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Figure 3.26 Phonon density. of states, {a) approximated by the Debye and Einstein models

and (b) in real crysials.

The densities of states for the Debye and Finstein models are illustrated in figure 3.26.
The Debye model gives D & w?, while the Finstein model gives a spike at @ z. The
densities of states in real crystals can be quite different from the predictions of these
simple models, as illustrated in figure 3.26(b). At each frequency that the phonons

the density of states because the dispersion curve is perpendicular to the zone boundary.

“3.4.3 Photon Density of States

Photons also have a linear dispersion between frequency and(B$ wavevector, @ = ck,

‘which is identical to that of phonons under the Debye approximation. Consider an
f length L. The electromagnetic fields can be

electromagnetic wave in a cubic box ©
did for phenons. The

decomposed into normal modes using Fourier series, as we
allowable wavevectots are then

ke, ky, g = 0, 2278/ L, FAT/L, - - 1 (3.58)

Hence, as before, photons share much commonality with phonons. However, significant
differences exist: unlike phonon waves in 2 crystal, which have 2 minimum wavelength
as imposed by the interatomic distance, no such a [imit presents on the wavevector for
photons. Following a derivation similar to phonons, we can obtain the density of statcs

for an electromagnetic waye as

dN w?
D - — = —3 3.59)
() Vdow w2 ¢
One difference in the above equatioxi from eq. (3.55) is that a factor of two ;athel’
‘than three is used to reflect the fact that electromagnetic waves (photons) have tWO
transverse polarizations, whereas phonaons can be longitudinally polarized as well. The
other difference is that while the phonon density of states has a cut-off frequency given

by the Debye frequency, photons do not have such a cutoff frequency.

B
‘

+

i

j
.

intersect the zone boundary, a singularity, called the van Hove singulasity, appears in

Figu

3.4.4 Differential D

Although the density of state
wavevector k or energy, we
to define a differential density
(figure 3.27) '

{

where dA, is a differential are:
and azimnuthal angles, defined |
the solid angle over the entire
specific wave vector direction

AD(E. k) = No. of st

where the second equality app

3.5 Energy Levels

We touched upon quantum #
structures can be made by vari
self-assembly. The energy sta

- are often different from those

of these artificial structures ori
different densities of states. Th
One imposes new boundary c
other creates new periodicity, :
in this section.

3.5.1 Quantum W

A quantum well can be forme
For example, a thin layer of
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Figure 3.29 (a) Phonon’ dispersion and (b) density of states I quanfum wells: (Yang and
Chen, 2000y, - ‘

change can be seen experimentally through, for example, Raman spectroscopy, which -

_probes the phonons through the frequency shift of a photon that interacts with a phonon
(Weisbuch and Vinter, 1991). Numerous studies have been devoted to the effects of
phonon confinement in quantum structures (Bannov et al., 1995). Recent applications
include the use of phonon confinement to reduce thermal conductivity and thus, increase
the thermoelectric energy conversion efficiency (Chen, 2001).

The quantum effects for nanometer-scale wires (quantum wires) and nanometer-scale
dots (gquantum dots) are expected to be even stronger than in quantum wells because of
the additional boundary conditions on the electron or phonon motion in one or two more

A

% f)’ 4 directions. A recent discovery is that of nanoscale fubular structures, particularly carbon
: g o

8 >

hanotubes (Tijima, 1991). A carbon nanoiube can be considered as the rolling of an
atomic sheet {or several atomic sheets) of graplﬁt&icarbon (Dresselhaus et al., 2001).
Graphite has a close-packed hexagonal structure, as shown in figure 3.5(c). The bonding
between different layers is through the van der Waals bond, which is weaker than the
covalent bonds within each layer. If only one atornic layer rolis up, the napotube thus
formed is called a single-walled carbon panotube. If several layers roll up, the nanotube
formed is cafled multiwalled. Depending on the nanotube diameter and the orientation
of the major crystallographic directions with the nanotube axis, the nanotube can be a
semiconductor or a metal, due to quantum size effects. The electron and phonon energy
states in carbon nanotubes are very different from those in their bulk materials, leading
to some special properties. The mechanical strength and thermal conductivity of these
tubes are expected to be very high (Kim &t al., 2001). Research is actively exploring
various properties and applications of carbon nanotubes (Dresselhaus et al., 2001).

3.5.2 Artificial Periodic Structures

We have observed that the periodicity that paturally exists in bulk crystals plays &
crucial rule in determining the electron and phonon energy levels. Natural systems
are three dimensional, with a periodicity determined by the lattice constants. One 20
also create artificial periodic structures, for example, by repeatedly growing a thin layer

of GaAs and a thin layer of AlAs on the same substate. In fact artificial periodic .

structures have been used widely in optical coatings, such as in the making of optical
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photon bandgap, similar to that in the Kronig—Penney model for electrons. By extending
such a concept to three dimensions to make three-dimensional periodic structures with
periods comparable to optical wavelength, Yablonovitch (1986) proposed the concept of
three-dimensional photonic bandgap structures. These photonic crystals have become a
very active research field and have potential applications in lasers, telecommunication,
and optical coatings (Joannopoulos et al., 1995, 1997).

3.6 Summary of Chapter 3

The contents of this chapter are often covered, in a solid-state physics course, in at least
three individual chapters: crystal stracture, electronic energy states, and phonon energy
states (Kittel, 1996; Ashcroft and Mermin, 1976). This condensed chapter introduces the
terminology and often-used methodologies for the analysis of energy states in crystalline
structures. ' - ‘

The most important characteristic of crystals is their periodicity, which is described
by alattice. Real crystals are obtained by attaching a basis to each lattice point. The basis

_can consist of one- atom or 2 cluster of atoms. Lattices are described by the primitive
lattice vectors. A primitive unit cell contains one lattice point, but a conventional unit

cell can have more than one Littice point. One way to construct a primitive unit cell
unambiguously is to form the Wigner-Seitz cell. In three-dimensional space, a total of
14 lattice types exists. The Miller index method is commonly used to denote crystal

planes and directions.

A lattice is periodic in real space, and we often express a periodic function in
terms of its Fourier transformation. The Fourier conjugate of real space is called the
reciprocal space. The primitive lattice vectors in reciprocal space can be calculated from
the primitive lattice vectors in real space. Diffraction experiments provide an itnage of
reciprocal space. A Wigner-Seitz cell in reciprocal space is called the first Brillouin

zone. Later, we express the energy dispersion of electrons and phonons in the frfitsi _]0

Brillouin zone. : ;
In a periodic structure, the electronic energy levels form energy bands. The band

- formation is demonstrated by the solution of the Schridinger equation based on the

Kronig—Penney model. In real crystals,’ each crystallographic direction has its own
dispersion relation. The electronic band structure determines whether a material 1s metal,
semiconductor, or insulator. In metals, an electronic band is only partially filed and
electrons can move to the empty quantum states within the same band. The topmost
electron epergy level at 0 Kis called the Fermi level. If a band is totally filled and the
next band has an epergy gap from this band, electrons cannot move within the band.
Whether the electron can go to the next epergy band depends on the magnitade of the
bandgap compared to the thermal energy which is 26 meV at 300 K. A material can be
a semiconductor if the bandgap is relatively small such that there exist some eléctrons

with high enough energy to jump to the conduction band, leaving some vacant quantum . .

states behind. If the bandgap is very large, no electrons can jump to the conduction band
and the material is an insulator. ,

‘In .a semiconductor, the motion of electrons in the valence band can be described
by the motion of equivalent positive charges, called holes, that occupy the empty states
in the band. Semiconductors can be intrinisic or extrinsic. Extrinsic semiconductors
are obtained by adding impurities that have an energy level close to the conduction or
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" Solution: We have obtained in chapter % the energy, eq. (2.65), and degeneracy,
eq. (2.66), of a rigid rotor as :

A? :
Ey = 5Fz(m 1) =fe£(z +)E=0,12,...,[ml =) (E4ALL)

g®=20+1 ‘ (E4.1.2)

where £ and m are the two quantum numbers of rational wavefunctions, and B is the
_rotational constant. The canenical partition function for the rotational modes is

zZ —Zex _ B l-—i (ﬁ)ex' _Ee
= P\ T _£=og P ©sT

o , .
: BRE(E + 1) 8m2lcgT T
f 28+ 1)exp [ T jld 3 5 (E4.1.3)
. )

where 8, is called the rotational témperaturé‘ )

kB B2

ol E4.14
wp  Brikpl ( )

9, =
In eq. (E.4.1.3), the first sumumation over all £ and m is over all quantum states and
the second summation over £ is over all energy levels, Similarly to eq. (4.23), we
have converted the su_mmatior_l into an integral.

Comments. For hydrogen, B = 1.8 x 1012 Hz and 6, = 85.3 K. The transformation
in eq. (E.4.1.3) from the summation into the integral is valid oply when T is much
larger than 6, that is, when changing £ by 1 does not change the exponential rapidly.
So eq. (E4.1.4) is valid only for T 3> 0,. In the Iimit, when 7T is comparable to 6, of
smaller, we can take the first few terms of the summiation to get

o o
7, =1+ 3exp (__;_) 4. (E4.15)

4.1.4 Eermi-Dirac, Bose—Finstein, and Boltzmann Distributions -

Let’s now consider the probability of electrons occupying a specific quantum state. We
assume that we have determined the accessible quantum states for electrons in a given
system. From the Pauli exclusion principle, each quantum state can have a maximum of

one electron. If the system is at equilibrium with a temperature 7', we wish to determine
- the probability of one quantum state having energy E being empty or occupied by one

electron. We take this specific quantum state as our system, and the rest of the accessible
quantum states of the original system are grouped into the reservoir. There can be eneigy
and particle exchanges between the new system and its reservoir because an electron
can fluctuate randomly between this quantum state and other ¢uantum states. Thus the

STATISTICAL THERN

appropriate ensemble for the new
canonical partition function for the

BT, V, 1) =
1

‘where N; = 0 ieans that the quan

- and Nj = 1 means that the state i

eq. (4.17), the probability that this

P(E; =0,N; =0)
and
P(E;=E,Ni=1)=

The average number of 6ccupancy
Cny= fIE)=0xP(E

I

exp (%;_;) +1

and the average energy of this qua

(EY =0 x P(E; =
E

(5P
{n}, or in a. more popular symbo,
Electrons and other particles that o
Figure 4.3 illustrates this distribut
When the energy is a few times
teibution is close to one, indicatis
potential ave occupied. When the
potential, the distribution function
chemical potential are empty. Be
be unoccupied states for the elec
potential are active in carrying the
~equals the Fermi level. In some fi
chemical potential and the Fermi
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Guantum state of the system. Un
a system is not conserved. Thus
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Figure 4.3 Fermi-Dirac distribution as a function of the electron energy relative to the
chemical potential. ’ '

and, correspondingly, neither is the chemical potential. We know that for an accessible
quantum state of the system, with frequency v; there can be an arbitrary number n of
photons or phonons such that the total energy of this state is £ = (n + 1/2hv (n =
0,1,2,...). Following a similar argument as for electrons, we take this quantum state

to be our new system and the remaining quantung states to be the reservoir. Sinee neither -

the chemical potential nor the particle number is a thermodynamic variable, the new
system is best described by a canonical ensernble with the canonical partition function

-ﬂ * DR\ exp(_z’?:T)
Z(v) —ZEXP (‘ kT ) R —éxp (—;};LT) '

The probability that the quantum state (the new sjstem) has n particles (photons or
phonons) is thus :

' ﬂ%—lﬂ)hu ) : ‘
g Ply,m) = éXp( - w5l ).: exp (—E;E)—) |:1 = exp( hy )] (4.41)

VA kpT B

(4.40)

n=0

and the average number of the particles, or the occupancy of the quantum state, is

oQ
(ny=f) =Y nPn)=——F"—"
. Ry
n=0 cxp (E};f) -1
This equation is the Bose—Einstein distribution fanction, and the particles cbeying

this distribution are called bosons. Figure 4.4 shows the Bose-Einstein distribution.
Because cach particle has energy hv, the average encrgy of the quantum state is

(EYy =hvf (v) (4.43) |

(4.42)
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Figure 4.4 Bose—Einstein distribution as 2
photons).

where we have neglected the zero-poi

transfer processes,

Other boson systems, such as gas m
For such bosons, we should use the gra
general Bose—FEinstein distribution can’

{n) = f(E)

where 4 is again the chemical potential
' The Bose~Finstein distribution cha
Fermi-Dirac distribution into minus o
and high temperature), both Bose-Eins
Boltzmann distribution function

E
f(E, T, u) =exp (-—-’;

This distribution function is considered
Einstein distributions are “guantum.” "
between “classical” and “quantum” stat:

4.2 Internal Energy and

The statistical distribution functions
quantum state and its energy level. Wi
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¢ heat must be caleculated from the

-\ format, eq. (4.56). Similarf
iecific heat is ' » e

J/T . .
—-1)2 C (4.58)

(4.59)

theorem. After obtdining the con-
1€ total specific heat of a diatomjc
CV = CV,[ + CV,r +CV,U + CV,e-

3. .

ule is 85.3 K and its vibrational
f hydrogen gas as a function of

* can write the total specific heat
B8+ 1)
B — (E4.2.1)

+DUE+ Dexp[-tgzn )
el

{E4.2.2)

> summation. Figure £4.2 plots
wratures, only the translational
tis 3R/2. As the temperature
1and contribute to the specific
lc heat reaches 5R/2. At even
it coniributing to the specific

" can use the Boltzmann distribution as an approximation of the Fermi--Dirac distribution.
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4.2.2 Hectrons in Crystals

Now we investigate the specific heat of electrons in a crystal. We assume that the electrons ]
have a parabolic band with an isotropic effective mass !

2 i

E—FEe=— (G +k+E) (4.60) |

We obtained the density of states in chapter 3, eq, (3.52), - ]
: ’ - - |

1 fomr P !

D(E) = 5— (_;‘17) (E — E)f? - 8D 1

The total number of electrons pef unit volume is thus
o0 .
n= f F(E, T, W)D(E) dE : (4.62) N
0 . .

From eq. (4.62), the chemical potential as a function of temperature can be determined
for a given n. For 7 = 0, the above relation leads to '

r 1w\
n= f D(EYdE = — ( ) (1 — E)*/? (4.63)
: 3 7
E. :

h?
‘We have already obtained this relation, eq. (3 .53), in chapter 3. The chemical potential
wat T == 0 is called the Fermi level, E;.* At other temperatures, eq. (4.62) cannot be
explicitly integrated. However, when (£ —u) /@B T > 1, whichisthe classical limit, we e
Equation (4.62) can be integrated explicitly,
| T —E+4p\ 1 [2m*\¥? ' E.—u
1/2 ¢ ,
= [eor(ZoF) 5 () @ pomaem e (555)
Eq ‘ .

(4.64)

*1n clectronics, however, £ r is often used to represent the chemical potential at all temperatures.
F _ P p
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with

e
chz(fi"ﬁ“—“s—-) | | (4.65)

Equation (4.64) is often used to determine the chemical potential level in doped

semiconductors, as will be seen from the following example.

conductors

Silicon is a widely used semiconductor miaterial, and it is often doped with phos-
phorus to form an n-type semiconductor. Determine the chemical potential of an
n-type semiconductor doped with phosphorus with 2 concentration of 1017 cm™
at 300 K, assuming that every phosphorus atom contribiites one free electron 1o the
ally excited electrons from the valence band.

conduction band and neglecting therm
Alihough the silicon conduction bands are not spherical [figure 3.18(b)}, they can
be approximated by an isotropic band with an effective mass equal to 0.33m, where

m is the free electron mass.

Example 4.3 Chemical potential level in doped semi

Solution: Sﬂicoﬁ has six identical conduction bands

[figure 3.18(b)]. When counting
all six bands, eq. (4.64) should be written as : :

o, 372 :
_ 2am T E,— 1
n= 12( W ) exp ( T ) (E4.3.1)

Taking n = 10'7 cm™>, we can find the cheimical potential as

w—E; _.' n 2am*epT —3/2 v
cgT |12 n2
1023 (2:: % 0.33 x 9.1 x 10731 x 1.38 x 1077 x 300 312
) —— [ =
12 6.62 x 1068
= —5.65 (B4.3.2)
Thus
(o — Eg = —5.65 x 26 meV = —147 meV . (B433)

Comments. 1. The negative sign means that the chemical potential is below

the conduction band edge. The silico
Thus the chemical potential level is within the bandgap. In fact, only in this

case, the Bolizmann approximation we used in eq. (4.64) is applicable because
the electron energy inside the conduction band, minus the chemical potential,
is much larger than x 3T . If the chemical potential is close 1o the band edge or falls

n bandgap at room temperature is 1,12 eV

STATISTICAL THERMC

inside the conduction hand, whi
doped, we need to carry out 0UR
distribution.
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suggests thatitis the relative diffe
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chapter 6 (figure 6.9}, we will
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To calculate the specific beat of
clectrons as

U (T)iz

For convenience, we limit our disc
\nit volume #,, is fixed. We further

s
n, = f f(
U
We can use eq- (4.67) to rewrite ec
- x
v = [ &
0

where E ¢ is the Fermi level (i at
dependent, we obtain the heat cap

C, = f(}.
0

Typically, df /dT is nonzero ot
density of states does not vary Tag
D(u) out of the integration. In a
very small because Ef is very la
of wand set o =2 Ef. Under thes

Ce ™ D(u)[(E
0
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R universal gas constant, @ angular frequency,
JTK  mol™! rad.Hz
s accessible quantum state B number of accessible states
S entropy, JK! in a microcanonical system
T  temperature, K 3 grand tanonical partition
I/ system energy, J function
v speed, ms] { ensenble average
V  system volome, m?
x integre}tion var_‘_iz_‘ible o Subscripts
Z  canonical parifion function
¢  temperature, K D Debye
x5 Boltzmann constant, J K1 e electronic |
A thermal de Broglie f - at Fermi level
wavelength, m i ith energy level -
i chemical potential, J r reservoir; rotational
v frequency of phonons or ot total
photons, Hz -  vibrational
p  density, kgm™ 'V . constant volume
o Stefan-Boltzmann constant, x,y,z Cartesian coordinate
Wm 2K direction
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4.3 Specific heat of monato

4.5 Bose-Einstein distribution. Plot the

4.6 Electrons in semiconductors. A

4.7 Chemical potential. The numbe
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mic gas. Derive an expression for the specific heat of a

box of He gas and plot it as a function of temperature. :
4.4 Entropy of mixing. There are two tanks of gas. Both tanks have N molecules and
a volume V, and are at the same temperature and pressure. The two tanks are
commected by a pipe with a valve. After the valve is opened, the gases i both
tanks eventually mix into a homogeneous mixture. Show the following:

(a) If the two gases are identical, there is no change in entropy due to the
mixing. -
(b) If the two gases are different, the mixing causes an entropy production of
2NInZ. s
The difference in the results is called the Gibbs paradox and comes from the

distinguishability of the molecules.
Bose-Einstein distribution as a function of

frequency for T = 100 K, 300 K, and 1000 K. Compare with the Boltzmann

distribution at the same ternperatures. :
semiconductor has a parabolic band

structure
R 5 2 g2
B Eo=g— G+ +k)

The Fermi level in the semiconductor could be above or below the conduction
band edge. Take the electron effective mass as the free electron mass. For p —
E,=0.05eVandT = 300K, do the following in the range 0.0eV < £ E. <
0.1eV: .
: (a) Plot the Fermi—Dirac distribution as & function of E,

(b) Plot the density of staies as a function of E, o

{c) Calculate the product of f(E,T)D(E), which means the average nunaber of
electrons at eachi F, and plot the product asa function of E,

(d) Calculate the product of £ E, T)D(F}, which means the actual energy ateach
allowable energy level, and plot the product as a function of E.

Repeat the questions for p — E. =-0.05eV.
r of electrons in the conduction band can be

assumed to be equal to the dopant concentration. Calculate the chemical poiential

 levels relative to the band edge for the dopant concentrations of 1018 cm™> and

1019 cm~3, assuming free electron mass and 7' = 300 K.
4.8 Debye crystal. A crystal has a Debye velocity of 5000 ms™
temperature of 500 K. For T =300K,
(2) Plot the Bose—Finstein distribation as a function of @,
(b) Plot the density of states as a function o using the Debye model.
(c) Plot £D as a function of frequency o. . :
(d) Plot A fD as a function of w.
(e) Compute the specific beat of the crystal a

1<T <1000K
4.9 Blackbody radiation. Cousider the blackbody radiation at T = 300 K
(a) Plot the Bose—Einstein distribution as a function of angular frequency -

(b) Plot the density of states as a function of &, using the Debye model.
() Plot fD as a function of w.
(d) Plot AewfD as a functicn of .

1 and a Debye

s a function of temperature for

STATISTICAL THE

(&) Compute the emi
corresponding specific he:

(f) Also compare (a)
probiem 4.8,

4.10 Specific heat of diatomi:
energy state at 100 me’
contribution of this mol
as a function of temperat

4.11 Electron specific heat of
energy and specific heat
Aand 100 A, asa functio
to the free electron mass

4,12 Electron specific heat o
"energy and specific heat
height with L = 20 Ao
effective tnass equal to
2 10% m™..

4.13 Phonon specific heat. /
relation (three-dimensio:

where a is the lattice ¢
Derive an expression fon
4,14 Fermi level and specific
© 559 x10%2 em .
(a) Calculate the Fern
(b) What is the corres
() Estimate the elects
{d) Calculate the Ferr
4.15 Phonon specific heat in
per basis and a lattice
theorem, estimate the p
ternperatures and comy:
4.16 Phonon high temperai
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4.17 Diamond specific heat.
the specific heat of dia
(the lattice constant of «

4.18 Phonon specific heat ir

5000 ms—! and a Deb
quantum dot obey the s
considering the discrels
a cubic quantum dot wi
the specific heat of the
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4.19 Blackbody radiation in a small cavity. Consider thermal

radiation in equilibrium

insich a cubic cavity. Compute the radiation energy density in 2 cubic cavity
it with the Planck distribution

of length L = 1 pmat T = 400 K and compare
obtained by assuming that the cavity is very large compared to the wavelength. -

4.20 Entropy of one phonon state. From eqs. (4.14) and (4.40), show that the entropy,
s, of one phonon state having & frequency w obeys the following relationship:

R _
—;ﬁfo.(.l + o) =

Where fo is the Bose—Einstein distribution.

KBT as

h.

ow

5

Energy Tran:

The wave—particle duality of mat
have both wave and particle cha
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A fundamental property of wa
fixed relationship between two |
phase relationship, the SUperpos
and diffraction phenomena that
The wave characteristics of
for transport processes af inter
chapters that the size effects o
the formation of standing wa
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a continuum approach based ¢
dynamics method we used in €
treat phonons in paralie]l with
interference, and tunneling ph
descriptions of these phenor
their statistical behavior, dispe
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_ We need to establish boundary conditions for the electric and magnetic fields to
determine the reflection and transmission at the interface. By applying the Maxwell
equations to a very thin control volume surrounding an interface, the following boundary

conditions can be obtained (Born and Wolf, 1980)

fie D2 —D1) = ps (5.58)
fix (Ep—E)=0 " (5.59)
fie(By—~B)=0 S (5.60)
nx (H, —Hi} = (5.61}

2128l

I S;Iou!ﬁg be. o veewr”
where ps [Cm~2] and J; JAm™!] are the net surface charge density and the surface
current density, respectively, Ey and E» are the total electric fields on the two sides
of the interface, and similarly H; and Hp are the total magnetic fields on the two sides

of the interface. To obtain the “total” E and H for side 1 of figure 5.2, we need to sumup -

the incident and the reflected fields. Equation (5.58) means that the difference between
the normal components of the electric displacements across the mterface must be equal
to interface charge density, while eq. (5.59) means that the tangential corponents of the
electric field must be continuous. Equation (5.60) says that the pormal components of
-the magnetic induction must be continuous, while eq. (5.61) means that the difference
of the tangential components of the magnetic field across a surface equals the surface
current density. - :

With the above boundary conditions, we can determine the amount of reﬂectio'n‘

and transmission of an incident electromagnetic wave onto a surface, We consider

a plane TM wave incident onto a surface at an incident angle 6;. The wavevector
direciions of the incidert, reflected, and transmitted waves are (sinf);, 0, cos 9,;),‘
(sinfr, 0, —cosér), and (sin®;, 0, cos0;), respectively. Using a plane wave of the
for_m of eq. (5.25), the incident, reflected, and transmitted electric fields can be

expressed as

' in 6; 05 6;
¥ oxp l:_iw (t _ nmyxsin6; + 112608 )] (5.62)
o — _
K, oxp [wiw (t _ mxsinf —mz cosé?f)] (5.69)
\ ‘o
K exp [—iw (t _Mmxsh O ; noz cos b )] {3.64)
0

respectively. Here, we temporarily assume that the refractive indices are real. The
subscript “//” means that the electric field is polarized parallel to the plane of incidence
(TM wave as shown in figure 5.2). o

Some readers may ask how to determine the direction of E, and H, in figure 5.2.
The answer is that a correct assumption of the direction is not important as long as both
E, and H, follow the right-hand rule. The signs in the final results will take care of
the directions. Notice the-sign change in eq. (5.63) before z in the exponent due t0 the

change in the wave propag:
derivation of eq. (5.29), the
the plane of the paper, is rel:

Hy:.ji"E

where the “forward” denotes
and refracted waves) and “b
the negative z-direction, the
to the plane of incidence, it
In figure 5.2 we show the :
of the negative sign in eg.

-change may be in the reflec

as one is consistent with th
correct sign. :
‘We consider a surface {re
‘To determine the magnitudes
the continuity of the tangen
components will be utormati
and noting that the electric §
use the component along the

costh Ejy; exp I:i_
=coshEy e

where we have droppéd the
cancels out. Since x can ta
exponents are equal. This gir

¥
which leads to the Snell law

B,

| Substituting eqs. (5.67) and

COS

which gives one equation
obtained on the basis of the
tield at the interface, since
We can write the continni
eq. (5.61), as



D(E)dE (6.102)

1d {6.100) leads to

de
- (6.103)
12021 !
L . (6.104)

stronic thermal conductivity.
‘beck coefficient is one of the

eat conduction by electrons,
1l to the current, When two
gh the junction, heat mist

ference between the Peliier .

he energy absorbed (g > 0)

heat depends on the current
eat is reversible. This effect
‘pumps (Goldsmid, 1986),
18 10 reversible heating or
rature gradient are applied
ial volume along the con-
n and the electrochemical
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dTldT - d [ dT dT
—Jye k SJ. | — ?‘Z
edex+dx(d) ¢ ?LJe (

ds\ dT d (. dTN\  J?
( dT) T T dx( dx)+ o (6.103)

* In the -above derivation we have used egs. (6.91), (6.103), and (6.104). In the last

equation, the second term is due o heat conduction and the third term is due to Joule
heating. These two terms are quite familiar in a heat conduction equation. The first term,
however, is not familiar. Tt shows that heat can be absorbed or released, depending on
the current direction. This reversible heat absorption or rejection is called the Thomson

" effect. The Thomson coefficient [V K1 is defined as the rate of cooling

. dT s ‘
B = Qc/ (Je“&“;) = TE {6.106)

where the negative sign in the first texm of eq. (6. IOS) does not appear because a positive
Thomson effect is based on cooling whereas g is the heat generation. Equations (6.104)

and (6.106), relating the three thermoelectnc coefficients, §, [T, and B, are called the

Kelvin relations.

Throughout this section, we have seen that the transport coefficients are often related,
as for example in the Kelvin relations between the thermoelectric coefficients and the
Finstein relation for the electrical diffusivity and the mobility. The fact that many of
these coefficients are related has a more profound origin than a result from the Boltzmann
equation. It is a requirement of the “time reversal invariance” of the mechanical equations
of motion, that is, the particles retface their former paths if all velocities are reversed.
On the basis of this principle, Onsager (1931) derived the famouns Onsager reciprocity
relations. Here we will give a brief explanation of the reciprocity relations without
proof (Callen, 1985). The flux of any exiensive variable of a system (such as energy
flux, particle flux) or at alocal point of a sysiem can be expressed asa hnear combination

of all the generalized dnvmg forces Fj,
Te =Y LjF; (6.107)

where L ji are called the kinetic coefficients. The generalized forces are the driving
forces for entropy production. The Onsager reciprocal relations are

Ly = Lk, ' (6.108)

For local thermoelectric transport, the generalized forces are V(1/ T) forheat flow and

{—V )/ T for electrical current, which leads to a relation between the two coefficients

L17 and Lz as given by eq. (6.101).

Example 6.1
The relaxation time usually depends on the electron energy as v ~ E¥, where
& differs among scattering mechanisms for electron transport (y = —1/2 for acoustic

phonon scattering, y = 1/2 for optical phonon scattering, and y = 3/2 for impurity

scattering). Derive an expression for the Seebeck coefficient of a nondegenerate

semiconductor.
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Solution: A nondegenerate semiconductor is one with the Fermi level inside the -

bandgap. In this case, the Fermi-Dirac distribution function can be approximated by
the Boltzrnann distribution

fo A nexp (_E_Ef) ©6.1.1)

kT

The Seebeck coefficient can be calculated from eq. (6.94). Assuming a parabolic-
band, the density of states is '

Ny 3/2
D(E)':—l—(z’”) E2 ' (E6.1.2)

272 \ B2

Substituting (E6.1.2) and the relaxation tume into eq. (6.94), we obtain the Seebeck
coefficient as

| JEE — BB exp (- 55 )dE

T eT f{;’o Evy+3/2 exp (_ E};?f) dE

g kg Ey 5\ . . :
LA e + = 6.1.3
[ +3)] -
where E ¢ is the chemical potential, which can be controlled by doping. Usihg
eq. (4.64) (E. = 0 for the reference system here), we can write the above
equation as :

\ | S = KB[ln ”) ( +§] L (E6.LA

| == v )t T3 -

o

Comment. The value of kg /e is 86 pV K~!, which gives an idea of the order of the
magnitude of the Seebeck coefficient in many materials. -

6.3.5 Hyperbolic Heat Conduction Equation and Its Validity

One assumption we made in the derivation of the classical constitutive equations, such
as the Fourier 1aw, is that the transient effect on'the distribution function is negligible,
¥

r%{- LtveVf (6.109)

This will be valid if the variation of the distribution function in the time scale is much.

smaller than the variation of the distribution function in the length scale. Now, let's relax
this approximation but still make the assumption that deviation from spatial equilibrium

is srpall. Equation (6.49) becomes

T’a‘i +f=fo—7 (V-Vrfo-l- ¥ 'vao) (6.110)
ar m
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6.9 Exercises

6.1 Phonon thermal conductivity at iniermediate temperature. The phonon—pho;on
. scattering relaxation time in the intermediate range of temperature (When

T < 6p) can be approximated as
1 e ! 3, 2
i = T%w
Aexp[

On the basis of the Debye model (linear dispersion), derive an expression for the
' ivi i its dependence on temperature. 7
thermal conductivity and discuss 1ts P ‘
6.2 High-temperature thermal conductivity. At high temperature, | the phonon
relaxation time in a crystal is
7 1« T

T v

i ' i toms and m is the atomic weight.
is of the order of distance between a s the at :
Wh?:; aProve that the high-temperature thermal conductivity is proportional

; : -1 Fefi -
tO l(lb:; The thermal conductivity of siticon at 300 K is 145 Wm™ K. Estimate its

hermal conducetivity at 400 K. ) .~ - ) .
6.3 ;;iE?aM diﬁ‘usiorf approximation ﬁ?r phoﬁt transport. Consu;crtan ?E:;;l}lrléi
and emitting medinm for thermal radmuoq transpor[.r.. ‘When the pho C(l)irrx can free
path is much smaller than the characteristic length in the transport & ec ( a’ued
local equilibrium approximation is valid. Prove that under this condition (¢
optically thick) the radiative heat flux can be expressed as

4w dlp

g=—m——

3a dx

where « is the absorption coefficient. This is called the Rosseland diffusion
ximation. o o
6.4 ?Ilifzfioemannﬁanz law. The electrical resistivity of gold at 300 K is 3.107 x
' - - " ' . -ty‘
1078 Q m. Estimate its thermal conductivi - . ot
6.5 Wiedemann—Franz law. The thermal conductivity of copper is 400 Wm K™ at
‘ 300 K. Estimate its electrical conductivity at the same temp.er:?ti‘lre. O
6.6 Energy and momentum relaxation time. The alc%’mcal res?m;llgy \;[Hm—lelr(%l
. ivi i T x 107°2 m an . .
ductivity of gold at 300 K are 3.10 107
;:Ec;?imate ﬂ?f: momentum and energy relaxation time, and the momentum and
' i in gold.
energy relaxation length, of electrons in go | . o
6.7 Theri)zlal conductivity and viscosity, The thermal conductivity of air is
) —_— — ’ 3 - 3 - . .ty‘
0.025 Wm~! K~!. Bstimate its dynamic viscosi _ ]
6 8 Electrons in semiconduciors. An n-type senncor;ducgor_illas a carrier copcextl
- tration of 10 ¢cm™ and a mobility of 200 cm* V™ S .a't 300 K. Estimate
the following: (a) electrical conductivity; (b) electron diffusivity; (c) m_o-mentum
relaxation time; and (d) electron mean free path. Take the electron effecuve. mass
as that of a free electron.
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6.9 Thermal conductivity of gases. Prove that the thermal conductivity of a dilute

monatomic gas is

k= % (52) newst

6.10 Thermoelectric cooler. A thermoelectric device is typically made of p-n junc-

. tions as shown in figure P6,10. When a current flows through the p—n junction,
~ both electrons and holes carry energy from the cold side to the hot side. The
Peltier coefficients of both p and n materials are equal in magnitude, TI, bat of
opposite sign. The cooling rate due to current flow is 21T x /. In addition to
this cooling, there is also Joule heating and reverse heat conduction. Assuming
that the electrical and thermal conductivities of both legs are the same, derive an
expression for the net cooling power at the cold side in terms of the temperatures
at the cold and the hot side, the current, and the cross-sectional area and length
of the leg. Show that the cooling power reaches a maximum at a certain optimum

current value.

COLD SIDE

Figure P6.10 Figure for problem 6.10.

6.11 Seebeck coefficients of a quantum well. Derive an expression for the Seebeck

coefficient of a quantum well of well-width 4 and ‘with an infinite potential
barrier beight, as & function of the doping concentration. ‘

6.12 Power factor of a quantum well. Becanse of Joule heating and reverse heat

conduction, the efficiency of a thermoelectric device is determined by the figure
of merit, defined as Z = SZO‘/ k, where § is the Seebeck coefficient, o the
clectrical conductivity, and k the thermal conductivity. The numerator §%o is
also called the power factor. : o :

() Derive an expression for the power factor S%¢ for a quantum well of width
4 and with an infinite barrier height, in terms of electron effective mass, relaxation
time, chemical potential, and quantura well width.

(b) Assuming constant relaxation time and Boltzmenn distiibution, simplify the
results obtained. ‘ : . . . 7
Seebeck coefficient of nondegenerate silicon. For silicon with doping concen-
tration between 10 and 10'8 cm~3, the Boltzmann distribution can be used
instead of the Fermi-Dirac distribution. Silicon has six identical conduction

bands with an effective mass of 0.33 m, for each conduction band, where3 0'
¢

m, is the mass of a free electron. Assume a constant relaxation time. j., MNT
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- (a) Calculate the Fermi level as a function of the carrier cloncent'ration from both
the Fermi-Dirac and the Boltzmann distribution, and show that the levels do not

differ much in the given doping range. : )
(b) Calculate thie Seebeck coefficient as a function of the dopant concentration.

6.14 Seebeck coefficient of a metal.
(a) Assuming a constant relaxation

of a metal is given by

tims, prove that the Seebeck coefficient

2.2
wekgT

8= 2en;
eEy¢

(b) Prove that ZT for a metal satisfies the following inequality

37{2}c23T2 ’
ZT <

(¢) Estimate the Seebeck coefficient of coppe
6.15 Einstein relation. Whenthe Boltzmann approximation is valid, prove the Einstein

relation between mobility and diffusivity for electrons

_ kgT
a=——p
N é

T 4K : ' o
b 2ee £
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evaluate the electrical current, we must épecify these boundary conditions such that

g1 and g2 can be determined. Carrier reflection at an interface or surface was dealt

with in chapter 5, If the interface is very smooth in comparison with the wavelength,
the carrier reflection is specular and the reflectivity and transmissivity can be caleu-

lated asing relations such as the Fresnel coefficients. Specular interfaces, however,

are nsually difficult to realize because of material imperfections. In many cases, the
interfaces can be considered as diffise, meaning that an incident carrier has equal
probability to be reflected in all directions, or somewhere between specular and dif-
fuse. We will consider two special cases: in the first limit, the boundaries scatter

electrons diffusely; in the other limit, the boundaries scatter electrons specularly.

The solution for partially specular and partally diffuse surfaces wiil be given without

mathematical details.
When the boundary scatters electrons diffusely, and when thefe is no current flowing

out of the boundary, electrons leaving the boundaries are distributed isotropically and
follow the local Fermi-Dirac distribution; that is, f = fo. We have

gHy=0)=0mdg (y=d)=0 (7.10)
Substituting the above equatioﬁs into egs. (7.8) and (71.9), we obtain

g1 =g =3 _ _ (7.1H)
Vand. 7

gt p) =gl mw =35 [cXp (“"fl) - 1] O=p=l) (7.12)

g () =gn u)= So [ex15 (%ﬂ) - 1] (—1= u,'s 0) (7.13)

The total electrical current (per unit depth perpendicular to the xy-plane) in the
x-direction is

d
Je= Df { [ [ f (—e)ufo(mdsa/zin]dE] &

- d 2 T
=‘f f eD(E)#fdso fvxg(??,ﬁ‘,qo) sin 6 do/4x | | dE ¢ dy
0 0 0 : : 7 /
1 4 2 1 : dE
=“;g;f f eD(E)&[dqo fvx[g+(y,u)+g—(y,w)]du @#
- 0 0. \o ,
(7.14)

where we have again used the fact that fp is isotropic and cancels after carrying
out the angular integrations, and have used the variable transformation p = cosf.

ok

Substituting eqs. (7.12) and
out the integration over ¢,

jo/d
(#+1%
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- conductivity

aﬁ)

2 2

— D
[e2 e f‘L’U (
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fraction of specularly scattered
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thin film, assuming that the interfaces scatter electrons partially diffusely ang
partially ’specularly, with p representing the fraction of specularly scattere
lectrons. Neglect quantum size effects. N o ‘
7.7 g’fzz effect or% the phonon thermal conductivity along d czrcularfmn_owz;’e.
' s ® . ai‘
Derive an expressim} fo th‘e effact}ve phonop thejn;:l condg)ctfwty of a circu
nanowire, & S5u m’l@?’qfc\l!_@f fé&@

7.8 Size effect on the phdonon thermal conductivity of a square nanowire. Derive an

wiched between two identical cladding imaterials. _T;he Ezlirent ma;eria(.)l of t_hle
film has a thermal conductivity of k1 = 145 Wm K , v = 640 ms—,
7 d Cy = 1.66 x 103 m™ K~!. The cladding materials have the following
an = 1.

thermal conductivity in the direction perpendicular tq the film as a func:-ucmt 1(I)ef
the film thickness for the film thickness in the range of 10-1000 A, talqng.
cti ' i into considerafion.

honon reflection at the two interfaces in ) con: o '
710 ?i‘areﬁed gas heat conduction. Extend the diffusion approximation, together '\;lﬂ':
' appropriate boundary conditions for partially accomino/daunlg silrface;), fo_r ee;ﬂ

i i two parallel plates. Deriv

duction through a gas sandwiched bethat?:l; t flel plates. Derive ar
Z;;r;sion for the effective thermal conductivity of the gas as 4 fuaction of thie

accommodation coefficients on the two surfaces and the K{luds.en Pum.ber. .
7.11 Rarefied Couette flow. Derive an expression for the velocity d1st11but1f3n using
. the slip bounda_ry condition, eq. (7.145) for Couetic ﬂo‘:v, as s%mwn in figure
P7.11. The bottom plate is stationary and the top plate is moving at congtant

speed Ug. _ : :
y :
) - Mov'inﬁ 1,
d
X
0 : " .
7 i Figure P7.11 Figure for

Stationary’ problemt 7.11, Coustte flow.

I - s N
expression for the effective phonon thermal conducflwty ofa sqgarg }r?nagowu%,_i& ) |
7.9 Phonon transport perpendicular to interfaces of thin films. A thin is san

sy

9

properties: v = 3900m s}, C = 1.67 x 10° T m™3 K. Estimate the effective

“specularly scittered electrons,

¢k coefficient along a thin film.
t along a thin film, assuming
s Seebeck coefficient higher or
1at of the bulk material for the

wurfaces on the Seebeck coeffi-
1e Seebeck coefficient along a

7.12 Electrical conductivity of a double heterojunction smgtz:lre.hA tﬂnﬂ{:ﬁ;ﬁl};ﬁz
- i iconductor materials has two 1

thin film sandwiched between tvyo semicon ‘ 0 interfa
and is called a double heterojunction (see figure p7.12). Extend the drift djfgusg)‘in
approximation, with the diffusion—transmission boundary C'mdm'mll; f;r @te];; t}—l

ivit i thin film with a barrier height ¢ at bo

al conductivity perpendicular to a

fnterfaces Neglect quantum size effects on the electron energy levels, and tlie
electrostai.:ic potential change due to the depletion or accumulation of electrors

in the barrier region.
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A

Figure P7.12 Figure
for problem 7:12,
thermionic emission.

7.13 Radiative heat transfer between two concentric spheres. Apply the modified
" differential approximation to solve the problem of radiative heat transfer between
two concentric spheres maintained at two different temperatures 71 and T3.
Assume each wall is black and the gas between the shells is absorbing, emitting,
and isotropically scattering. e '
7.14 Radiative heat transfer between two concentric cylinders. Apply the modified
differential approximation to solve the problem of radiative heat transfer between
two concentric cylinders maintained at two different temperatures Ty and T».
Assume each wall is black and the gas between the cylinders is absorbing,
emitting, and isotropically scattering.

7.15 Size effects offheat conduction across a cvlindrical thin shell. Apply the ballistic— |

diffusive equations to solve the problem of steady-state phonon heat conduction
between a cylindrical thin shell of thickness d. Derive an expressioﬁ for the tem-
perature distribution in the thin shell. The equivalent equilibrium temperatures
at the inner and the outer surfaces are 7; and To, respectively. Phonon mean free
path in the parent bulk material of the shell is A.

7.16 Size effécts on phonon heat conduction across a spherical thin shell. Apply the
ballistic- diffusive equations to solve the problem of steady-state phonon heat
conduction between a spherical thin shell of thickness 4 The inner and the outer
surfaces are maintained at 7; and Tp, respectively. Phonon mean free path in the
parent bulk material of the shellis A. '

7.17 Size effects on heat conduction with an internal heat source: ballistic-diffusive
treatment. Heat is uniformly generated inside a nanoscale spherical region of
diameter d, embedded inside an infinite medium. The heat generation region
and the surrounding are of the same material with no boundary; that is the
transmmissivity is equal to one. Use the ballistic—diffusive approximation to solve
for the temperature profile inside the sufrounding medium. Phonon mean free
path in the surrounding medium is A. ' ‘

7.18 Size effects on heat conduction with internal heat source: diffusion—transmission
interface condition. Heat is uniformly generated inside a nanoscale spheri-
cal tegion of diameter d, embedded inside an infinite mediur. Use the
diffusion—transmission boundary condition to derive a simple expression for the

:
!
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‘termperature distribution inside the spher.e as well as in the sunound;n%k m;d;l;l;,
assuming that the transmissivity at the interface is equal to one. Bulk p
ath in both media is A.

7.19 g:iiji;;j:tf on phonon heat conduction across a sphencal thin shellb Used the
diffusion approximation together with the. dlﬂ'usmn—transngssmtr]; ' mgnﬂal(;);
condition to solve for phonon heat conduction across a spherical ain s ef o
thickness 4. Derive an expression for the effective thermal conductivity o
shell. Bulk phonon mean free path in the thin shell material is A. 1T."he nmf:; an
outer surfaces of the shell are maintained at T; and Tp, respecnveh ,h . US

7.20 Size effects on phonon heat conduction across a cylindrical thin Sbe )

the diffusion approximation together with the d1ffu51.on—transnuss1§n drc:uni ﬂf;z ,

condition to sofve the problem of phonon heat COHdHCHOIll across a cylin : cati ;

shell of thickness d. Derive an expression for _the effec_:twe thermal f:;)l]:{ 13(\: ;1}1 z

of the thin shell. Bulk phonon mean free path in the thin shell material is 4 [w[,w;

inner and the outer surfaces are maintained at T; and Tp, rcspec‘uvdy} als s

on v }fao 2 “’TEI’QJ‘["
, 'H&-’% T . P non %ﬁw—%usmss‘m—%’
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(8.19)

ent inelastic and elastic scattering
‘ct that the summation over qis-

1d function of k. Equation (.19
m has the typical relaxation time

5(Ek - Ek-kq e ﬁw)

(8.20)

assume Setajled expressions for
listributions but that the phonons
respectively, .

1

W (8.21)

' into integration,

- fw,0)

2.2
~hu.qcosf — iq_ +hm):’ -
2m ]

(8:22)

er high-temperature situations

(8.23)

2), we will use the following

?

X > b (8.24)

that the cos @ in the first delta .
for 8 within [0, /2), and to
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negative values, that is, for & within (z/2, 7], in the second delta function. Both these
gelta functions set the mipimum of ¢, grn, to Zero and the maximum of g, Gmax, 1©
omu./#. Equation (8.22) can thus be written as :

2mua [k 22 . . 1
1 1 2 b AC!) (K,‘B P)
_—= | — d 4 w (2 — — o
T (4?72) f 1 qx( pv2 ) . hew @ = fetqo— fu q,O)hveq
0 . -

(8.25)

For semiconductors that are not heavily doped, the Permi level is typically inside the
‘bandgap, so that fii4,0 and fk—q,0 is much smaller than one and can be neglected. In

this case, eq. (8.25) can be explicitly integrated, leading to

1 z%
() (5
T TPV; A

3252
_ \/zxgm / z5Tp EV2
mpu2ht

(8.26)

This expression is valid for electron scattering with longitudinal acoustic phononsina
semiconductor at high temperature, that is, when the Jattice temperature 1§ higher thafi
the Debye temperature. For metals, the relaxation time due to longitudinat acoustic
phonons is different from the above expression because (1) fii.q,0 and fi—q.0 are no
longer negligible and (2) the upper limit for ¢ is no longer 2muv,/h since the latter is much
larger than the maximum allowable wavevector of the first Brillouin zone. A detailed
treatment of relaxation time due to electron and acoustic phonon scattering in metals

~ was given by Wilson (1933), and it is found that -

1 36r) «pZiT, £
T 1642 /mpviat

where a is the length of the unit ceﬂ. . _
We now turn our attention to inelastic scattering term, eq. (8.18). We follow a

3.2

. similar derivation as for the relaxation time 7 and again limit the derivations to the

longitudinal acoustic phonon scattering of electrons in semiconductors. Equation (8.18)
can be expressed as '

af e ZZo\ 1 ' E_x
_ 2, [ LAY —Lf
(3t)cf T 4x? f 7 dq( pv? ) ﬁqveanO(E)EXp( k5T, )

. g :
7 Fow
X ”:fo(E + hw) — folE — ho) exp (-— )]
kT,

{ ko _ Ao 8287
[ (7)o (7)) =

Assuming that xp7, and kpT, are much larger than Ae, and also assuming

T (E—-FE ) > xpT,, we can approximate ?gsbove ration I;Q _ _
" 2fatfel, From 2L (6:85)For ren e, semidemducters,; we. Jet

24
elm __ Fe€ E—?US'F o ed— S
/He b Sn'l.x p-zkgm "5527}"1\'@’;—7:‘ .
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i - 2m'ue-/k

\ ary 1 f d nZ5w ( ) heo )[l—ex (__ ho )]
_ £ i "“’f04n2 a9 hvepv? ) \kpTp «BTe P «gT.
' ' 0

‘ 2mugfh .\
i d kpTy [ mZ4w ( ho ha)) fiw
““f"m f 99 e hvepv? | \kgT, «kBT.) kgTe

0
22 mS2ZL B
T om pfi.‘ticg Tf

So(Te — Tp) = g(Te — Tp) (8.29)

where the factor g can also be related to the relaxation time in eq. (8.26),
2/AmdZRER? | amulEfy
= ohtipT? 0= K3 T2T,T

This expression shows that (3f/3t), ; represents the inelastic scattering that drives the
11 electrons and phonons to equilibrium. For metals, Qiu and Tien (1993) derived the
a following expression, ' :

at kg pat Tez

| , 1/3 2 172 ' - - ‘
i (%) _ 3 ( > ) @gﬁfw—fq(l — fo) (foﬁ%) L—Tp (8.31)

i 242 \4n
Equation (8.31) describes the energy loss trends in metals. If the electron energy is higher
than the Fermi level {fy < %),.the terin is negative, indicating that electrons are losing
high-energy carriers because of their collision with the lattice. If the electron energy is
lower than the Fermui level (fp > %) the scattering tends to supply carriers to these states.

. In contrast, eq. (8.27) represents an elastic scattering process. One can understand this
¥ statement by multiplying both sides of the Boltzmann equation by energy and integrating

i over all allowable energy states. The two scattering terms are

; S AN |
; - , ZE(E;)M—O 63

T : : k
| 1 :
L :‘ af
i E{— =G(F, - T, 8.33
i > (at)w_ (T. — Ty) CES)
f i where ( is called the electron—phonon coupling factor. From eq. {8.29), the

electron—-phonon coupling factor due to acoustic phonon scattering in nondegencrate
i semiconductors (such that the Boltzmann statistics is valid) is

o0 . o0
: af . n [ EgD(E)AE
. G = E(m) :ngD(E)dEz————
R Xk: )i . I foD(E)dE
' [ E-E
2372 nm5/22§ fooo E? exp (* }CBT:r) dE
i 43 pk4‘fBTe2 fooo EL/Z exp(i;if)dE
T R 5/222
| - %ﬁ A ep T
g R 2 pR*T, _
. 2hilob K He W pewl pme . . o
=5 nmVs 3> nely .-

(8.30).

where n is the glech
parabolic baund for el
electrons, we see that
per electron is thus

The above result diffs

- by a factor of 2/3.

The electron-pho
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where the electron rel
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This can be proven fro
approximations invok
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mode relaxation time,
is an average. Solving
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be approximated by the Boltzmann distribution, we derived in example 6.1 an
expression for the Seebeck coefficient, from which the Peltier coefficient can be
expressed as ’

Tkg We — E. 5)] '
n,=—I\$f— — =
% " e [’ kgl . Ye ¥ 2
' E 5\ «pT o :
XY =42l (ye + —) 22 (8.114)
, € 2 e ) :
-where y; is the parémeter in the energy dependance of the electron scattering (~ E7¢).
In region B-D, E. is a constant. If we further consider an isothermal condi-

tion, consistent with Shockley’s derivation, the fifst term in eq- (8.113) can be
expressed as

Ec+ (ye+5/2xpT]dJ,
e dx

5 i~ Apo
= [Ec + (J/g + E) KBT:| _T—p
N e >
. 5y - n eV X—Xx
= I:EC + (ye + E) KBT] :0 [exp l:meBT:l m-l:l exp (——m«L B)
e é

gnlxp <x <xp) =

(8.115)

To evalnate the second term in eq. .(8.113), we start from the fact that the total electron
and hole current at each location must be a constant, and thus '

VI = — V() (8.116)

Thus the second term in eq. (8.113} is

: : i,
Gpxp < x <xp) =~ (Ip —Yn/e) T

_ 5 10 eV
—|=mat (ot 3 )eor | 2 e (S2) - 1]

exp (ﬁ-iﬂ) : ‘ 8117

L.

where ITj is the Peltier coefficient for holes and yp is the parameter in the energy
dependence of the hole scattering. The total energy source term in the region
xp < x < xp is therefore

2

. 5 1po eV X —Xp
z ) R | s
(e )r 2 o (57) - oo ()

5 5 —
= [EC‘EU‘E‘ ('}’h +_2-) kgl + (J/e'!‘a) KBT]E“*II‘IJ—O (8-118)

gx) = [Ec —E, + (}’h + :5") kpl

Te
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Eg, while the rest
currents. This energ
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We can integrate e
this section,
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=—[Eg +
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QCA:—[E
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gy is often neglected in simulation,
an the average thermal energy. The

k

) I(1—R)
_E) KBT]} hv
TJ IA-R)

W (8.131)

1) is the photon energy above the
above the bandgap'is afastelectron-
5. The carrier diffusion during this
leat generated due to the conversion -
ated as surface heating. We should
U and (yp + 5/2)kgT in this term
/2 kpT. This choice is justified on
cond term in eq. (8.131) is due to
() shows that, even for the steady-
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rates that a surface absorption can

version

some transport processes to move
ses often incur large entropy gen-

_rsion. Some of the size effects in
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ver generation. Because the basic
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nd how nanoscale size effects can
le power density.

: effects: the Seebeck effect, the
ect is exploited for thermoelectric
thermoelectric power generators
:es are typically made of multiple’
nected such that the current flow

ENERGY CONVERSION AND COUPLED TRANSPORT PROCESSES 387

HOT SIDE

COLD SIDE
AAp—
(L)

i i : tion mode; (c) an actual
tectric devices: {a) cooling mode; (b) power genera i ]
e of p-n légs electrically in series and thermally in parallel.

Figure
device made of any pairs

ser i is i allel, as shown in figure 8.10. The reason
is in series while the heat flow is in paralicl, as | s
;S rmfhseeuse of both p- and n-type elements (legs) is because the Seepegk antclll ;eézf;
. - ' i f opposite sign, so
i i f materials are usually of opp
coefficients in these two types 01 ma suall e
ntri ; tric effect. The reason
- element contribute to the desuedlthgrmcie ectric ;
typzsi;:ft;icaﬂy in series is due to the small electrical resistance of. cach element. Put_tn;i
:;Zny legs in series incieases the total resistance, which simplifies the power source

[figure 8.10{c}].

8.4.1.1 Thermoelectric Refrigeratiorn

i i lectri d for cooling, as shown in figure 8.10(a).

nsider a pair of thermoelectric legs use . ; _

guel;:nt is passgd from the n-type leg to the p-type leg so that bf)tb etlltlactm::ry ]I';fgi}?e rt{})rlpaeE
i ‘ay from the cold junction, thus carryx

d holes in the p-type leg move away ' he col . ng!
lcg;m oEt of the 'cgld junction. The Peltier cooling s proportional to (TT leliz
en]f gg 1. is the current. In addition to the heat taken out by the current ﬂ.ow, there 1s o
o er:se (lzleat ﬂoﬁr from. the hot side to the cold side due to heat conducfuon by thedso 1;13 d
lgi;’me of the Joule heat senerated inside the thermoelectric element is also conduc

back to the cold junction. The net cooting power of the copple is thus

. ) - 1 8.132
Q¢ = (Sp — S lTc —~ KTy —Tc) - 513 &, 7 ( )
where § is the Seebeck coefficient leq. (6.93)], TS equals the Peltier coéfﬁc1ent
[eq. (6.104}], and |
kndn | KA gp = Ty He (8.133)
= H, - Hg ¢ opAp  OeAe _

are the thermal conductance and electrical re.sistance of the two brancliesgzsgf;;z;g.
Here H and A are the height and cross-sectional area of the thermoelec o elem hal%

L) and gthe electrical seskstisty. The one-half factor in eq. (.8.132) gppears e 1
L‘b of the Joule heat condpcts back to-the cold side. The electrical power We cons v

the pair of legs is

W, = (Sn — Se)l(Trr — Tc) + I Re (8.134)
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r the additional reverse voltage
aqd the second term is power
rformance used to describe the

Tey- L2,
9T I2R, (8.135)

»rformance is dependent on the
al cases are of interest. One is
1 coefficient of performance at
urent /o, can be determined by

(8.136) |
)
- | (8.137)
itk
5 : (8.138) -

es of both legs. The figure of

(8.139y

al for making a useful device.
al ﬁglure of merit ZT is often -
ds to identify materials with a

Jnance by setting dg/dl, =0,

(8.140)

ch
N (8.141)

[ the hot and cold junctions.
:vefficient of performance of

- Equations (8.
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Another parameter that is useful for refrigeration performance is the maximum

temperature difference that a given system can ideally teach. The maximum tem-

- perature difference is reached when there is no et cooling power taken from the

the coefficient of performance is zero at the maximum temperatiure

gource. Therefore,
ature difference can be obtained from

difference. The corresponding maximum tepper
eq. (8.132) as

1
Ty — TC)mex = —Q—ZT(% | (8.142)

8.4.1.2 Thermoelectric Power Genergtion

The thermoelectric power generation mode can be analyzed similarly. In a power
generation mode, as shown in figure 8.10(b), the heat supplied to the hot side should be

' : 1
Qp = (8 — STy + KTy —Tc) E1312e (8.143)

and the power output is

W, = IRy ‘ (8.144)
where Ry, is the external load resistance of the outpit circuit. The output current is
given by
Sp— Se)(Tg — T ,
Sy = STy —To)  (8.145)

¢ R, + Ry,

Therefore, the thermal efficiency is

4 I’R |
n=oe = e L o (8.146)
On (S, — Se)IeTH + KT —Tc) — 719 R, _

It can be shown that the maximum power is
maximum efficiency, which does not have to occur at the maximum

eiting dnfdRy =0, ' . 7 0
F _ (Tg —Tc) .1+ZTM)
hoax = T (V1 ¥ 20w + 1o/ Ta)

141) and (8.147) show that one could make thermoelectric refrigerators
and power generators close to the Carnot efficiency if materials with large ZT could be
identified. The search for high ZT materials, however, has proven to be a very difficult
path. The best ZT materials are found in heavily doped semiconductors. Insulators
have poor electrical conductivities. Metals have relatively low Seebeck coefficients. In
addition, the thermal conductivity of a metal, whichis dominated by-electroas, is propor-
tional to the electrical conductivity, as dictated by the Wiedmann—Franz law [eq. (6.38)].
Tt is thus hard to realize high ZT in metals. In semiconductors, the thermal conductivity

_consists of contributions from electrons (k.) and phonons (kp), with the majority coming
from phofions. The phonon thermal conductivity can be reduced without causing t00

power, is determined

(8.147)

obtained with a matched load Ry, = R.. The -
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ic cell; (b) principle of thermpphotovoltaic power

Figure 8.12 (a) The principle of a photovol
converter powered by a stove (Fraas et al., 2003;

generation; (¢) 2 prototype thermophotovoltaic
conrtesy of Dr. LM. Fraas). s

Impressive ZT values have been reported in some superlattice structures based on both
an enhancement of the electron performance (Harman et al., 2002) and a reduction in
thermal conductivity (Harman et al., 2002, Venkatasubramanian, et al., 2001), with
biggest benefit coming from the thermal conductivity reduction, Figure 8.11 shows a
spapshot of the ZT of state-of-the art materials (Chen et al., 2003). The ZT of many
nanostructures has surpassed that of tulk materials. However, these napostroctured
materials are difficult to synthesize and useful devices have yet to be made from them.
More information on panostructured thermoelectric materials can be found in several
d Shakouri, 2002; Chen et al, 2003).

8.4.2 Solar Cells and Thermophotovoltaic Power Conversion

8.4.2.1 Basic Principles

oltaic cells) absorb the photon energy from
apin et al., 1954; Sze, 1981). The working
principle of a solar cell comprising ap-11 junction is sketched in figure 8:12(a). Photons .
from the sun generate electron—hole pairs in the spacé charge region. The electrostatic
field in this region pulls holes to the p-type region and electrons to the n-type region.
The accumulation of clectrons and holes in these two regions generates a voltage.
tors are similar to photovoltaic cells but use a heat

Thermophotovoltaic power genera

source to generate photons rather than solar epergy (Coutts, 1999). A regular thermopho-
tovoltaic device usually consists of the following parts: a heat source, ap emiiter to emit '
photons, a filter to reflect unwinted photons, photovoltaic cells to generate electricity,

arid a thermal management system to keep the photovoltaic cell cool, as shown in

figure 8.12(b). Figure 8.12(c) is an example of a commercial thermophotovoltaic power
generator powered by a furnace. '
The p-n junction current as given b

Solar cells (and, more generally, photov
the sun and convert it into electricity (Chi

y eq. (8.111) is balanced by the electron—hole

generation rate .
I, = eV — 1) : (8.148)

d the dark current for diodes operated as photon detectors, and

where Jg is also calle
hoton absorption, which we will discuss later.

.S is the current source due t0 p
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Under an open-circuit condition, €q. (8.148) gives the open-circuit voltage of the
photovoltaic cell as '

L VO=-"—3€£1‘H(L’§+1) (8149

5

As eq. (8.112) shows, the dark current is dependent on the bandgap, '

- Jy = Acxp (—K—EB&}) | (8.150)

whiere the coefficient A can be derived from eq. (8.112) for the Shockley ideal diode
model, In Shockley’s model, the dark current is due to nonradiative recombination
outside the space charge region. A more fundamental limit is the radiative Tecombi-
nation (Shockley and Queisser, 1961; Henry, 1980) that must exist on the basis of

the Kirchoff law in radiation; that is, the absorption must balance the emission for a
system in equilibrium, This fupdamental limit leads to the following expression for A

(Henry, 1980),
e(n®> + 1) EskpT

: 8.151
A 232 &-151)

where 7 is the refractive index of the photovoltaic cell and ¢ is the speed of light in
vacuum. This A is typically much smaller than that due to nonradiative recornbination
as given by eq. (8.112). The dark current cansed by radiative recombination is often
used to estimate the maximum efficiency of a sofar cell. . :
Substituting eq. (8.150) into (8.149), the open-circuit voltage (Je = 0) can be
expressed as ‘ ' : : _ .

" E T A
> V()%—g—EB—hl(——

e € N/ ) ;
which implies that the output voltage depends on the bandgap. The power output per
unit area from a solar cell is

s W, = I,V = —J V("B — 1)+ ng (8.153)

(8.152)

and the maximum power output can be obtained from dW,/dV = 0. This mathematical
operation leads to the following expression for the optimum current and voltage,

% 17 v, '
L___.> Topt = Jse_‘EE exp [iﬂi] A ﬁ [1 — _eﬂ] (8.154)
kT kpT

T V.
o ICBT In ( Jg/-[s + 1 ) ~ VO _ kB n (1 + Q}_p_t) (8.155)
1+ eVopt/ T) e kgl )

We now determine Jag, the current source due to photon excitation of electrons and

holes. The radiation sotirce is at temperature Ty. The quantity of photons entering the
photovoltaic cell depends on the emissivity of the emitter 5,, the transmissivity of
the medium between the emitter and the photovoltaic cell 7, the reflectivity Qf the
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8.8 Exercises

basis
8.1 Electron mobility in semiconductors (Bardeen and Shockley, 1950). On the bas
of e((grggrlzv? a;arlllde)(c?)}gezgion for the electron mobility of a nondegenerate gemlu
' tor due to acoustic phonon scattering; _
¢ cong:;csggw that the mobility depends on temperature ﬂm9ug5}ilﬁic’0n dji - aoousic
' : laxation time 10 8
c) estimate the average momentum ff' X , A s
D o(m)m scattering) , The. 3¢ Jz:'%‘m Q&am_ Tm{&r}t‘a! /s ‘?.5’ ? f{le v‘:j/:;:{,f -
2 Electron—phonon ?oupling factor of semiconductors. Es.tlma e e
- 1 ef(::tron phonon coupling factor in silicon {due to acoustic phonon scatternng
ele: — .

: 17 -3
b th m ar arri tra cm™.
a function of the electron temperature for a carrier concentration of 10

i i fseV. _

deformation potential value o } _
2.3 ;1;3]1{2;0?2}@ b.erweei:i mobility and electron—phonon coupling Jactor. Denxi_'if; a
r;;ation;hiup .between the electron mobility and the elec_tronﬁphonon coupling
factorfor semiconductors due to acoustic phonon scgtgznnﬁl. o iargitive model
8.4 Classical collision model (Shockley, 1951; Wang, 1989). 1 an ntiitive mocel
" ofelectron-phonon interaction, we treat the phonon as a particle : g.l 3 M.
%h g eho(I)lonpmass can be approximately model.ed as the mass of a smgte a ;
Co?lgjider collinear collision of an electron !flaVlItlﬁ m;ss -?ne;n;lgs ??SHIEIJICEII]] aéeélr

i f mass M initially at rest. Since the phono
tv';laﬂ; ilhl;hgli?:rtlrgn mass, the electron will bounce back with a momentum De.f

whi n zains a momentam of Py p. -
Wh](ie) tlgnpt%grgzsﬁg of energy and momentum conservation, show that the amount
4,

byt ¢lectron to phonenis . 4y,
of enesgy transport per collision from elec P 2W

~3/2,

- 2
— Po.r = (_fz._p—ef-)— = vag =icg Iy
(BE)e—p = M 2m L

¢ . y | the reI_atIGIl
W, ; electr 1001 and ha e S

h&l‘e v 18 thc 1 CLron I'aIld()I!I Ve t . we \' d

m‘Ug /2 = KB TE/Z (Slnce We arc deahng Wlth one degree Of ﬁ‘eedom mna C()].I ncar

. . s , idi ith
syszgl)n)stnﬂaﬂy, consider a phonon with an ipitial momentum Pp,; colliding w

i hange per collision is
initially at rest, and show that the energy ex
an electron initrally p 26 M)
(BE)pse = 2Mu® =xpTp
{c) On the basis of the above results, show that the energy exchange rafe between
electron and phonion can be expressed as

(9’5) ~ G(T, — Ty)
dt /.,

. - isi or the
L 7\%”— ,E..‘E with G :L"‘%’# - where T is the time interval between each collision,
= :

relaxation tume.
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8.5 Electron-—phonon couplmg factor of metals. Estimate the electron-phonon
B coupling factor in golcg/ WI’LQ} » i&ﬂifﬂ X ol ool

i 8.6 Electron—hole pair generation due to light absorption. Gallium antimonide
(GaSb) is used -as a photovoltaic cell material in thermophotovolta:lc energy
conversion. Tt is a direct gap semiconductor with a gap of 0.72 eV, The real
part of the refractive index is 3.8. The absorption coefficient above the bandgap
is ~10* cm™!. Determine the distribution of the electron-hole pairs for thermal

radiation at normal incidence from a blackbody source of 1500 K.
8.7 Hot electrons under a high field. A voltage V is applied to an n-type semicon-

assume that at the cathode, x = 0, the electrons and phonons are at the same

“but the electrons’ boundary condition is close to adiabatic (this is equivalent to
assuming that the thermal conductivity and the Peltier coefficient of electrons in
the anode are close to zero). The electron and phonon thermal conductivities of
the semiconductor are k. and k;, respectively. Neglect thermoelectric effects.

Figure P8.7 Figure for
Problem 8.7.

Determine
(a) the temperature dlsmbutmns of electrons and phonons;

i () the heat source distribution in the semiconductor.

i " 8.8 Heat generation in a p—n junction. Consider a silicon p—n junction. The dopant
concentrations for both the E and the n sides are 10'® cm™2. The mobilities of elec-
trons and holes are 170 cmy Uand 60 cm? V=157, respectively. The life-
times of both electrons and holes are ~10~10 5. The intrinsic carrier concentration

m;is 1.1 x 10%° cm 3. The bandgap of siliconis 1.12 eV.
(2) Estimate the electron and the hole diffusion lengths.
(b) Estimate the satoration current density.
-(c) Plot the heat source distribution due to electron—hole recombination in the
n-type region.

8.9 Heat source distribution under laser zrmdzarzon A 1aser beam with a wavelength

i of 1.55 pm and with an intensity of 10,000 W m™ 2 is incident on a semiconductor

with a bandgap of 0.66 eV and a complex refractive index of (4, 0.01). The

L ' electron—hole mobility is 1000 cm? V1 s~1 and the electron—hole recombination

heat source distribution at steady state.

8.10 Thermoelectric cooler. Bismuth telluride (BizTes) is a common thermo-
electric material. State-of-the-art bulk n-type Bi, Tes has the following properties:
Seebeck coeflicient, —240 K1, clectrical resistivity, 10 p£ m; thermal

conductivity, 2.2 W m K-

ductorof fength 7. between two electrodes, as:shown in fgure P8.7. The electron .
conductivity is o and the electron—phonon coupling factor is G. We futher )

room temperature. At the anode, the phonons are maintained at room temperature -

lifetime is I ms. Assuming that all recombination is nonradiative, determine the -
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(a) Calculate the figure of merit of this material.

(b} On the basis of the Wiedmann-Franz law and the Lorentz number, separate
the thermal conductivity contributions due to electrons and to phonons.

(c) If, thmligh the use of uauostructures', the phonon thermal conductivity can
be reduced to 0.25 Wm~! K~! without degrading the Seebeck coefﬁment or the

glectrical conductivity, what figure of merit can one get?

(d) If ap-type material with identical properties can also be obtamed calculate the
maximum temperature difference that can be generated with a thermoelectric device
made of the state-of-the-art material and the nanostructured materialy Assume that
all properties are temperature independent. i@?’l W )
Thermophotovoltaic generator. Assuming that the photovoltmc cell of a thernro-
photovoltaic converter has a refractive index of 4 and that the filter is ideal,
such that all photons above the bandgap are absorbed and all below the bandgap
are reflected back to the heat source, determine the optimum bandgap and the
maximum efficiency of the generator as a function of the emitter temperature.-
Dielectric-coupled thermophotovoltaic generator. -One idea to increase the
power output of a thermophotovoltaic generator is to place a dielectric material
between the emitter and the photovoltaic cell, as shown in figure P8.12. For
simnplicity, we assume that the refractive indices of all three media are matched
above the bandgap of the photovoltaic cell and are equal to 4. We further assume |
that the photovoltaic cell has a built-in filter that reflects all radiation below the
bandgap back to the emitter. ‘

Dielectric Coupler Phofovolc Cell T,

_Emitter Ty,

N

Figure P8.12 Figure
for Problem 8.12.

(a) Show that the blackbody radiation heat flux is #° higher in the dielectric
coupler than in vacuum, where n is the refractive index.

(b) Assuming that the dielectric coupler has zero thermal conductivity, determine
the optimum bandgap as a function of the emitter temperature and evaluate the
maximum efficiency of the ﬂ]CI'DlOphOtOVOltalC system.

(c} If the dielectric coupler has a thermal conductivity £ = 1 Wm‘1 K~! but
no absorption, evaluate the maximum efficiency for a heat source at 1000°C as a
function of the thickness of the coupler.

Elaborate how absorption inside the diclectric coupler will affect the result
for (c). Assume that the absorption coefficient above the bandgap is @ and
there is no absorption below the bandgap; also neglect the re-emission of the
dielectric coupler. ' '
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where x(¢) and r(¢) are the instantancous position of the particle. Thus, from measuring
the mean displacemnent of the solute, the diffusivity can be determined.

In addition to the above approach, Einstein established another method to determine
the diameter of solute particles. He proposed to measure the viscosity of the solvent

and of the solution, ttq, and ge, respectively, and derived, again assuming dilute solute

particles, the following relationship between the two viscosities,

s

- 1
L 14250 =1+ 2.5ng:er3 (9.35)

o

where @ is the volumetiic concentration of the solute particles. We will not repeat
Einstein’s derivation but instead refer the reader to his original work (1906a; 1956).
This result again applies only to dilute solutes. Many studies have been done to extend
his results to higher volumetric concentrations (Hiemhenz, 1986). These works should be
a good starting point to examine recent claims on the novel properties of nanoparticle-
seeded fuids, also referred to as nanofluids (Choi et al., 2001).
The Einstein relation can also be derived from the stochastic approach developed by
Langevin to treat Brownian motion of particles much larger than those of the sarrounding
“medium. The key idea of the Lanrgevin equation is to assume that the motion of a
Brownian particie is subject to a frictional force thatis inearly proportional to its velocity,
as in the Stokes law [eq. (9.28)], and a random driving force, R(#), imparted by the
random motion of the molecules in the bath. The requirement that the Brownian particle
is much larger in size than the molecules in the bath implies that the collision time of
the bath molecules with the Brownian particle is much shorter than the relaxation time

of the Brownian particle from its initial velocity, and hence there is no time correlation’

between the Brownian particle velocity and the molecular velocity. In the absence of

" an external force, the Langevin equation that governs the instantaneous velocity of the

Browiian particle can be written as
du

. : m-&— = —mnu+ R(r)

where 7 is the friction coefficient for Brownian particles in a fluid. The Stokes law gives
7 = 3w-Dufm. The random driving force R(r) has the following characteristics:

(9.36)

{R(z)} =0 (9.37)
I E. >
(R(1) - J(1)) =0 , : (9.38)
(R(z +5) - R(s}} = 27 Rod (1) (9.39)

where the bracket () represents the ensemble average, a concept we discussed in
chapter 4. Equation (9.37) indicates that the random driving force averages to zero
bécause it acts in all directions. Equation (9.38) states that the random driving force
1% not correlated to the velocity of the Brownian particle. This can be justified if the
Brownian particle size is large and its velocity relaxation time is much longer than the
-characteristic fluctuation tiine of the random driving force. Equation (9.39) implies that
the autocorrelation of the random driving force is infinitely short.

Now, we show ]
the inner product «
Brownian particle,
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where (—dir/dx) gives the electric field and p, (—dvr/dx) gives the electrostatic force,
Again, substituting in the Boltzmann distribution for charge we can write the above

equation as

. Ziew :
dp = —d Zieng; - ' X
D i XI: Jeny; ?XP ( cnT ) (9.66)
The above equation can be integrated, from infinity where p = peo and ¢
leading to

KBT

P9 po = St [exp (-
= wgT [r:(x) — no;l (9.67)

The right-hand side of eq. (9.67) is always positive and thus the pressure inside the
. clectric double layer is higher than that inside the bulk liquid at the equilibrium state.
Eg&wu When the surface potential is negative, th concenfration in the liquid near the
. surface is in excess of its equilibrium distribution far away from the surface and
Ld""m the E@M concentration is smaller than its equilibrium distribution. The net effect is
that the electric double layer creates an attraction force between the ions on the solid
surface and the counterions in the liquid. This attractive electrostatic force is balanced
by the positive pressure in the liquid.
Hence, when two solid surfaces are brought close to each other as shown in ﬁgure
9.7(b), a repulsive force develops between the two surfaces because the electrostatic
force between the liquid and the solid surfaces no Ionger balances the positive pressure
inside the liquid. A detailed exact solution for the symmetric surface case with only
one type of counterions in the liquid has been obtained without invoking the Debye—
Hiickel approximation (Israelachvili, 1992), In this case, the potential distribution and
the repulsive pressure between the two surfaces are given by :

' Zeyr\ 1 ‘
- =P (_ chT)  cos?Kx = (9_'68)
p(D) =xpTng (D) = 2eos, (E) K 9.69)

where ng is the counterion number dexisity at the middle plane when the two surfaces
are separated by a distance D, and 1/K is of the same order as the Debye length. K and
“np are determined by the surface charge density c;,

13

g%xB_TKH tan Q — Cs (9.70)
Ze 2 08y :
2 M . 9.71)

- 2e08:kT
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yer. Integrating eq. (9.90) once

LS (9.94)

and dir/dy = 0, thus Cp = 0.
Ige of the electric double layer,

==D/2+8)—-¢]1 (995

(we have neglected the thickness
¢ double layer, y = —D/2 + 8§,
velocity is zero. Thus, eq. (9.95)
& channel as

(9.96)
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(9.97)
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" Next, we climinate some variables so that we can solve the above equation. Because

gach phase is in thermal equilibrium, we can use the Gibbs-Duhem equatlon [eq. (8.83)]
for each of the bulk phases

s'dT —v'dp’ +dy =0 (9.98)

sdT —v"dp” +dp” =0 (9.99)

‘ lume per mole, respectively, and g is the
where s and v are the entropy and vo ‘ - '
chemical potential. A similar equation, called the Gibbs equation, exists for the

interface,

dy = —s;dT — Td (9.100)

where T is the number density of molecules per unit area at the surface of te?;lon
s; is the entropy per unit area, and g; is the chemical potential at the interface
Equations (9.97)-(9.100) form the basis for analysing the effects of curvature c()in
thermodynamic properties. Which of the variables we choose to eliminate depends
on whether the liquid or the vapor is inside the sphere, and what_ar(.a the sys;cm
constraints, that is, constant pressure or constant temperature. We discuss a few

cases below.

9.4.1 Curvature Effect on Vapor Pressure of Droplets

First we con51der a droplet system at constant temperature so that p” is the pressure
inside the liquid droplet. At ethbnum since ¢ = p” = p; = u, egs. (9.98) and
(9.99) lead to

vdp = v'dp" (9.101)
Substituting eq. (9.101) into (9.97) and eliminating p” yields

d (2—") ~ il‘idp’ . (9.102)

r

If we further assume v’ > v”, the ideal gas law for the vapor phase, and that v” (liquid)
is independent of pressure, the above equation can be integrated, leading to the Kelvin

¥ & Z’ f_,
equation / ek £ Fiee 3
| In (p_’) = 2—0% (9.103)
po r .

where R is the universal gas constant and po is the normal vgpqr. pressure when the
interface is flat (r — co). This equation shows that thPT equilibrivm vapor pres;l;:re
increases as the liquid droplet radius decreases. For a given vapor pressureﬂlsn"; er
droplets tend to evaporate. Thus, in a mist of droplets of pure substance, the argfr:
droplets will grow at the expense of the small droplets since they have a lower Vapo

pressure.
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9.7 Debye length. Estimate the Debye leng

NANO.SCALE ENERGY TRANSPORT AND CONVERSION . &%?QK

&1 in'water containing 0.01 mole of Na.C’IL :

- The dielectric constant of water is 78.54.

9.8 Liquid helium and
in a beaker, it rapidly climbs up the walls and
leaves the container. This is caused b
helium vapor and the container wall.

9.9

9.10 Electrokinetic flow. Consider fully dev

9.11 Effects of radius on water droplet su

disjoining pressure. L is known that if liquid helium is placed
down the other side, and eventually
y a negative Hamaker constant between the

{a) Show that the Hquid belium film varies as a function of its thickness.

n 1/3
o~ (s
6mpgH

~ (b) The Hamaker constant between helium vapor and the container, made of
Caly, is —0.59 x 10779 I. Estimate the liuid helium film height at a thickness of
I = 2 nm. The density of liquid helium is 125 kg m. :

Capillary rise of liquid in a ube. In a small tube inserted into & liquid bath, the
liguid rises above the height of the bath surface due to the surface tension if the
contact angle is less than 90% (figure P9.9). Show that the height of the liquid

column is

H= 2o cos
(o1 — pv) &Y

where p; and p, are the density of the liquid and its vapor and r; is the inner
radius of the capillary tube. For glass tubes with r; = 10 pm, 100 pm, and
1 mm, estimate the heights of waier inside the tube (y = 72.8mNm™) P Fé‘w
feee , & =14 '

Figure P9.9 Figure for
exercise 9.9.

eloped electro-osmotic flow between two
- paralle] plates, assuming that the Debye thickness is much smaller than the
separation of the two plates. Use the Hiickel-Debye approximation to find the
elactric double layer potential distribution,
{(a) Develop an expression for the velocity distribution within the electric
double Iayer. . ’
(b) Assuming that a constant
the thermal profile is fully devel

heat flux is applied to the fluid on both surfaces and
oped, derive an expression for the Nusselt sumbet.

rface tension and saturafion vapor pressure.
For water, taking 9.6 A2 as the surface area occupied by a water molecule on
the surface of tension, half of the mon(_)layer conce_nu'ation isT=09x 1077
mol cm~2. The iquid phase density is o = 5.55x 10~2 mol cm—>. Calculate the
surface tension and the saturation vapor pressure of water droplets as a function
of the diameter in the range of r = 1079-10"% m.

9.12 Effects o
pressiure.
and the s:
its diame
9.13 Meling
and solid
the melti
i melting g
9.14 Bismuth
sation of
channels
process <
bismuth i
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1 at two different times, ¢ + Az

+ A1) B(s)dt - (1037

ay At, but over time origin 7. The
all possible different time origins.
(2) is called the autocorrelation
equal to the ensemble average,

@, r,p)drdp (10.38)

-the system.

ronig Relations

sed on the kinetic theory of dilute
ifunctions of reduced order, such
An equation, which is an average
1uatlon discussed in section 6.1,
e have already pointed out some
when applied to a dense medium
ponse theory, developed in the
1} and others, which starts from
of the system to small external
> general results for the system
viscosity, thermal conductivity,
he linearized Liouville equation.
lar dynamics simulation resuits.
as underlying it. Although this
wlecular dynamics, the theory
went.

ta Hamiltonian Hy. The system
nal force F(¢), which canses a
Imption of a spatially homoge-
yinclude spatial inhomogeneity
irbation Hamiltonian #'(z) can

(10.39)

- is, a function of the positions
“olume of the system, We will
re interested in the response of

theory, this response will be linear to the force through an “after-effect function’ ¥ B4 (1),
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another phase variable, B(r,p), to this external force disturbance. In the linear response

t oo :
(B(®)) = [ $palt — {)F()dr = f SuA(DF (¢ — T)dr (10.40)
4]

where we also assume that for the unperturbed case (.BD> =0. Thf: cas; whf_ri (12’{1)2)1#0(;
i d pressure} is only a simple extension. Equation (10. )
{(such as for internal energy an ' . : n. Equation (1040
i lated to the previously applie \
ly says that the response at time 7 18 e ' \ _ i
iclamllljigad fzr all natural processes. This requirement is sometimes ca]led_causahty. Smc&;
F ((lt) and the response {B) are both real functions, the after-effect fuzc:tmn PBa (r)tm;fe
i i ions for ¢pa (1) that relate the response to
be real. Our task is to derive CXpressions 1a : ;
zlizi’ur;ance This task will be accomplished in the next section. Here we will examine

erties of ¢rga (1) 1tself
thclfliztpi we introduce the temporal Fourer transformation of a function F (2) and its

inverse transformation,

- .00
i , 'y i —iw ;
Ft) = f Fo)e® dw, F(m):i f F(tye O ds (10.41)

Expressing the integrand of eq. (10.40) as the inverse of its Fourier transform, we

can write

—00

(B} v;—fQﬁBA(t)dT(f |:———— f F(r” - 7)e —iet dtﬂ:l eiwxdw)
¢

k3

=" f ¢pa(T) [ i F(w)e"w‘er—"w_fdm}
0

= f doF(w)e'™ [ dpa(T)e % dT
= [ m@F@ddo (10.42)

The function xza(w) is called the dynamic susceptibility or the response function,
xpa(w) = f ¢ppa(r)e T dT (10.43)

and is generally a complex valued function,

XBA(@) = Xpa (@) + ixpa (@) (10.44}
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N — ar;
=fdridp,g-_f(N)(t,ri’pi).[ZmM__r:I

i=1 3 ri 8 4

N y —
- f dridp: f @ xi.p0) [.Z mva'@%;ﬁ]

i=

. : N I
= —aiR f dridp; fO @.xi.p0) [z mv;8(R —1; (r))]

=

__ApGRVER) (10.97)
aR -
where
N B
P, RV, R) = Y mviS(R — 1)) (10.98)

i=1
defines the velocity field v. Equation (10.97) is simply the equation of continwity,
*;_? +Ve(pW) =0 (10.99)

anid p¥ is the macroscopic mass fiux. From e'q. (10.98), we see that the macroscopic
expression for the mass flux is :

N
In®)=2 m% (10.100)

i1

which is an apparent result. We can follow similar procedures for the time derivative
of the momentun flux, p¥, and compare the obtained expression with the macroscopic
momentum conservation equation. This procedure leads to a microscopic expression for
the shear stress tensor, - p -

1 . _ 1 LI du{x;;)
= Y mun — V) — Ty) + 5 > f g (10.101)
i i=1 j#i=l

where x;; and y;; are the projections of r;; along the x- and y-directions, respectively.
The above expression is valid only when the interatomic potential can be expressed as a
pairwise sum, as in eq. (10.90). For a system in equilibrium, the average velocity is zero,
that is, ¥ = 0 (which will be assumed in all following expressions). Similar procedures
also lead to a microscopic expression for the heat flux

N.

[ 1 _
& Jo@®) = vih + < ri; (Fij e v;) (10.102)
|5 s X masen) |

Je=1,j#i

where ¥;; is the force interaction between the pair of particles ad j. Again, the
above expression is valid for pairwise potential only and modification should be made
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Adiabatic Boundary Conditions Energy Fxchange

Reservoir

Stochastic
Wall

(b @

Figure 10.3 Different nonequilibrium molecular dynamics methods for simulating heat conduc-
tion: (&) constant temperatures are. Imposed in two regions of the simulation domain; (b) stochastic
wall method; (¢) heat flux method.

the thermal conductivity must be extrapolated to zero wavevector. Ciccotti et al. (1978)

encountered some difficulty in such an extrapolation, which was addressed by Gillan
and Dixon {1983). The latter authors showed that the revised scheme is equivalent
to the results.of the Green—Kubo method for a Lennard-Jones crystal. Evans (1982)
developed a similar approach, however, without relying on direct computation of the
perturbed heat flux. He argued that the Green—Kubo formula is not compatible with the
periodic boundary condition because the equations of motion are discontinuous under
this condition (Evans and Morriss, 1990). Evans called his method the homogeneous
nonequilibrium molecular dynamics. There has not been any effort, however, to quantify
the difference between the direct Green—Kubo formnla-based simulation results and the
homogeneous nonequilibriuin molecular dynamics simulations, although Evans’s paper
(1982) shows that his method leads to excellent agreement with experimental data for
argon crystals.

10.5.2 Nonequilibrium Molecular Dynamics Simulations

Nonequilibrium molecular dynamics methods are widely used to investigate fluid flow
(Koplik and Banavar, 1995) and heat transfer processes (Chou et al., 1999; Maruyama,
2002). Due to the limitation on computational power, most nonegquilibrizm molecolar
dynamics simulations have so far been performed for one-dimensional heat conducuon
In the lateral direction, periodic boundary conditions are often used. For heat txansfer
two different approaches are taken to create the nonequilibrium transport conditions:
impose a temperature difference to calculate the heat flux (AT — (), or impose a
heat flux to calculate the resulting temperature distributions (¢ — AT). Within each
of these categories, the actual nnplementatlon methods vary. We will discuss some of
these methods.

Early works focused onthe AT — @ approach (Hoover and Ashurst, 1975; Levesque
et al., 1973; Ciccotti and Tenenbaum, 1980; Tenenbaum et al., 1982). The key issue is
how to impose the hot and cold reservoirs. Figures 10.3(a—c) illustrate various methods
that have been used to impose hot and cold walls. In the hot and cold reservoir method
[figure 10.3(a)], part of the simulation domain is designated as hot and the other part
as cold. The average temperatures in the reservoirs are monitored and maintained as

predetermined temperatures. Ashurst (1974) and Hoover and Ashurst (1975) designed

;v!»fe@

methods to maintain it
method [Figure 10.3(b)
Tenenbaum et al., 1982
the temperature differen
by the following metho
simulation step and ente
by sampling the followi
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10.9 Exercises

. 10.1 Equations of motion for a constant pressure system. To simulate a constant
pressure system, Anderson (1980) designed a scaled system with a Lagrangian

of the form
L, ¥, 11, TI) = %mrp‘ﬁz;:h’-h’ (i

N N
_ %Z Z’u(rih;;j) + %Mflz —all
;=1% fis R F f’ﬂrléfﬁﬂ[WW

where « is the system pressurg! and r (ri r'(t) and TI(t) are related to the
" original system particle position ¥(z), momentum p{f), and volume V{#) (volume
fluctuates in a constant pressure ensemble) as follows,

() = V@), 1/ () = V@) i), mi ¢) = V©) ' Pp@)

Angwer the following questicns:
(a) What is the generalized momentum conjugate to 117
(b) What is the Hamiltonian of the scaled system?
{¢) Derive the Hamiltonian equations of motion for the scaled system.
{d) Derive the Lagrange equations of mofion for the scaled system.
10.2 Linear response theory for particle mobility. If particles in a system are acted
upon by an external force F(t), the Hamiltonian of the system is then

H=H0+ErioF _
S

" where Hp is the Hamiltonian of the unperturbed system. The particle mobility
( is defined in relation to the average velocity by

(v) = uF

-

g s e

Derive the follow
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Derive the following Green-Kubo formula for the particle mobility,
- [e.e]
[ o evonar
= —— .
# 3upT
0

where v is the average instantaneous velocity of all the particles in the system.
-10.3 Kramer—Kronig relation for thermal conductivity. Given a frequency dependent
thermal conductivity of the form

k(w) = KO y 4

show that the real and the imaginary parts of k(w) obeys the Kramer—Kronig

relations.
10.4 Microscopic expression for temperature. We can derive the microscopic expres-

sion for temperature from the thermodynamic definition of temperature ina
microcanonical systermn,

1 (BS _

T \2E/ny

where E is the system energy, comprising a kinetic and a potential part,
E = K + U. The entropy of 2 microcanonical system is, according to the -
Boltzmann principle,

S=kpln

where © is the number of microcanonical states, which can be expressed as
(Haile, 1992) ;

Q= ———— | drdpd(E — H
Q@rh)*N !f Rt ) L Ve

dr (E —~ U)‘g 8(E — H)

- (E) N'T(N/2+1)

where £ is the Planck constant divided by 27, H is the system Hamiltopian, &
is a step function and its derivative is a delta function, and I'(X) is the gamma
fupction. From here, show that temperafure can be expressed as an average of

the system kinetic energy
3
2% 8T = N {K)

10.5 Effects of Boundary Conditions on Nonequilibrium Molecular Dynamics -Simu-
lation. To appreciate the potential effects of bot and cold walls on the molecular
dynamics simulation result, we consider phonon heat conduction acToss a thin
film as shown in figure P10.5. Solve the phonon Boltzmann equation numerically
for the following two boundary conditions, using the gray body approximation

and varying the phonon Knudsen number from 0.01 to 100.
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Appendix B

Semiconductor p—n Junctions

As shown in figure 8.7, when an n-type semiconductor and a p-type semiconductor

"are brought into physical contact, electrons in the n-type region diffuse into the p-type

region, leaving positively charged ions (donors) behind. Similarly, holes diffuse into
the n-type region, leaving negatively charged ions (acceptors) behind. At the interface,
the positively charged ions in the n-side and the negatively charged ions in the p-side

establish an electrostatic potential barrier that resists further diffusion to estabhehjan cyeg,{té-‘

equilibrium state for the whole structure. This is reflected in the band diagram shown in
figure 8.7(b). The region around the interface where negatively and positively charged
jons are no longer neutral is called the space-charge region. The concentration of free
electrons or holes in this space-charge region is very low compared to the number of
electrons and holes in the bulk material. The built-in potential over the space-charge
region can be found from the requirements that the Fermi levels are equal at equilibrinm
and that, far away from the space-charge region, the free carrier concentrations must
be the same as in homogeneous semiconductors. If we assume that both the donors in

the n-type region and the acceptors in the p-type region are fully ionized, the electron

concentration in the bulk n-type region, nng, that is, away from the space-charge region,
is given by eq. (A3), ‘ '

E;—-E
nnoszchexp(—ﬂC;BT f) , (Bl

where E.q is the level of the conduction band.in the bulk n-type. The electron
concentration in the bulk p-type region, # 0, according to eqs. (A4) and (A7), is

n? Eo—Ey
U S el A A B2
R p0 0 c CXp wpT (B2)
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Say =107yl

09D =124 pm (photon)

= 26 meV

Physical Constants

Physical constant Symbol Value Units
Speed of light ¢ 2.997 x 108 ms~!
Planck constant, k 6.6262 x 1074 Js

Planck. constant divided by 2z h 1.0546 x 10~ Is
Avogadro’s number N 6.0222 x 108 mol~!
Electron rest mass . m 9.1096 x 10~ kg

Proton mass ﬁ M 167 x 10°% kg

Proton mass/electron mass ratio 1836.1

One electron volt 1eV 1.6022 x 10~19 I
Boltzmann constant KB 138 x 10723 Tk
Permittivity of free space €0 8.8 x 10712 Fm~l
Permeability of free space o 4 x 1077 s2F~1m1
Stefan—Boeltzmann constant o 5.67 x 1078 Wm2 K™
Tdeal-gas-constatt— , - 8344 =L meg=l
Lorentz number ’ L ~2.45 x 1078 woK-?
Univérsal ideal gas constant " Ru 8314 TK ! mol!
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