering events, water and
beverage deliveries and refills, vending machines, but also provides
other services such as facility repairs.

Due to the scale and complexities involved, the responsibility
for the different services across the Microsoft campus (and in other
similar-size campuses) is divided across multiple divisions (e.g., a
division in-charge of catering, and another in-charge of purified
water distribution). The different divisions operate independently,
each managing its own personnel, vehicles and equipment. The
planning and scheduling problems for the different divisions share
some common characteristics, such as dispatching “resources” (per-
sonnel, food) across geo-distributed locations. However, there are
substantial differences in the underlying complexity. For example,
the water distribution division manages periodic pickup and de-
livery of water containers, which can be fulfilled by a fairly static
schedule. On the other hand, the catering division manages a di-
verse set of events, each with its own set of requirements with
respect to food, staffing skillset (driver, bartender, etc.), equipment,
as well as timing of the pickup, dropoff and cleanup.

Because the various services have such different operation mod-
els, each Compass division employs its ownmanaging methodology.
In fact, most divisions resort to manual scheduling processes, done
by domain-expert dispatchers. We have teamed up with Compass
to first analyze the efficiency of their operations. In particular, we
have installed IoT-devices on Compass’ vehicles, tracking location
and speed. Our analysis of the location traces indeed reveals that
the manual process results in inefficient utilization of vehicles (§2).

As a first step towards our solution, we aim to formulate the
optimization problems pertaining to Compass’ operation. Towards
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Figure 1: Operation templates.

that end, we introduce a small number of templates (see Figure 1)
that characterize the different operations. Each template consists of
a sequence of steps (or work-items) that are required to be carried
out in a specific order in order to complete a task (delivery, repair,
event). Each of the steps may require a combination of vehicles
and/or employees with certain characteristics. The generality of
the set of templates forms an umbrella that covers the different
operation types, where every task of a division can be classified
into one of the templates. The idea behind the templates is to ap-
proach the underlying optimization problem with a unified scheme,
without requiring separate solutions for each scenario.

Based on the template specification, we target the design of algo-
rithms that would provide high-quality solutions for the different
operations. Our main focus is on the scheduling of catering events,
which turns out to be the most challenging optimization problem
across the divisions of Compass. Each catering event can be mod-
eled by Template 4 (Figure 1): the first steps consist of delivering
the food items and appropriate equipment to the event location; the
delivery may require specialized vehicles (e.g., refrigerator vehicles)
and employees with appropriate driving licenses. Then, the event
should be set up by personnel with proper domain knowledge and
experience. During the event itself, multiple employees may need
to be present, again with appropriate expertise (servers, bartenders).
Finally, clean-up and return of equipment to a depot are carried
out after the event is over. Employees may perform one or more
of these steps if they have the required expertise. Template 5 is
a generalization of this operation, which allows for an arbitrary
number of steps for an event.

The scheduling of catering events introduces several challenges.
First, there are strict precedence constraints between the differ-
ent stages, and some stages have strict timing constraints (e.g., an
event has to start exactly at 10am, and should be set up between
9:30am and 10am); for some stages, travel time has to be factored
in the timing considerations. Vehicles have capacity constraints
that need to be taken into account for the item transportation, and
employees with appropriate driving licenses must be assigned to
each vehicle trip. Further, the event itself requires the synchroniza-
tion and coordination of vehicles and manpower. For example, an
event may require both a bartender and a server to be present for
its entire duration. Only a subset of resources (vehicles, employees)

can carry out a certain step (e.g., only a small subset of employees
is trained to be a bartender). The combination of precedence and
timing constraints, along with coordinating and synchronizing a
heterogeneous set of resources gives rise to a very complicated
combinatorial optimization problem.

To address the optimization challenges, we design a search-
based algorithm which we term Unified Food-Service Optimiza-
tion (UFSO). UFSO builds on Adaptive Large Neighborhood Search
(ALNS), which has been shown to be effective for vehicle rout-
ing problems [28]. The ALNS method relies on repair and destroy
operators, which modify part of the schedule while maintaining
feasibility. Due to the timing complexities of our problem, standard
repair operators might not maintain a feasible solution. Conse-
quently, we design novel Linear Programming (LP) based repair
operators, which ensure feasibility throughout the search process.

We evaluate our algorithm through simulations on real data –
resources, vehicles, manpower, and event requests from Compass.
Our results suggest that our algorithm can be effectively used by
different divisions to schedule their daily operations. In particular,
we show that our algorithm obtains high quality solutions, by
comparing it against a theoretical lower bound for the problem.
From an operational perspective, we obtain a reduction of around
2x in the number of vehicles currently used by the catering division.
Finally, we show that optimizing the operation of two divisions
simultaneously (catering and water distribution) reduces the fleet
size by additional 20%.

In summary, our main contributions are:
• We analyze onsite food-service operations in a campus of
a large enterprise §2; the analysis builds on IoT-device data
that is collected in real-time from the vehicles.
• We formulate the optimization problem pertaining to onsite
food-services, and design algorithms that handle the complex
coordination of resources, vehicles and employees §3.
• Our simulation results using real request data point to sub-
stantial savings that can be obtained by adopting our opti-
mization approach within and across divisions §4.

2 BACKGROUND AND MOTIVATION

In this section, we provide a quantitative study of the operations of
onsite food services provided in the Microsoft Campus by Compass
Group – one of the largest food service companies in the world.

2.1 Food-services in Microsoft campus

Our focus is on two food service divisions – food catering and water
distribution. We start by providing their details and requirements.
Catering events. The fleet used for catering comprises a total of 37
vehicles including 30 small vans, each of capacity 100 units of items,
5 sprinters of capacity 500, and 2 large boxtrucks with capacity
1500. Each of these vehicles costs between 50,000-100,000 USD in
capital expenditure and recurring annual maintenance costs. The
staff comprises 59 employees with a diverse set of skills and level of
expertise. Each individual, depending on their level of experience,
might have one out of four catering roles: caterer, senior caterer,
caterer lead, or area manager. Skill diversification includes the
possession of a bartending license, as well as the driving skills. Each
employee may or may not have a driving license; driving the larger
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Figure 2: Number of catering events during the day.

Figure 3: Water distribution pickups/dropoffs during the

day.

trucks requires a special license. Furthermore, some employees
might only be eligible to perform event clean-up if they lack the
appropriate catering expertise to prepare an event.

Various types of items are required depending on the specifics
of the event. For instance, warm meals for lunch events, vs. ice
cream for social afternoon events. Since unit items require different
capacities in the vehicles, a pre-processing step is performed to
transform all item capacities into the same unit, which also facili-
tates their assignment to vehicles. For instance, warm food items
take double the space of the rest of the item types, so each warm
food item needs two capacity units of storage in the vehicles.

The division receives over a hundred event orders per day on
average with fairly diverse requirements. Figure 2 captures the
number of active orders during different hours of the day. As seen
from Fig. 2, the load peaks around lunch time, but is also substantial
at breakfast times. Currently, given the complexity of the oper-
ations and non-availability of solutions that accommodate these
complex constraints, schedules and assignments for the next day
are generated manually every evening incurring approximately ten
man-hours; the dispatchers try to increase efficiency by grouping
buildings and events that are close by.
Water Distribution. This division is responsible for refilling water
dispensers in a fixed set of office buildings twice a day - morning
and before lunch. New dispensers are unloaded and any old ones are
loaded back into the vehicle – a process that takes an average time
of approximately 20 minutes. At the end of the day, the dispensers
are collected for cleaning in the night. The only skill required for
personnel in this division is driving. Consequently, the schedules
for this division are usually static. Fig. 3 captures the number of
water distribution events that takes place over the day.

Opportunities for inter-division fleet sharing. As seen from
Figures 2–3, the diurnal load distributions are fairly complementary.
For example, while catering load peaks at 12 PM, water distribution
load is almost lull between 12PM-8PM. Similarly, there are almost
no catering events after 8:00 PM, while water distribution is very
common in these hours. Furthermore, we have observed that at
any point in time, at least half of the total vehicles for these two
divisions remains unused (i.e., parked in the depot). This indicates
that having a single pool of vehicles for the two divisions and jointly
scheduling them may lead to significant reduction in fleet size.

2.2 Understanding Inefficiencies via Real Time

Location Tracking

The common challenge among Compass’ operations lies in effi-
ciently assigning resources to geographically distributed customer
locations. Our engagement with Compass started a few years ago,
where the initial motivation was to learn more about their opera-
tions via a data-driven approach. Towards that end, we installed IoT
devices on Compass’ vehicles that serve the Microsoft Puget Sound
campus. The devices generate information periodically about the
GPS location and the vehicle speed. The information is transmitted
in real-time using novel low-cost long range wireless technology,
which is described in [17], allowing us to obtain locations at a very
fine granularity (10 second intervals).

Figure 4 shows the corresponding geographic area and the cam-
pus locations, which are the targets for the different food-delivery
operations. Figure 5 aggregates all vehicle trajectories, where darker
colors indicate road segments with more vehicle trips. To gain fur-
ther insights about the efficiency of Compass’ operations, we have
analyzed utilization data obtained from the IoT devices. In particu-
lar, the devices send an “alive” signal whenever the vehicle is active.
An active vehicle is defined as a vehicle that is either in transit, or
static for some operational purpose (e.g., unloading food or equip-
ment). An example of a real-time snapshot of the vehicle locations
is shown in Figure 6, where we distinguish between active vehicles
(green) and non-active ones (purple).

The overall activity of the entire fleet provides a good measure
for the vehicle usage efficiency. Figure 7 shows the percent of ac-
tive vehicles across the fleets of both catering events and water
distribution. As can be seen from the figure, even at peak periods,
the percentage of active vehicles is less than 30%. Our interviews
with the human schedulers indicate that a large fraction of this
inefficiency is due to the inability of humans to generate schedules
where a single vehicle serves multiple buildings in a single trip. This
is due to the complex requirements of the catering division, com-
bined with lack of vehicle sharing among the various organizations.
Thus, vehicles simply wait at various locations for several hours
until specific events are over when they could be potentially used to
serve other events. While these observations highlight the potential
for reducing the fleet size, sophisticated optimization techniques
are required to schedule the different tasks while ensuring that all
requirements are met.

2.3 The Optimization Problem

At a high level, an optimization problem involving the more compli-
cated templates of Figure 1 can be described as a capacitated vehicle
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Figure 4: Microsoft campus locations Figure 5: Vehicle trace heatmap Figure 6: Real time vehicle locations
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Figure 7: Active trucks as measured by our IoT devices.

routing problem with time-windows, precedence, service duration,
skills, workforce scheduling, driver assignment, and synchroniza-
tion. For simplicity of exposition, we use the term “event” to refer
to any type of operation (Templates 1-5). Given a set of events, the
objective we are mainly focusing on is to maximize the number of
events that are successfully served while minimizing the number
of vehicles used; we also incorporate travel-time minimization, but
give it less weight in the objective.

The formulation of such a problem must exhibit a high level of
flexibility in choosing routes and must be able to easily express the
extensive coordination requirements. We can formally define the
problem using a MILP model on a time-expanded network. The
nodes in our network correspond to each work-item in every event
at every time point in the specified discretization 𝑇 . For example,
𝑇 might be defined by uniformly partitioning the time horizon,
determined by the earliest and latest time-windows of the steps
in the requested events. The resulting MILP formulation is fairly
involved technically. As the problem description can be inferred
from the template definitions (and accompanying descriptions), we
defer the MILP model description to Appendix A. Unfortunately,
this MILP model is intractable for anything but trivial problem
instances. Hence, we develop UFSO – an algorithm that uses LP
within a neighborhood-search meta-heuristic, allowing us to scale
to practical problem sizes.

3 OPTIMIZING EVENT SCHEDULING

3.1 Adaptive Large Neighborhood Search

(ALNS)

ALNS is a meta-heuristic proposed by [31], originally designed
for solving the Pickup and Delivery Problem with Time Windows.
Starting from a feasible state, it iteratively destroys and repairs the

current solution, searching for an improvement. The destroy-repair
pair of operators is chosen from a customized set of procedures, and
the probability of choosing a pair is based on its success in previous
iterations (i.e. it adaptively updates the weights). The iterations
are embedded in a simulated annealing framework. Termination
is typically after either reaching a timeout or a pre-determined
number of iterations.

A brief description of ALNS is provided below:

(1) Select a destroy operator D and a repair operator R as a function
of their weights (details below).

(2) Using D, remove a number of requests from the schedules of
the current solution.

(3) Using R, attempt inserting any unserved requests to the partial
schedules obtained in Step 2 until obtaining a new feasible
solution.

(4) If the new solution is better than the current one (the incum-

bent), accept the new solution. If the new solution is worse than
the current one, accept it with certain probability. If the new
solution is accepted, it becomes the incumbent.

(5) Update the selection weights for the operators.
(6) If the new solution is the best discovered so far, update the

global best solution.

We next provide some additional details on the different selec-
tion mechanisms. Suppose the goal is to maximize an objective
𝑓 (·). In each iteration, the solution 𝑠 ′, having a worse objective
value, may replace the incumbent 𝑠 with probability 𝑒 (𝑓 (𝑠

′)−𝑓 (𝑠))/𝑇 .
𝑇 is a temperature parameter, which is reduced after each itera-
tion by a multiplicative factor 𝛼 < 1. A similar notion of gradual
temperature cooling is used in other search-based heuristics, such
as simulated annealing. The high-level idea here is to judiciously
control the level of exploration, and to restrict attention to the
best-valued solutions as time progresses. For the operator selection,
we maintain weights 𝑤𝑑𝑟 for each pair of destroy-repair opera-
tors (𝑑, 𝑟 ). In each iteration, each pair of operators is chosen with
probability 𝑝𝑑𝑟 = 𝑤𝑑𝑟 /

∑
𝑑′∈𝐷

∑
𝑟 ′∈𝑅 𝑤𝑑′𝑟 ′ . Weights do not remain

constant during the execution of the algorithm; they are updated
based on the quality of the solutions that were generated through
their use. The weight of the used pair of operators is updated via
𝑤𝑑𝑟 := 𝛾 ·𝑉 + (1−𝛾) ·𝑤𝑑𝑟 , where 0 < 𝛾 < 1 is a fixed constant, and
𝑉 is a “score” that is determined by the iteration outcome (in de-
creasing quality order: new best solution found, better-than-current
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(a)Wewould like to insert (I) at the vehicle’s schedule at the position

seen above.

(b) (I) can be inserted, but would lead to a delay of (B) in the vehi-

cle’s schedule. Because (B) is also served by the employee, one must

verify that the employee can accommodate (B)’s new start time.

(c) Even if the employee can serve (B) at its new time, we now need

to adjust the timing of an additional work-item (F).

Figure 8: Domino effect due to work-item insertion.

solution found, new solution was accepted, new solution was re-
jected); 𝛾 and the specific values used for𝑉 are parameters set prior
to execution.

3.2 Coordination across Resources

3.2.1 The challenge. ALNS has been successfully applied to sev-
eral variants of the Vehicle Routing Problem (VRP), however the
event scheduling problem is inherently more complicated due to the
coordination and synchronization across vehicles and employees.
Consequently, the typical ALNS repair/destroy operators for VRP
are not appropriate for our setting. In traditional VRPs, each cus-
tomer request is uniquely served by a vehicle, i.e., vehicle schedules
are independent. When a route is modified, no other schedule is
affected, and so it is easy to check for validity.

However, in the catering event domain, resources are coupled
through the tasks they need to satisfy. Suppose the work-item𝑊

depends on two resources, 𝑅1 and 𝑅2 (simultaneously). If an addi-
tional task is assigned to 𝑅1, which causes a feasible delay to𝑊 – it
is entirely possible that a completely different task (assigned to 𝑅2),
becomes infeasible due to this delay. See Figure 8 for a concrete
example. In this example, the insertion of one work-item creates
a domino effect of changes on multiple resources. More generally,
such domino effect might result in an infeasible schedule. Unfortu-
nately, it is not straightforward to check whether an insertion of a
work-item results in a feasible schedule. We propose an efficient
method based on Linear Programming (LP), which we describe
next.

3.2.2 The method: Global Schedule Coordinator (GSC). The idea
behind our approach is to decouple the combinatorial decisions (e.g.,
which resource performs which work-item) from the timing con-
siderations (e.g., time-window and coordination constraints). This
separation enables us to design a tractable algorithm for checking
the feasibility of an entire solution; we call this algorithm the Global
Schedule Coordinator (GSC).

Let 𝐾 be the set of resources available in our system. Our com-
binatorial solution gives the schedule 𝑆𝑘 for each resource 𝑘 ∈ 𝐾 .
Each schedule is an ordered sequence of work-items, but can also be
viewed as a list of pairs of consecutive work-items (i.e., 𝑆𝑘 ⊂𝑊 ×𝑊 ).
Given these schedules, GSC will output a suitable timing (e.g., start-
time for each work-item) or otherwise indicate infeasibility, by
solving the Linear Program (1)-(6). The variables 𝑡𝑤 ≥ 0 corre-
spond to the start-time of each work-item𝑤 ∈𝑊 . Since the main
goal of GSC is to verify feasibility, the objective function (1) can, in
principal, be arbitrary. However, to find compact timings for sched-
ules that reduce idle time, we minimize the difference (in time)
between the first and last work-item of each event 𝑒 ∈ 𝐸. That is,
𝑡𝑤 (𝑒) and 𝑡𝑤′ (𝑒) denote the start-time of the first and last work-item
of 𝑒 , respectively. We assume such ordering always exists and each
event has at least two work-items, as is the case in all templates
(Fig. 1). The constraints ensure that all time requirements are taken
into account. In particular, Constraints (2) and (3) enforce that the
time windows (𝑡𝑤 , 𝑡 ′𝑤) for each work-item 𝑤 ∈ 𝑊 are satisfied.
Constraints (4) take into account precedence requirements among
work-items, with 𝑙𝑤 denoting the duration of𝑤 ∈𝑊 , and 𝑃𝑤 the
set of work-items dependent on completing𝑤 . Finally, (5) ensures
that each resource schedule 𝑆𝑘 accounts for both work duration
and travel time, 𝜏 (𝑤𝑖 ,𝑤𝑖+1) , between consecutive work-items. Co-
ordination of multiple resources is implicitly enforced via shared
timing variables 𝑡𝑤 ; if𝑤 requires multiple resources, (the same) 𝑡𝑤
would appear in multiple constraints (5) for the different resources
involved. We note that additional application-specific timing con-
straints can be easily incorporated into GSC, such as enforcing a
minimum break between consecutive work items, or a maximum
period that a vehicle can be away from the base location.

min
∑
𝑒∈𝐸

(
𝑡𝑤′ (𝑒) − 𝑡𝑤 (𝑒)

)
(1)

𝑡𝑤 ≥ 𝑡𝑤 ∀𝑤 ∈𝑊 (2)

𝑡𝑤 ≤ 𝑡 ′𝑤 ∀𝑤 ∈𝑊 (3)

𝑡𝑤𝑖
+ 𝑙𝑤𝑖

≤ 𝑡𝑤𝑗
∀𝑤𝑖 ∈𝑊,𝑤 𝑗 ∈ 𝑃𝑤𝑖

(4)

𝑡𝑤𝑖
+ 𝑙𝑤𝑖

+ 𝜏 (𝑤𝑖 ,𝑤𝑖+1) ≤ 𝑡𝑤𝑖+1 ∀𝑘 ∈ 𝐾, (𝑤𝑖 ,𝑤𝑖+1) ∈ 𝑆𝑘 (5)

𝑡𝑤 ∈ R+ ∀𝑤 ∈𝑊 (6)

It is easy to see that feasible timings remain feasible when work-
items are removed (i.e., by destroy operators). Thus, GSC is only
required when inserting work-items (i.e., repair operators). As de-
scribed above, if an insertion is feasible, GSC will output the timing
of the work-items. However, if the LP is infeasible, the insertion
is aborted. From a practical perspective, we note that each update
of the schedule typically adds or removes only a small number of
constraints. Consequently, one can use the previously obtained
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solution as warm start to an LP-solver, which results in very ef-
ficient running times, even in case of infeasibility. To be able to
consistently leverage warm-start, we run GSC also for deletions
(although it is not necessary for feasibility). See Section 3.4 for
additional algorithmic enhancements.

3.3 UFSO Design

In this section, we focus on the combinatorial decisions, which are
later verified by the GSC. We start with the design of the various
repair and destroy operators of UFSO, and then describe how these
operators are used in conjunction with GSC.

3.3.1 Operators. Operators must be simple to allow for many quick
iterations, and they should include some form of randomness to effi-
ciently explore the search space. We design the following operators
based on these principles.
Destroy Operators. RANDOMEVENT REMOVAL: chooses a random
number, selects uniformly the corresponding amount of events, and
then removes all work-items (in these events) from their associated
schedule(s). VEHICLE SCHEDULE REMOVAL: instead of removing
events at random, this operator selects a random number of ve-
hicles, and clears their entire schedule. The vehicles are chosen
in an increasing order of their schedule load; the idea here is to
have a manageable number of work-items, which would likely be
accommodated later by the remaining vehicles.
Repair Operators. EARLIEST SCHEDULE INSERTION: for each un-
served work-item, this operator iterates over all compatible vehicles
and employees in a random order, and tries to insert the work-
item in their schedule at the earliest valid position; accounting for
time-windows helps to quickly skip over invalid insertions. BEST
SCHEDULE INSERTION: iterates over all compatible vehicles in a
random order, and tries to insert the work-item in their schedule
at the position that minimizes its travel time. OPTIMAL RESOURCE
REUSABILITY INSERTION - EARLY: it maximizes the load of already
active resources, before assigning any work-items to resources with
empty schedules. In particular, for each work-item, the active vehi-
cles are examined in random order; for a given active vehicle, the
operator attempts to insert the work-item at the earliest valid posi-
tion. OPTIMAL RESOURCE REUSABILITY INSERTION - BEST: similar to
the previous operator, it first tries to maximize the load of already
active resources, but the work-item is inserted at the schedule posi-
tion that minimizes the vehicle’s travel-time. Note that we don’t
use these operators for employee assignment, as we often wish to
have balanced workload among the employees.

3.3.2 Initialization of UFSO. We initialize the GSC by adding all
variables 𝑡𝑤 for each work-item𝑤 ∈𝑊 . We also add the time win-
dow constraints (2) and (3), as well as the precedence constraints
between work-items of the same event that have explicit ordering
requirements (4). Note that these constraints are static, i.e., inde-
pendent of the schedule. Finally, starting with an empty schedule,
we apply the repair operators until a feasible solution is obtained;
this would be the initial solution for UFSO.

3.3.3 UFSO iteration. Each iteration of the algorithm follows the
steps outlined in Section 3.1. We next provide additional necessary
details for Steps 2 (destroy) and 3 (repair); we start by describing

the repair step, as the destroy step is simpler and would be better
understood after reading about the repair step.

Step 3: Repair. Let 𝑃 denote the current plan which consists of
resource schedules that may only support a subset of the events.
Starting with a random permutation of all these unsatisfied events,
we try to add them to 𝑃 , one work-item at a time, until all their
requirements have beenmet. In particular, for each unsatisfied event
𝑒 , Algorithm 1 InsertEvent(𝑃 , 𝑒) is used to determine if there are
available vehicles, drivers, and employees (caterers, etc.) to cover
the needs of all of its work-items. If at least one of the required
resources is missing for any of the work-items, the insertion of 𝑒
fails, and the entire event is removed from 𝑃 .

Algorithm 1: InsertEvent(𝑃 , 𝑒)
1 for𝑤 in 𝑒 .workitems
2 if not InsertVehicle(𝑃 ,𝑤 ) or not InsertDriver(𝑃 ,𝑤 ) or
3 not InsertEmployee(𝑃 ,𝑤 )
4 return false;
5 return true;

Algorithm 2 presents the vehicle search for some work-item
𝑤 when the selected repair operator inserts steps at the earliest
possible schedule position (operators that insert at the best posi-
tion are based on similar ideas). The first action is to retrieve the
coupled (dependent) work-items of𝑤 that must be assigned to the
same vehicle. An example includes loading items at the depot and
unloading them at the event location. Then, SelectVehicles() selects
and sorts the candidate vehicles in accordance with the chosen re-
pair operator (either random vehicle selection or optimal resource
reusability).

Algorithm 2: InsertVehicleEarliest(𝑃 ,𝑤 )
1 𝑤𝑜𝑟𝑘𝑖𝑡𝑒𝑚𝑠 ← GetCoupledWorkItems(𝑤 )
2 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 ← SelectVehicles()
3 for 𝑣 in 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠
4 if NotVehicleShortage(𝑤𝑜𝑟𝑘𝑖𝑡𝑒𝑚𝑠)
5 break

6 for index 𝑖 in 0 to 𝑣 .ScheduleLength
7 canInsert← 𝑣 .TryInsert(𝑤 , 𝑖 ,𝑤𝑜𝑟𝑘𝑖𝑡𝑒𝑚𝑠)
8 if not canInsert
9 continue

10 feasible← UpdateGSC(𝑣 ,𝑤𝑜𝑟𝑘𝑖𝑡𝑒𝑚𝑠)
11 if not feasible
12 RevertChanges(𝑤 , 𝑖 ,𝑤𝑜𝑟𝑘𝑖𝑡𝑒𝑚𝑠)
13 continue

14 if NotVehicleShortage(𝑤𝑜𝑟𝑘𝑖𝑡𝑒𝑚𝑠)
15 return true
16 return false

For each vehicle, we iterate sequentially through its schedule
and, for each position, TryInsert() checks if the current vehicle load
and capacity suffice for the new items, as well as if the time window
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of the current work-item is compatible with the time windows of
the preceding and subsequent work-items in the schedule. It also
tries to find compatible positions for all coupled work-items under
consideration. We then proceed to UpdateGSC() which updates
the schedule precedence constraints (5). In particular, assume a
work-item is added at the 𝑖-th position of a resource schedule. Let
that work-item be denoted with 𝑤𝑖 . If 𝑤𝑖 is not the last step of
the schedule, then we need to ensure that there is enough time to
complete𝑤𝑖 and travel to𝑤𝑖+1 on time by adding the precedence
constraint (5) for work-items 𝑤𝑖 and 𝑤𝑖+1. Similarly, if 𝑤𝑖 is not
the first step of the schedule, a precedence constraint (5) needs to
be added for𝑤𝑖−1 and𝑤𝑖 . Finally, if𝑤𝑖 is inserted in the middle of
the schedule, the previous precedence constraint between𝑤𝑖−1 and
𝑤𝑖+1 needs to be removed, since it is no longer necessary. Removing
redundant constraints at each schedule change is important in order
to make it easier to insert and remove steps in future iterations, as
well as to keep the model at the smallest possible size. If the GSC
cannot find an optimal solution after the update, RevertChanges()
brings the schedules and the LP model to their pre-insertion state.

Once the vehicle requirement has been completed successfully,
we search similarly for a driver for the vehicle we just selected,
as well as for employees that are needed for the work-item. To
simplify the search, we assume that employees who are not driving
a vehicle can be transported via passenger vans (as is the case in
Compass), which are not explicitly scheduled in our model.

Step 2: Destroy. This step removes a subset of work-items in
accordance with the chosen destroy operator. The work-items are
removed from all resource schedules that they participate, and the
GSC is updated accordingly in order to remain up-to-date with
the current solution. The updates are analogous to the ones we
described for Repair, e.g., if𝑤𝑖 is removed and it is not the first/last
work-item, we add the precedence constraint for𝑤𝑖−1 and𝑤𝑖+1.

3.4 Performance Enhancements

We conclude this section by briefly describing some algorithmic
enhancements that we use for accelerating the run-time of UFSO.

3.4.1 Accelerated abort. For any insertion, we perform some quick
checks that may lead to a quicker determination that the solution is
infeasible. In particular, we examine whether the individual sched-
ules are feasible. Because we examine each resource in isolation,
we do not need to solve an LP, but rather go over the work-items in
sequential order and check that time windows and precedence con-
straints are satisfied. If a single resource fails this check, insertion
is aborted. Otherwise, GSC solves the LP as described in Sec. 3.2.

3.4.2 Batch Insertions. The idea behind batch insertions is to use
the GSC in order to confirm multiple insertions with a single in-
vocation to the LP. In particular, we perform several accelerated
insertions as described above, and if they all pass, we update the LP
model with all changes, and run it once. If a feasible solution exists,
then all pending insertions are added successfully to the solution,
otherwise they are all rejected (since it is not known which inser-
tions affected feasibility). The batch size naturally has an impact
on the effectiveness of batch insertions. Intuitively, as the schedule
becomes “busier” it is harder to insert large batches simultaneously.
Based on this intuition, UFSO determines the batch size adaptively,

using the following simple approach. UFSO initiates the batch size
to a large value, and reduces it gradually in case GSC rejects the
solution; the reduction rate is a tunable parameter.

4 EXPERIMENTAL RESULTS

In this section we demonstrate the efficacy of our methods by
employing them on a week-worth of real event data obtained from
Compass for two different divisions – food catering (FC), and water

distribution (WD); see Section 2.1 for the operational characteristics
for both divisions.

4.1 Experimental Setup

Problem instances. In our default setting, each problem instance
consists of a one-day worth of request data. The only exception is
§4.2.1, in which we construct small instances from existing data to
compare against a lower bound.
Objective. Given that each vehicle costs between 50,000-100,000
USD, a key goal for Compass is to better utilize their vehicles which
would lead to fleet size reductions. We choose to add the number of
served events in the objective as well (and not in the constraints) as
it allows UFSO to expand its search on a larger feasible solution set.
Therefore, we maximize a hierarchical objective consisting of the
number of served events, the number of vehicles, and their travel
time, with coefficients set to 100, -1, and -0.0001, respectively.
UFSO parameters. The initial temperature parameter is set to
10% the objective value of the initial solution of the algorithm.
The temperature is multiplied by 𝛼 = 0.999 in each iteration. The
adaptive weights are all initialized as 1, and at each new solution
we reward the generation of a new best solution with 5, a better
solution than the current with 2, an accepted solution with 1, and a
rejected with 0. The value of 𝛾 for the update of the weights is set
to 0.2. In each destroy stage of the algorithm, we allow up to 20%
of orders or vehicle schedules to be removed. Finally, the batch size
in each iteration is initialized to 10 events, as experiments showed
that larger values were not beneficial, with a reduction rate of 0.5.
We impose a global timer of 10 minutes for each run. We obtain the
travel times between building locations through Bing Maps queries.

4.2 Algorithm Evaluation

In this subsection, we evaluate the performance of UFSO on the
catering request data. Ideally, we would like to compare the results
of our algorithm against an optimal solution for the problem. Such
a solution can be theoretically obtained using our Mixed Integer
Programming formulation (Appendix A). Unfortunately, the high
complexity of this problem does not allow generating optimal solu-
tions in reasonable running times, even for small instances. Hence,
we will compare our results against a lower bound for the problem,
which is an adaptation of the well-studied Pick-up and Delivery
Problem. This problem is a well-known NP-hard problem, being a
generalization of the Traveling Salesman Problem. Consequently,
even the lower bound cannot be computed exactly in reasonable
time for large instances. We therefore carry out our evaluation in
three parts.

(1) In Section 4.2.1, we show that UFSO is able to generate near
optimal solutions by comparing it to the lower-bound solution.
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Instances 1st Obj. (#Events) 2nd Obj (#Vehicles) 3rd Obj (Travel time) Run times (s)
Events #Instances LB UFSO Gap LB UFSO Gap LB UFSO Gap LB UFSO

3 100 3 0.0% ± 0.0% 1.01 0.0% ± 0.0% 43.12 0.0% ± 0.0% 0.23 0.27
4 100 4 0.0% ± 0.0% 1.07 0.0% ± 0.0% 60.06 0.5% ± 2.8% 1.24 1.10
5 100 5 0.0% ± 0.0% 1.19 0.0% ± 0.0% 73.24 0.6% ± 1.9% 22.20 3.07
6 100 6 0.0% ± 0.0% 1.26 0.0% ± 0.0% 86.16 0.7% ± 1.7% 479.76 7.68

Table 1: Comparison of UFSO with the lower bound. The second column shows how many instances were generated for each

size. The solution is evaluated upon three metrics (considered hierarchically): number of events served, number of vehicles

used, travel time. For each of them, we present the average value of the lower bound (LB) and the average gap of UFSO followed

by the standard deviation. The last two columns report the average running times.

(2) As mentioned earlier, the unique combination of character-
istics of catering events precludes using as-is other solution
approaches for similar problems. Nonetheless, in Section 4.2.2,
we compare UFSO against a natural heuristic for the problem,
which mimics the scheduling principles used by Compass dis-
patchers.

(3) In Section 4.2.3, we compare the fleet sizes used by UFSO with
the those used by Compass in practice. The latter are obtained
by analyzing historical GPS traces.

4.2.1 Comparison with the lower bound. We first briefly describe
how we construct the lower bound for our problem; see Appendix
B for a detailed description. The main idea behind the lower bound
is to omit certain constraints that appear in the original problem,
which will make the mixed integer problem easier to solve. In
particular, the lower bound formulation excludes the workforce and
coordination requirements, while keeping only the vehicle routing
aspect. The resulting problem is akin to the Pick-up and Delivery
Problem; accordingly, we adopt ideas from related work [30] to
derive an adequate formulation for the optimization problem.
Experiment setup. A day worth of events cannot be tackled by
the lower-bound formulation. Accordingly, we synthetically gen-
erate smaller instances by taking random subsets of the original
instances. Since the number of events we select is rather small, the
problem might become trivial if the events are sufficiently spread
out throughout the day. To avoid this, we make sure that the event
start times in each instance are within a window of three hours.
This makes the solution process more challenging as events are
likely to overlap, hence compete for the same resources at similar
times. Our resources for these instances consist of two vehicles
and four employees (which suffice to complete all events). We set a
time limit of one-hour for the lower bound solution, and exclude
instances which are not optimally solved by that time limit. For
UFSO, since the instances are small, we set a time limit of one
minute per instance.
Results. The results are summarized in Table 1. We observe that
UFSO is able to generate optimal solutions in terms of the two
more important objectives (number of events served and number
of vehicles used). In the third objective (travel time), we observe
very small average gaps, which suggests that our algorithm gener-
ates near optimal solutions. Importantly, UFSO obtains the solution
much faster than the lower bound. The difference in running times
becomes larger with the instance size: With six events, the lower
bound calculation has an average running time of 480 seconds,
while UFSO produces its solution in less than 8 seconds on average.
Unfortunately, instances with 7 events or more typically become

intractable for the lower-bound, i.e., reach the time-out without
converging (recall that each event consists of multiple steps that
introduce a large number of variables in the formulation). Nonethe-
less, having a relatively steady low performance gap as we have
increased the instance sizes from three to six events is a positive
indication for the robustness of UFSO. Further, we note that the
performance gap itself does not necessarily imply that UFSO ob-
tains a sub-optimal solution; see Figures 9 and 10 for an example in
which the gap is due to the additional complexity of coordinating
resources and scheduling the workforce (aspects excluded from the
lower-bound formulation).

4.2.2 Comparison against practically-inspired heuristic. Unfortu-
nately, for our given request data, we could not obtain the corre-
sponding schedule that was implemented by Compass. Nonetheless,
to be able to compare our UFSO to Compass’ current practice, we
have interviewed several dispatchers to understand their thought
process for producing schedules. We have concluded that current
scheduling is based on grouping events in neighboring locations
and typically pairing them with a fixed set of resources until their
completion. Based on this intuition, we design a heuristic we term
Loop-Resource Decomposition (LRD); the full details can be found in
Appendix C. In a nutshell, LRD first constructs loops, i.e., routes that
start from the depot, “visit” a number of work-items, and return to
the depot. As a second step, LRD assigns resources (vehicles and em-
ployees) to loops ensuring that overlapping loops cannot be served
by the same resources. As a result, all resources that serve the same
work-item stay together for the duration of the loop; we note that
a similar principle of team formation has been used in field-service
optimization [9, 20, 21]. The results we obtain for UFSO, including
running times are summarized in Table 2, and the comparison with
LRD appears in Fig. 11. We note that both methods served all events
in all instances, hence the main comparison is with respect to vehi-
cle count. We observe that UFSO requires substantially less vehicles
to complete the same set of events. Interestingly, UFSO requires
18% more vehicle travel time on average compared to LRD (recall,
however, that travel-time is the least important factor in the ob-
jective). Intuitively, a smaller fleet implies that each vehicle serves
more steps, hence might require excess trips between locations.

4.2.3 Comparison with vehicle usage statistics. To provide addi-
tional evidence for the effectiveness of our approach, we have
collected vehicle activity data for a period of one month, using our
IoT technology (see §2). We process the activity data to infer the
distinct number of vehicles used per work day. Our analysis reveals
that 21 vehicles have been used on average, a number much higher
than our maximum usage (13). To make a concrete, yet conservative
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Figure 9: The timewindows express when

each step (𝐴1, 𝐴2, 𝐵1, 𝐵2) of duration 15

minutes must start. This solution mini-

mizes the vehicle travel time as obtained

by the lower bound.

Figure 10: If there is a single Senior

Caterer (SC), Fig. 9 is no longer feasible as

it does not allow the SC time to go from

𝐴1 to 𝐴2. This is the optimal solution, re-

quiring larger travel time.

Figure 11: Used vehicles in UFSO

compared to the additional base-

line LRD.

Instances UFSO Run
Day Events Served Vehicles time (s)
Mon 107 107 5 174
Tue 167 167 13 237
Wed 156 156 11 113
Thu 162 162 9 193
Fri 81 81 5 566

Table 2: UFSO results on real catering instances.

assessment on potential fleet size reductions, we also obtain from
the data the 80-th percentile of vehicle count, which is 26 vehicles
(that is, a fleet of 26 vehicles is sufficient for accommodating all
events in 80% of the days). Thus, using UFSO has the potential to
reduce fleet size by roughly 2x.

4.3 Towards Unified Operations

We conclude this section by examining the effect of using UFSO to
jointly optimize the operations of multiple divisions. In particular,
the input to UFSO is now the requests of both the catering and the
water distribution divisions. The results are summarized in Table 3.
We observe that we use at least two fewer vehicles than when we
optimize for each division separately. To compare against current
practice, we note that the water distribution currently utilizes 10
trucks daily. Thus, combined with the statistics from §4.2.3 the
savings compared to a separate manual scheduling process for each
division increase to 2.4× (15 vs. 36).

Day Served Vehicles used
requests FC WD FC&WF Savings

Mon 139 5 3 6 2
Tue 241 13 5 15 3
Wed 236 11 6 15 2
Thu 230 9 4 11 2
Fri 174 5 6 9 2

Table 3: Results for unified operations with UFSO.

5 RELATEDWORK

Resource-constrained vehicle routing. The problem we con-
sider in this paper can be modeled as a resource constrained routing
and scheduling problem (see [26] and references therein). This is a
generalization of the Vehicle Routing Problem (VRP) that combines
routing and scheduling of resources (vehicles, employees) to serve
customer requests with specific requirements and real-world needs.
VRPs have beenwidely studied in the literature; see, e.g., [22–24] for
surveys on different variants and solution approaches. [12] surveys
VRPs with synchronization constraints, and [6, 25] study VRP and
scheduling models that include precedence and synchronization
constraints but these studies provide less attention to the assign-
ment of heterogeneous workforce, which highly complicates the
underlying optimization problems. Other related work focuses on
crew [11, 18] and workforce [8, 13] scheduling.
Related applications.Thewater distribution operations are closely
related to the pick-up and delivery problem [4, 32]. The catering
event scheduling is related to the prominent resource constrained
routing and scheduling problem, the Technician Routing and Sched-

uling problem, where skilled technicians travel to repair locations
in order to perform a service within specific time windows (see,
e.g., [9, 20, 34]). Typical technician scheduling problems can be
modeled as Template 3 (see Figure 1). [9, 20, 21] consider team
formation, however the assumption is that teams are formed in the
beginning of the day and stay together for the entire day. In our
models, employees are not bound as a team, e.g., different subsets
serve different events. The Home Health-Care Scheduling problem
focuses on generating shifts and schedules for nurses to visit client
locations. The problem definition may involve time windows and
synchronization, see [15] for a survey. However, an important dis-
tinction from our setting is that the transportation of items and
equipment typically do not involve strict capacity constraints (e.g.,
as in capacitated vehicle routing problems). Similar types of prob-
lems appears in [16] in the context of airport operations, however
this work does not consider item transportation. Food distribution
has been considered in [2], however without the service aspect
which requires skill-aware scheduling.
Techniques. Given the complexity of the above problems, espe-
cially the most complicated versions that are closer to ours, there
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are few exact approaches ([7] based on cutting planes, [29] based
on branch and price). Most of the works in the literature focus on
developing heuristics and meta-heuristics. [34] develops a greedy
heuristic, a local search heuristic, and a greedy randomized adaptive
search procedure (GRASP) for the Technician Routing and Schedul-
ing Problem. [9] solves the same problem using an ALNS approach,
an approach that is also used in [10] to solve a Multi-Itinerary Op-
timization Problem. The same metaheuristic framework appears
in our approach as well, but since our setting is much more com-
plicated, more aspects need to be incorporated in order to obtain
feasible and good quality solutions. [1] develops a Particle Swarm
Optimization technique to schedule home health care personnel
with homogeneous skill sets. [14] proposes a two-stage metaheuris-
tic based on creating promising walking routes and optimizing
the system using a tabu search framework. Finally, [6] proposes a
Mixed Integer Programming formulation in order to obtain exact
solutions, as well as a metaheuristic for the problem.
Additional related domains. Our work is somewhat related to
the Resource Constrained Project Scheduling Problem [19], al-
though the geographical aspect herein is not explicit. In these prob-
lems, a project consists of a set of activities, each of which needs
a certain amount of resources. Activities might have precedence
constraints, and setup times might be used to represent traveling
times among them. Finally, the Flexible Job Shop Scheduling Prob-
lem considers jobs as a sequence of operations, and each operation
can be perform in one out of a set of compatible machines. This
problem is generally solved using heuristics [5, 27].

6 CONCLUSION

In this paper, we introduce a unified optimization framework for
onsite food-service operations. Our results with real workloads
from Compass show substantial cost reductions for its catering
division. Further, our framework allows different divisions to share
resources and schedule their operations simultaneously, resulting
in significant reductions in vehicle fleet size. We believe that the
core ideas of our work apply beyond food-service, and can serve as
basis for other complex field service operations that require routing
and coordination across tasks and resources.
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A FORMAL PROBLEM DESCRIPTION

In this section, we formally define the problem using a MILP model
on a time-expanded network. The nodes in our network correspond
to each work-item in every event at every time point in the specified
discretization 𝑇 . For example, 𝑇 might be defined by uniformly
partitioning the time horizon, determined by the earliest and latest
time-windows of the steps in the requested events.

Let 𝐸 be the set of requested events, and𝑊𝑒 be the set of work-
items that comprise the event 𝑒 ∈ 𝐸. We define𝑊 = ∪𝑒∈𝐸𝑊𝑒 as
the set of all work-items. Work-item 𝑤 ∈ 𝑊 has service length
𝑙𝑤 ∈ Z+, earliest start-time 𝑡𝑤 ∈ Z+, and latest end-time 𝑡 ′𝑤 ∈
Z+ all measured in minutes. It is assumed that 𝑡 ′𝑤 − 𝑡𝑤 ≥ 𝑙𝑤 .
For notational convenience we consider each depot as a single
work-item in its own event. Each transportable item (resources,
vehicles, crew members) will appear at their associated depot at
the beginning of their time-window.

Let 𝑅𝑤 be the set of resources (e.g., food, tools) required to per-
form work-item𝑤 ∈𝑊 . We define 𝑅 = ∪𝑤∈𝑊 𝑅𝑤 as the set of all
resources. Resources require transport via a vehicle, and multiple
resources can be consolidated together. We assume that a resource
cannot be split, however this can be loosely supported by defining
several smaller resources as input. Each resource 𝑟 ∈ 𝑅 requires 𝜇𝑟
units of vehicle capacity. Let 𝑉 be the set of vehicles. Vehicles are
non-homogeneous and have capacity 𝜇𝑣 for vehicle 𝑣 ∈ 𝑉 . Each
vehicle requires at least one driver. Let 𝐶 be the set of crew mem-
bers, and let𝐶 (𝑣) be the set of crew members that can drive vehicle
𝑣 ∈ 𝑉 . We assume that crew members who are not driving a vehicle
can be transported via a separate system (i.e. corporate shuttle, per-
sonal vehicle, ride-share), which is not explicitly scheduled in our
model – however this could be easily supported as an extension.

We define 𝐾 = 𝑅 ∪𝐶 ∪𝑉 as the set of transportable items. Each
transportable item 𝑘 ∈ 𝐾 requires its own subset copy of the time-
expanded network, and is defined as G𝑘

𝑇
=

(
N𝑘
𝑇
,A𝑘

𝑇

)
. That is,

redundant nodes and arcs specific to 𝑘 may be removed to reduce
problem size. There are three types of arcs connecting our nodes:
dispatch, holding, and activation

(
W𝑤
𝑇

)
. Dispatch arcs connect

work-items𝑤1,𝑤2 ∈𝑊 with𝑤1 ≠ 𝑤2 such that a dispatch at time
𝑡 from𝑤1 will arrive at𝑤2 at time 𝑡 +𝜏 (𝑤1,𝑤2) . We defineD𝑇 as the
set of all dispatch arcs. Holding arcs connect the same work-item
forward through time, for example, the holding arc for work-item
𝑤 ∈𝑊 at time 𝑡 may be defined as ((𝑤, 𝑡), (𝑤, 𝑡 + 1)). Every work-
item 𝑤 ∈𝑊 has a set of activation arcs,W𝑤

𝑇
, these are a special

kind of arc that indicate when a work-item is performed, and are
explicitly used for synchronization. It has a similar definition to a
holding arc, however it incorporates service time (which may be
zero), i.e., ((𝑤, 𝑡), (𝑤, 𝑡 + 𝑙𝑤)) for 𝑡 ∈ 𝑇 . Each transportable item
𝑘 ∈ 𝐾 has an origin 𝑜𝑘 ∈ N𝑘

𝑇
, and destination 𝑑𝑘 ∈ N𝑘

𝑇
.

In addition to resources, a work-item may require a vehicle (e.g.
loading/unloading) or multiple crew members with a certain set
of skills. Let𝑊𝑉 be the set of work-items that require a vehicle
for activation. Let 𝑆𝑤 be the set of required skill sets (including
level) for work-item𝑤 ∈𝑊 . Each element 𝑠 ∈ 𝑆𝑤 is a set of skills
and associated level. The skills and level that crew member 𝑐 ∈ 𝐶
can perform for work step𝑤 ∈𝑊 is defined by 𝑆𝑤 (𝑐). Finally, the
work-item𝑤 ∈𝑊 may require other work-items to have already

been completed. To allow these precedence constraints, let 𝑃𝑤 be
the set of work-items that are required to finish before work-item
𝑤 can begin.

Decision variables. We define flow variables 𝑥𝑘𝑎 ∈ {0, 1} for
each arc 𝑎 ∈ A𝑘

𝑇
in the time-expanded network of item 𝑘 ∈ 𝐾 .

When 𝑥𝑘𝑎 = 1 it is said that item 𝑘 will travel on arc 𝑎 – this could
be a dispatch, holding or activation. Auxiliary activation variables
𝑦𝑤𝑎 ∈ {0, 1} are defined for work-item 𝑤 ∈ 𝑊 with 𝑎 ∈ W𝑤

𝑇
.

Event indicator variables 𝑧𝑒 ∈ {0, 1} have 𝑧𝑒 = 1 if event 𝑒 ∈ 𝐸
is scheduled for service. Resource packing variables 𝑞𝑣,𝑟𝑎 ∈ {0, 1}
assign the resource 𝑟 ∈ 𝑅 to vehicle 𝑣 ∈ 𝑉 along dispatch arc
𝑎 ∈ D𝑇 . Skill matching variables 𝜍𝑐,𝑠,𝑤𝑎 ∈ {0, 1} indicate that crew
member 𝑐 ∈ 𝐶 services the work-item 𝑤 ∈ 𝑊 by performing
skill 𝑠 ∈ 𝑆𝑤 (𝑐) on activation arc 𝑎 ∈ W𝑤

𝑇
. Finally, the variables

𝑔𝑣 ∈ {0, 1} indicate whether vehicle 𝑣 ∈ 𝑉 is used.

A.1 The MILP Model

max

{∑
𝑒∈𝐸

𝑧𝑒 , −
∑
𝑣∈𝑉

𝑔𝑣

}
(7)

Routing and timing

∑
𝑎∈𝛿+

𝑘
(𝑛)
𝑥𝑘𝑎 −

∑
𝑎∈𝛿−

𝑘
(𝑛)
𝑥𝑘𝑎 =


+1 𝑛 = 𝑜𝑘

−1 𝑛 = 𝑑𝑘

0 o/w
∀𝑘 ∈ 𝐾, 𝑛 ∈ N𝑘

𝑇 (8)

Activation requirements∑
𝑎∈W𝑤

𝑇

𝑦𝑤𝑎 ≤ 1 ∀𝑤 ∈𝑊 (9)∑
𝑤∈𝑊𝑒

∑
𝑎∈W𝑤

𝑇

𝑦𝑤𝑎 = |𝑊𝑒 | 𝑧𝑒 ∀𝑒 ∈ 𝐸 (10)∑
𝑎∈W𝑤

𝑇

𝑥𝑟𝑎 ≤ 1 ∀𝑤 ∈𝑊, 𝑟 ∈ 𝑅𝑤 (11)∑
𝑟∈𝑅𝑤

𝑥𝑟𝑎 = |𝑅𝑤 | 𝑦𝑤𝑎 ∀𝑤 ∈𝑊, 𝑎 ∈ W𝑤
𝑇 (12)∑

𝑣∈𝑉
𝑥𝑣𝑎 = 𝑦𝑤𝑎 ∀𝑤 ∈𝑊𝑉 , 𝑎 ∈ W𝑤

𝑇 (13)∑
𝑐∈𝐶

∑
𝑠∈𝑆𝑤 (𝑐 )

𝜍
𝑐,𝑠,𝑤
𝑎 = |𝑆𝑤 | 𝑦𝑤𝑎 ∀𝑤 ∈𝑊, 𝑎 ∈ W𝑤

𝑇 (14)∑
𝑠∈𝑆𝑤 (𝑐 )

𝜍
𝑐,𝑠,𝑤
𝑎 = 𝑥𝑐𝑎 ∀𝑤 ∈𝑊, 𝑎 ∈ W𝑤

𝑇 , 𝑐 ∈ 𝐶 (15)∑
𝑐∈𝐶,𝑠∈𝑆𝑤 (𝑐 )

𝜍
𝑐,𝑠,𝑤
𝑎 ≤ 1 ∀𝑤 ∈𝑊, 𝑠 ∈ 𝑆𝑤 , 𝑎 ∈ W𝑤

𝑇 (16)

∑
(𝑡 + 𝑙𝑤 ) 𝑦𝑤𝑎

( (𝑤,𝑡 ),(𝑤,𝑡+𝑙𝑤 ) )∈W𝑤
𝑇

≤
∑

𝑡 ′𝑦𝑤
′

𝑎 ∀𝑤 ∈𝑊,

( (𝑤′,𝑡′),(𝑤′,𝑡′+𝑙𝑤′ ))∈W𝑤′
𝑇

𝑤′ ∈ 𝑃𝑤 (17)

Vehicle packing and driver requirements

𝑞
𝑣,𝑟
𝑎 ≤ 𝑥𝑣𝑎 ∀𝑣 ∈ 𝑉 , 𝑟 ∈ 𝑅, 𝑎 ∈ D𝑇 (18)∑

𝑣∈𝑉
𝑞
𝑣,𝑟
𝑎 = 𝑥𝑟𝑎 ∀𝑟 ∈ 𝑅, 𝑎 ∈ D𝑇 (19)∑

𝑟∈𝑅
𝜇𝑟𝑞

𝑣,𝑟
𝑎 ≤ 𝑢𝑣 ∀𝑣 ∈ 𝑉 , 𝑎 ∈ D𝑇 (20)∑

𝑐∈𝐶 (𝑣)
𝑥𝑐𝑎 ≥ 𝑥𝑣𝑎 ∀𝑣 ∈ 𝑉 , 𝑎 ∈ D𝑇 (21)

𝑔𝑣 ≥ 𝑥𝑣𝑎 ∀𝑣 ∈ 𝑉 , 𝑎 ∈ D𝑇 (22)
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The objective (7) maximizes the number of scheduled events,
while minimizing the number of vehicles used. The flow constraints
(8) ensures appropriate routes and timing for transportable items.
Equation (9) enforces at most one activation per work-item, and
(10) specifies that an event can be scheduled at most once, and
additionally requires all-or-none of the work-items to be performed.
Equation (11) enforces at most a single activation per resource,
while (12) requires all associated resources for activation. For all
work-items that require a vehicle, (13) ensures that a vehicle is
available at activation. Workforce scheduling and support for skills
are handled by (14), (15), and (16). Specifically, (14) ensures that all
skills are fulfilled for activation; (15) enforces that a crew member
can only fulfill a single skill; and, (16) a single skill can only be
fulfilled by at most one crew member. Equation (17) defines work-
item precedence. The remaining equations relate to vehicle packing
and driving. Equation (18) requires a vehicle to transport each
resource. These resources are packed into each vehicle by (19), and
capacity is enforced by (20). Each vehicle requires capable driver,
which is enforced by (21). Finally, (22) sets 𝑔𝑣 = 1 if vehicle 𝑣 ∈ 𝑉
is ever used.

B LOWER BOUND

This lower bound is based on the formulation that [30] develop
for the Pickup and Delivery Problem. In order to transport items,
the vehicles need to load them at the origin location and unload
them at the destination. Assume the instance has 𝑛 loading actions,
denoted by indices 𝐿 = {1, . . . , 𝑛}, and 𝑛 unloading actions 𝑈 =

{𝑛+1, . . . , 2𝑛}, such that loading 𝑖 corresponds to unloading𝑛+𝑖 . We
also consider an action 0 for the start of each vehicle route from the
depot, and 2𝑛 + 1 for the return to the depot. Let 𝑁 = {0, . . . 2𝑛 + 1}.
Binary variables 𝑥𝑣

𝑖 𝑗
are equal to 1 if vehicle 𝑣 does action 𝑖 and

then action 𝑗 , and 0 otherwise, and variables 𝑔𝑣 are equal to 1 if
vehicle 𝑣 is being used, and 0 if it remains inactive for the whole
instance. We also have continuous variables 𝑡𝑣

𝑖
for the start time of

the visit of vehicle 𝑣 to action 𝑖 , and 𝑦𝑣
𝑖
for the load of the vehicle

once the action at 𝑖 is completed. For each action 𝑖 , we use 𝑞𝑖 for
its required capacity (positive for pick-up, negative for drop-off),
𝑙𝑖 for its duration, [𝑎𝑖 , 𝑏𝑖 ] for its time window, 𝜏𝑣

𝑖 𝑗
for the distance

between the locations of 𝑖 and 𝑗 , and 𝜇𝑣 for the capacity of vehicle
𝑣 . Finally, the parameter 𝛼 is being used to set the hierarchy of the
two objectives, and in the experiments we use 𝛼 = 0.0001.

min
∑
𝑣∈𝑉

𝑔𝑣 + 𝛼
∑
𝑣∈𝑉

∑
𝑖∈𝑁

∑
𝑗∈𝑁

𝜏𝑣𝑖 𝑗𝑥
𝑣
𝑖 𝑗 (23)

s.t.
∑
𝑣∈𝑉

∑
𝑗∈𝑁

𝑥𝑣𝑖 𝑗 = 1 ∀𝑖 ∈ 𝐿 (24)∑
𝑗∈𝑁

𝑥𝑣𝑖 𝑗 −
∑
𝑗∈𝑁

𝑥𝑣𝑛+𝑖,𝑗 = 0 ∀𝑣 ∈ 𝑉 , 𝑖 ∈ 𝐿 (25)∑
𝑗∈𝑁

𝑥𝑣0𝑗 = 1 ∀𝑣 ∈ 𝑉 (26)∑
𝑗∈𝑁

𝑥𝑣𝑗𝑖 −
∑
𝑗∈𝑁

𝑥𝑣𝑖 𝑗 = 0 ∀𝑣 ∈ 𝑉 , 𝑖 ∈ 𝐿 ∪𝑈 (27)∑
𝑖∈𝑁

𝑥𝑣𝑖,2𝑛+1 = 1 ∀𝑣 ∈ 𝑉 (28)

𝑥𝑣𝑖0 = 0, 𝑥𝑣2𝑛+1,𝑖 = 0 ∀𝑣 ∈ 𝑣, 𝑖 ∈ 𝑁 (29)

𝑡𝑣𝑗 ≥ 𝑡𝑣𝑖 + (𝜏𝑣𝑖 𝑗 + 𝑙𝑖 )𝑥𝑣𝑖 𝑗 − 𝑏𝑖 (1 − 𝑥𝑣𝑖 𝑗 ) ∀𝑣 ∈ 𝑉 , 𝑖, 𝑗 ∈ 𝑁 (30)

𝑦𝑣𝑗 ≥ 𝑦𝑣𝑖 + 𝑞 𝑗𝑥𝑣𝑖 𝑗 − 𝜇𝑣 (1 − 𝑥𝑣𝑖 𝑗 ) ∀𝑣 ∈ 𝑉 , 𝑖, 𝑗 ∈ 𝑁 (31)

𝑦𝑣𝑗 ≤ 𝑦𝑣𝑖 + 𝑞 𝑗𝑥𝑣𝑖 𝑗 + 𝜇𝑣 (1 − 𝑥𝑣𝑖 𝑗 ) ∀𝑣 ∈ 𝑉 , 𝑖, 𝑗 ∈ 𝑁 (32)

𝑡𝑣𝑖 + 𝜏𝑣𝑖,𝑛+𝑖 ≤ 𝑡𝑣𝑛+𝑖 ∀𝑣 ∈ 𝑉 , 𝑖 ∈ 𝐿 (33)
𝑔𝑣 ≥ 1 − 𝑥𝑣0,2𝑛+1 ∀𝑣 ∈ 𝑉 (34)
𝑎𝑖 ≤ 𝑡𝑣𝑖 ≤ 𝑏𝑖 ∀𝑣 ∈ 𝑉 , 𝑖 ∈ 𝑁 (35)
𝑦𝑣𝑖 ≥ max{0, 𝑞𝑖 } ∀𝑣 ∈ 𝑉 , 𝑖 ∈ 𝑁 (36)
𝑦𝑣𝑖 ≤ min{𝜇𝑣, 𝜇𝑣 + 𝑞𝑖 } ∀𝑣 ∈ 𝑉 , 𝑖 ∈ 𝑁 (37)
𝑥𝑣𝑖 𝑗 ∈ {0, 1} ∀𝑣 ∈ 𝑉 , 𝑖, 𝑗 ∈ 𝑁 (38)

𝑔𝑣 ∈ {0, 1} ∀𝑣 ∈ 𝑉 (39)

The objective minimizes the number of vehicles used and their
travel time. Constraints (24) ensure that all pick-ups are done, and
(25) that the same vehicle performs corresponding pairs of pick-ups
and drop-offs. According to (26) all vehicles leave node 0 (schedule
start), (27) enforces the flow conservation at the nodes, and (28) en-
sures that all vehicles go to node 2𝑛+1 (schedule end). No incoming
flow exists for node 0 and no outgoing for node 2𝑛 + 1 (29). Con-
straints (30) allow enough time for the work duration and the travel
time between consecutive work-items. (31) and (32) update the ve-
hicle load, and (33) ensures each item pick-up precedes its drop-off.
(34) turns 𝑔𝑣 equal to 1 if a vehicle visits nodes besides 0 and 2𝑛 + 1.
Finally, (35)-(37) are time window and capacity constraints.

C LOOP-RESOURCE DECOMPOSITION

The main steps are the following: (i) initialize with short loops, (ii)
keep merging promising loops until no more merging is possible,
(iii) assign resources to loops. The initialization is performed by
generating one loop per event preparation (bring items and set up)
and event completion (clean up and take items back). Each loop
has an associated cost which we define as 𝑉ℓ + 0.1𝐸ℓ + 0.0001𝐷ℓ ,
where 𝑉ℓ takes values 1, 2, 3 depending on the type of vehicle that
is required (van, sprinter, truck), 𝐸ℓ is the number of employees
required for the loop, and 𝐷ℓ is its duration. We then iteratively
merge the pair of loops that leads to the best total cost, making sure
that loops do not exceed a two hour duration since longer loops will
restrict our flexibility during the assignment stage. The assignment
is performed using the following Integer Program, here showing
only vehicle assignments, as employee assignments are done in the
same way. Variable 𝑧𝑒 is equal to 1 if event 𝑒 is served, 𝑔𝑣 is 1 if
vehicle 𝑣 is used, 𝑤ℓ is 1 if loop ℓ has the required resources, and
𝑦ℓ𝑣 is 1 if vehicle 𝑣 is assigned to loop ℓ (all are 0 otherwise). 𝜇𝑣 is
the capacity of vehicle 𝑣 , 𝐶ℓ the capacity loop ℓ requires, and 𝐼 the
set of pairs of overlapping loops.

max100
∑
𝑒

𝑧𝑒 −
∑
𝑣

𝑔𝑣 − 0.0001
∑
𝑣,ℓ

𝑦ℓ𝑣 (40)

s.t. 𝑔𝑣 ≥ 𝑦ℓ𝑣 ∀𝑣, ℓ (41)∑
𝑣

𝜇𝑣𝑦ℓ𝑣 ≥ 𝐶ℓ𝑤ℓ ∀𝑣, ℓ (42)

𝑧𝑒 ≤ 𝑤ℓ ∀𝑒, ℓ, 𝑒 ∩ ℓ ≠ ∅ (43)
𝑦ℓ1𝑣 + 𝑦ℓ2𝑣 ≤ 1 ∀𝑣, (ℓ1, ℓ2) ∈ 𝐼 (44)
𝑔𝑣, 𝑧𝑒 , 𝑤ℓ , 𝑦ℓ𝑣 ∈ {0, 1} ∀𝑣, 𝑒, ℓ (45)
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