DRP IAP 2022

"A Course in Operator Theory" by John Conway

Mentor: Elena Kim Mentees: Esha Bhatia and Paige Dote

Department of Mathematics Massachusetts Institute of Technology

February 1, 2022

1. C*-algebras: Motivation and Definitions

2. Spectrum and Functional Calculus

Motivation: \mathbb{C}

The complex numbers serve as the prototype for C*-algebras, a fundamental tool in Operator Theory.

- Magnitude \longrightarrow Norms
- Complex conjugation \longrightarrow Involutions

Norm

Given a vector space X, $\|\cdot\|: X \to [0,\infty)$ is a norm if it is positive definite, symmetric, and satisfies the triangle inequality

Involution

An involution is a map $a \to a^*$ from \mathcal{A} into itself such that for all $a, b \in \mathcal{A}$ and $\alpha \in \mathbb{C}$, (i) $(a^*)^* = a$; (ii) $(ab)^* = b^*a^*$; (iii) $(\alpha a + b)^* = \overline{\alpha}a^* + b^*$

- Normed space: a vector space with a given norm $\|\cdot\|$
- Banach Space: a normed space that is Cauchy complete
- **Banach Algebra**: associative algebra on a Banach space (i.e., vector addition and scalar multiplication by complex numbers always make sense)
- C*-Algebra: Banach algebra with involution such that $||a^*a|| = ||a||^2$

C*-Algebra Examples

- C
- *M_{n,n}*(ℂ): *n* × *n* matrices with complex entries. The involution of such a matrix is given by the conjugate transpose.
- One example of a C*-algebra is bounded continuous functions $f: X \to \mathbb{C}$ where $f^*(x) = \overline{f(x)}$. This space has the identity.
- C₀(X), the algebra of continuous functions on local compact X that vanish at infinity, is abelian C*-algebra without identity

*-Homomorphisms

A *-homomorphism is a map $\rho: \mathcal{A} \to \mathcal{C}$ such that given $a, b \in \mathcal{A}$ and $\alpha \in \mathbb{C}$,

- $\rho(a+b) = \rho(a) + \rho(b)$
- $\rho(\alpha a) = \alpha \rho(a)$
- $\rho(ab) = \rho(a)\rho(b)$
- $\rho(a^*) = \rho(a)^*$

We can similarly define a *-isomorphism as a bijective *-homomorphism.

Proposition 1

If \mathcal{A} has an identity and $\rho: \mathcal{A} \to \mathcal{C}$ is an algebraic homomorphism, then $\rho(1) = 1$.

Proof: Given $a \in A$, $\rho(a) = \rho(1 \cdot a) = \rho(1)\rho(a)$, and thus $\rho(1) = 1$.

What do we do if A does not have an identity? One can show that we can simply "throw an identity in". In other words, we can use *-homomorphisms to easily adjoin an identity:

Remark

If \mathcal{A} is C*-algebra without identity, then there exists a unique C*-algebra with identity \mathcal{A}_1 containing \mathcal{A} as an ideal such that $\mathcal{A}_1/\mathcal{A}$ is one-dimensional.

When we look at the complex numbers under conjugation, there are some particularly interesting subsets:

- 1. $\mathbb R,$ which are the only elements in $\mathbb C$ such that $\overline \alpha = \alpha$
- 2. the unit circle, where given $u \in \mathbb{C}$ such that u is on the circle, \overline{u} is on the circle and ||u|| = 1.

These two examples motivate the following definitions:

- Hermitian: An element a ∈ A is Hermitian if a* = a (analogous to an element of ℝ in ℂ). The set of Hermitian elements of A is denoted ReA
- Normal: An element $a \in \mathcal{A}$ is normal if $a^*a = aa^*$
- Unitary: if A has identity, a ∈ A is unitary if aa* = a*a = 1 (analogous to an element of the unit circle in C)

We have some very useful propositions which follow:

Proposition 2

- 1. For all $a \in A$, a = x + iy for $x, y \in \text{Re}A$
- 2. If u is unitary, then ||u|| = 1

Proposition 3

Let \mathcal{A} be a C*-algebra, and let $h : \mathcal{A} \to \mathbb{C}$ be an algebraic homomorphism.

- 1. If $a \in \operatorname{Re} \mathcal{A}$, then $h(a) \in \mathbb{R}$
- 2. Given $a \in \mathcal{A}$, $h(a^*) = \overline{h(a)}$
- **3**. Corollary: Every algebraic homomorphism from a C*-algebra into the real numbers is a *-homomorphism

Spectrum

Spectrum

Let $a \in A$. Then, the spectrum of a, denoted $\sigma_A(a)$, is the set

 $\sigma_{\mathcal{A}}(a) = \{ \alpha \in \mathbb{C} \mid a - \alpha I \text{ is not invertible} \}$

where I is the identity of A.

Note that if A does not have an identity, we simply adjoin one. From functional analysis, one can show that the spectrum of a is the same as the set

 $\{h(a) \mid h : \mathcal{A} \to \mathbb{C} \text{ is a homomorphism}\}.$

Corollary 4

Given $a \in \operatorname{Re}\mathcal{A}$, $\sigma_{\mathcal{A}}(a) \subset \mathbb{R}$.

Proposition 5

Let $\rho : \mathcal{A} \to \mathcal{B}$ be a homomorphism. Then, for $a \in \mathcal{A}$,

 $\sigma_{\mathcal{A}}(\rho(\mathbf{a})) \subseteq \sigma_{\mathcal{A}}(\mathbf{a}).$

Proof: We may assume $\mathcal A$ has identity. We will show that

$$\sigma_{\mathcal{A}}(\mathbf{a})^{c} = \{ \alpha \in \mathbb{C} \mid \mathbf{a} - \alpha \mathbf{I} \text{ invertible} \}$$
$$\subset \sigma_{\mathcal{A}}(\rho(\mathbf{a}))^{c}$$
$$= \{ \alpha \in \mathbb{C} \mid \rho(\mathbf{a}) - \alpha \mathbf{I} \text{ invertible} \}.$$

The functional calculus is a generalization from functions on numbers to functions on operators.

Theorem 6

If \mathcal{A} is any C*-algebra and a is a normal element of \mathcal{A} , then there is a *-monomorphism $f \to f(a)$ from $C(\sigma_{\mathcal{A}}(a))$ into \mathcal{A} .

Example 7

If X is a compact space and $g \in C(X)$, then $\sigma_{C(X)}(g) = g(X)$ and the functional calculus for g is given by $f \to f \circ g$ for all $f \in C(g(X))$.

Spectral Mapping Theorem

Theorem 10: Spectral Mapping Theorem

If \mathcal{A} is a C^* -algebra, a is a normal element in \mathcal{A} , and $f \in C(\sigma_{\mathcal{A}}(a))$, then $\sigma_{\mathcal{A}}(f(a)) = f(\sigma_{\mathcal{A}}(a))$

References

John B. Conway (1999) A Course in Operator Theory Graduate studies in mathematics; v.21

The End