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Chapter 1

Pre-Project

1.1 June 03-09

June 03
Hello Professor Guth! Hope all is well with you. Yuqiu and I met for the first time today to begin planning out
a schedule for reading this summer. The current tentative plan is to meet weekly (on Thursdays), and to read 2
chapters a week. Thus, over the next week the expectation is to have read through chapters 1 and 2. As we go
through the chapters I will work on completing the exercises, and if time allows over the week, the extra problems
at the end of each chapter. I will further use this LATEXdocument to show solutions and comments on exercises
done thus far. I was able to get a bit of a head-start on chapter 1, and thus some of these exercises are included in
today’s update.
Exercise 1.1: This one and the next are straightforward, using the distributive and commutative properties of
addition.

N∑
k=1

Cak = Ca1 + Ca2 + · · ·+ CaN

= C(a1 + a2 + · · ·+ aN )

= C

N∑
k=1

ak.

Exercise 1.2:

N∑
k=1

(ak + bk) = (a1 + b1) + (a2 + b2) + · · ·+ (aN + bN )

= (a1 + a2 + · · ·+ aN ) + (b1 + b2 + · · ·+ bN )

=

N∑
k=1

ak +

N∑
k=1

bk.

Exercise 1.3: Yuqiu very astutely pointed out that this exercise is flawed– equality also holds if ak = αbk for all
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k and α ∈ R such that α ≥ 0. This is shown below:

N∑
k=1

akbk =

N∑
k=1

αb2k =

(
N∑
k=1

α2b2k

)1/2( N∑
k=1

b2k

)1/2

=

(
N∑
k=1

a2
k

)1/2( N∑
k=1

b2k

)1/2

. (1.1)

Thus, amending this question, I will show that the Cauchy-Schwarz inequality is an equality if and only if ak = αbk

for α ∈ [0,∞].

As we have shown in (1), if ak = αbk, then
∑N
k=1 akbk =

(∑N
k=1 a

2
k

)1/2 (∑N
k=1 b

2
k

)1/2

. Next, I will show that
if ak 6= αbk for all α ∈ [0,∞] then equality does not hold.

June 04
I begin by finishing Exercise 1.3. Given ak 6= αbk for all α ∈ [0,∞],

N∑
k=1

(ak − αbk)2 > 0

for all α ∈ [0,∞]. Expanding this expression, we get that

0 <

N∑
k=1

a2
k − 2α

N∑
k=1

akbk + α2
N∑
k=1

b2k.

Let α =
∑N
k=1 akbk∑N
k=1 b

2
k

. Then,

0 <

N∑
k=1

a2
k − 2

(∑N
k=1 akbk∑N
k=1 b

2
k

)
N∑
k=1

akbk +

(∑N
k=1 akbk∑N
k=1 b

2
k

)2 N∑
k=1

b2k

=

N∑
k=1

a2
k −

(∑N
k=1 akbk

)2

∑N
k=1 b

2
k

.

Thus, we can conclude
N∑
k=1

akbk <

(
N∑
k=1

a2
k

)1/2( N∑
k=1

b2k

)1/2

.

Exercise 1.4: We actually did this problem in 18.102, though I will nonetheless include the solution here. Consider
the sequences of real numbers ak, bk. We may assume that both

∑N
k=1 a

p
k and

∑N
k=1 b

p′

k are nonzero, as otherwise
Hölder’s Inequality is trivial. We replace ak and bk with a′k = ak

(
∑N
k=1 a

p
k)

1/p and b′k = bk(∑N
k=1 b

p′
k

)1/p′ respectively

such that
∑N
k=1(a′k)p =

∑N
k=1 (b′k)

p′
= 1. Thus, assuming (1.8) in the book (where it is further proven),

N∑
k=1

a′kb
′
k ≤

N∑
k=1

1

p
(a′k)p +

1

q
(b′k)p

′

=
1

p
+

1

p′

= 1.

Hölder’s Inequality follows.
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Exercise 1.5: Consider 〈a− tb, a− tb〉 for t ∈ [0, 1]. We will minimize this inner product using basic calculus:

〈a− tb, a− tb〉 = (a1 − tb1)2 + (a2 − tb2)2 + · · ·+ (aN − tbN )2

=

N∑
k=1

a2
k − 2t

N∑
k=1

akbk + t2
M∑
k=1

b2k

= ||a||2 + t2||b||2 − 2t〈a, b〉.

It is evident that the critical point of this equation is located at t = 〈a,b〉
||b||2 . It is furthermore clear that this is where

the minimum of the equation is. Therefore, we get the following:〈
a− 〈a, b〉
||b||2

b, a− 〈a, b〉
||b||2

b

〉
= ||a||2 − 〈a, b〉

2

||b||2
.

Multiplying by ||b||2 on both sides, we can conclude

0 ≤
∣∣∣∣||b||2a− 〈a, b〉b∣∣∣∣2 =

〈
||b||2a− 〈a, b〉b, ||b||2a− 〈a, b〉b

〉
= ||a||2||b||2 − 〈a, b〉2 =⇒ 〈a, b〉 ≤ ||a|| · ||b||.

June 05
This day I read through chapter 2 (with full intention still to return to the remaining exercises in chapter 1). I
only have a few questions on the content itself:

Question 1. In section 2.1, the book states: "one of these projections must contain at least C
√
N points". Is the

C a typo? I am figuring that it is based on the proof that followed.

– Yes it is a typo

Question 2. Is the ‘#’ notation for set cardinality standard in certain fields of math?

Question 3. What is the Exercise 2.5 described on page 13? Specifically, below the line that states

χSN (x1, x2) ≤ χπ1(SN )(x2) · χπ2(SN )(x1).

Question 4. I am confused on the I × II notation on page 14. Is this just a way to "abbreviate" the previous
equation?

– Yes this is just a way to abbreviate the equation to deal with it in smaller chunks
It is also notable that the author misspells the "Cauchy-Schwarz" theorem a few times. More notes and exercises

to follow.

June 06-07
I spent these two days working on the exercises from Chapter 1:
Exercise 1.6: I did this exercise using the "another approach" suggested, but am interested in how the first
proof method would go. Using the convexity of the exponential function described in this new approach, letting
tj = 1

n ≥ 0 for all n ∈ N and thus
∑n
j=1 tj = 1,(

n∏
i=1

xi

)1/n

=

(
n∏
i=1

eln(xi)

)1/n

=

n∏
i=1

e
ln(xi)

n ≤ 1

n

n∑
i=1

eln(xi) =

∑n
i=1 xi
n

.
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Exercise 1.8: I have started this exercise but have yet to complete it yet. Note the following:

∇f(a1, . . . , an) = 〈ap1−1
1 , . . . , api−1

i , . . . , apn−1
n 〉

∇g(a1, . . . , an) = 〈a2a3 . . . an, a1a3 . . . an, . . . , a1a2 . . . an−1〉.

Thus, we have the following system of equations if ∇f = λ∇g for λ ∈ R and g(a1, . . . , an) = c > 0:a
pi−1
i = λ

∏i−1
j=1 aj

∏n
j=i+1 aj∀i ∈ {1, . . . , n}∏n

j=1 aj = c
=⇒ ap11 = ap22 = · · · = apnn .

Note that we dismiss the trivial case of λ = 0 as this would imply the trivially true inequality 0 ≤ 0. Evaluating f
at this point, we get

f(a1, a2, . . . , an) =

n∑
i=1

apii
pi

=

n∑
i=1

ap11

pi
= ap11 .

This is where I got stuck. I am hoping that from here we can imply the inequality that we want, but am uncertain
how to. Any suggestions? My best bet is that I am missing a key component of the second equation gained from
the Lagrange multiplier process (namely, g(a1, . . . , an) = c). For now, I moved onto exercises from chapter 2.
Exercise 2.2: For now, I skipped Exercise 2.1. From here I go through a thorough verification of the steps of the
proof as requested. There are a few parts of this proof that I am left confused about, but I will explain what I
understand so far.

Firstly, the Cauchy-Schwarz inequality was used to say that∑
x1,x2

χπ3(SN )(x1, x2)
∑
x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3) ≤ I × II.

Furthermore, χ2
πj(SN )(x) = χπj(SN )(x) as

χ2
πj(SN )(x) =

12 x ∈ πj(SN )

02 otherwise
=

1 x ∈ πj(SN )

0 otherwise
= χπj(SN )(x).

I imagine that the use of this fact (that χ only takes on values of 1 and 0) proves some of the other equalities in
this proof whose verification eludes me.

Finally, through set theory it is clear that∑
x1,x2

∑
x3

∑
x′3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)χπ1(SN )(x2, x
′
3)χπ2(SN )(x1, x

′
3) ≤

∑
x1,x2

∑
x3

∑
x′3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x
′
3),

as

A = {(x2, x3) | χπ1(SN )(x2, x3) = 0} ∪ {(x1, x
′
3) | χπ2(SN )(x1, x

′
3) = 0} ⊂

B = {(x2, x3) | χπ1(SN )(x2, x3) = 0} ∪ {(x1, x3) | χπ2(SN )(x1, x3) = 0}∪

{(x2, x
′
3) | χπ1(SN )(x2, x

′
3) = 0} ∪ {(x1, x

′
3) | χπ2(SN )(x1, x

′
3) = 0}.

Hence, Bc ⊂ Ac.
Currently, the parts of the proof that confuse me are the equalities.
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June 08
I have sent my notes thus far to Yuqiu. So far, in chapters 1 and 2, I have the following left to complete:

1. Exercises 1.7, 1.8, 2.1, and 2.3

2. Additional "difficult questions" at the end of both chapters.

Between now and our meeting on Thursday, I will read chapters 3 and 4, and work on these problems (in that
order).

June 09
Over the course of the last day, I was able to better understand one of the two equalities on page 13:

∑
x1,x2

χπ1(SN )(x2)χπ2(SN )(x1) =

(∑
x1

χπ2(SN )(x1)

)(∑
x2

χπ1(SN )(x2)

)
.

The way I understood this best was by considering the two sets:

A = {x | x ∈ χπ1(SN )(SN )}

B = {x | x ∈ χπ2(SN )(SN )}.

Fix some x ∈ A (we know that one exists if N 6= 0. If N = 0 this equality is trivially true). Then, running through
elements of the form (x, y) such that y ∈ B, we get that there are |B| elements with the first element fixed. Thus,
running through the |A| elements with this same process, we get that∑

x1,x2

χπ1(SN )(x2)χπ2(SN )(x1) = |A| · |B|

which clearly equates the right hand side of the equality. A similar process can be used to understand the first
major equality on page 14.

I finished up this day by doing a preliminary reading of Chapters 3 and 4 to lightly discuss with Yuqiu.

1.2 June 10-16

June 10
Good evening Professor Guth! Yuqiu and I had a very productive meeting today in which we discussed various
exercises and questions I had from the reading. Such exercises, questions, and general comments are included
below.
Exercise 1.8: We finished up this problem, with there being only two steps I was missing. Firstly, note that
the reason we dismiss the case of λ = 0 is as this implies ai = 0 for all i,, and thus it cannot be the case that
a1a2 . . . an = c > 0. Furthermore, we can show that c = ap11 , and thus we have found our minimum. Using
ap11 = · · · = apii = apnn , we get

c = a1a2 . . . an

= a1a
p1
p2
1 . . . a

p1
pn
1

= a
p1
(

1
p1

+ 1
p2

+···+ 1
pn

)
1 = ap11 .
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Therefore, our minimum should be at f(a1, a
p1/p2
1 , . . . , a

p1/pn
n ) = ap11 = c = a1an . . . an. However, the Lagrange

multipliers theorem requires that we show that f has a minimum/maximum. We know that this is the case however
for the following two reasons:

1. f is a continuous function, and we know that on the closed and bounded interval ai ∈ [−n, n] (for each ai
and n ∈ N), f has a minimum and maximum.

2. For any i, as ai →∞, f →∞.

Therefore, f has a minimum. I am still in the process of finding a specific theorem that states this, but conceptually
this is how we thought through showing f has a minimum value.

Next, we looked back at Exercise 1.6, working through the first hint (the one I didn’t use to solve this problem):
Exercise 1.6: We will prove this is true for n = 2k using induction:
Base case: k = 1. For all x1, x2 ∈ R, we have the following line of reasoning:

0 ≤ (x1 − x2)2

2x1x2 ≤ x2
1 + x2

2

4x1x2 ≤ x2
1 + 2x1x2 + x2

2

x1x2 ≤
(x1 + x2)2

4

(x1x2)1/2 ≤ x1 + x2

2
.

Inductive Hypothesis: Assume for some arbitrary k ∈ N that the inequality is true for n = 2k. We will show
that this implies it is true for 2k+1.

(x1x2 . . . x2k+1)−2k+1

=
(

(x1x2 . . . x2k)−2k(x2k+1 . . . x2k+1)−2k
)1/2

.

Applying the base case:

≤ (x1x2 . . . x2k)−2k + (x2k+1 . . . x2k+1)−2k

2
.

Applying the inductive hypothesis,

≤
∑2k+1

i=1 xi
2k+1

.

Hence, we have proven the inequality for n = 2k. Now, we ‘fill in the gaps’. For all n ∈ N, there exists a k ∈ N
such that 2k−1 < n ≤ 2k. Then, consider the following:

(
n∑
i=1

xi

)
n∏
i=1

xi =

(( n∑
i=1

xi

)
n∏
i=1

xi

)1/2k
2k

≤
(

2 ·
∑n
i=1 xi

2k

)2k

=

(∑n
i=1 xi

2k−1

)2k

.

Therefore,

n∏
i=1

xi ≤
(
∑n
i=1 xi)

2k−1

(2k−1)
2k

.

I need to work on this problem a little bit more to finish it off– I thought I had a complete proof, but in the example
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Yuqiu and I worked on during the meeting we had used this process for n = 3 (which worked for this value as it is
one less than 22, but this process does not immediately carry over to values such as 5 which is not one less than 2k

for k ∈ N). Nonetheless, I found it very interesting to begin looking into this alternate approach to this proof.
Exercise 2.2: Here, Yuqiu discussed how the third line of this proof on page 14 is similar to Fubini’s theorem
on a discrete measure space. We also discussed other ways to understand why this equality is true, but it was
interesting to see how Fubini’s theorem could possibly be applied in a discrete way. This concept further applies
to the equalities on page 15. Thus, I have finished writing out/thinking through this proof.
Exercise 2.3: We discussed how this problem can be thought through, and I will work on writing up the proof
later this week. However, it seems like it should just be almost exactly the same as the proof done in exercise 2.2,
only with a triple integral for the volume as opposed to sums– this problem will likely involve the regular Fubini’s
theorem as we know it to be from 18.02. We also believe that this theorem should be true even if the subset of R3

is not convex. Is this the case? I will see if this comes up in my write up of this theorem.
Exercise 3.1: To make the right hand side much bigger than the left, I considered the set SN = {(x, x, x, x) | x ∈
N and 1 ≤ x ≤ N}. This results in a distinct shadow for all x under projection to each plane. Therefore, for N
points, we get N shadows on each of the 6 planes, and thus we have

N ≤ πi<j;1≤i,j≤4#πij(SN ))
1
3 = (N6)

1
3 = N2.

This should be the biggest we can make the right hand side for each value of N .
To construct the set for which he two sides are about equal, we consider a hypercube. For simplicity, let N ∈ N

such that N1/4 ∈ N. Then, consider the set SN = {(w, x, y, z) | 1 ≤ w, x, y, z ≤ N1/4}. This is a hypercube of side
length N1/4. Then, there are N1/2 shadows under projection to each of the 6 planes, and thus we have

N ≤ πi<j;1≤i,j≤4#πij(SN ))
1
3 = (N1/2)6· 13 = N.

This is what Iosevich meant when he said that the symmetric case was the most optimal on page 12. What makes
this quote more interesting however, as Yuqiu pointed out, is that the set I constructed to make the right hand
side much bigger also involved some nice symmetry.

After this, we discussed parts of Theorem 3.2 that I was confused about, namely that F1 = C1 and F2 = C2

(using notation given in the book). I plan on rigorously going through this proof later, making sure that I fully
understand it like in Exercise 2.2. We also discussed parts of the major proof for Chapter 4, however we will get
back to this next week after Yuqiu has more time to read through the material. Problems left to be done in the
chapters read so far include: [Note that I cross things out on this list as they are completed.]

1. Exercise 1.6, specifically filling in the gaps, and Exercise 1.7. 1.7 has piqued both Yuqiu’s interest and my
own, though we have not finished the problem yet.

2. Exercise 2.1 and 2.3.

3. Exercises 3.2 and 3.3. I also want to go through the proof in this chapter more closely.

4. Chapter 4 exercises. I am also interested in the case where d is odd, as described in the Notes, Remarks, and
difficult questions on page 36.

Between now and next week, I plan to focus on problems from Chapters 2, 3 and 4, work through the major proofs
in Chapters 2, 3, and 4, and give a preliminary read of chapters 5 and 6.
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June 11-12
Over these two days I worked on digesting the proofs from Chapters 2 and 3, and in a week from now I will try
to present these proofs (as well as the ones in Chapter 4 hopefully) to Yuqiu to see if I get stuck at any particular
points (as Larry suggested doing). As of right now, the only portion of the 4-Dimensional proof in chapter 3 I am
finding confusing is the scaling portion (equation (3.15)).

Besides this, I think I might have a way to finish off Exercise the argument for 1.6:
Exercise 1.6: Last we left off, I realized there was a slight issue with the proof– the proof Yuqiu and I had come
up with only works for integers one less than a power of 2. in other words, if n = 2k − 1 for k ∈ N, then we have

n∏
i=1

xi ≤
(
∑n
i=1 xi)

2k−1

(2k−1)
2k

≤
(
∑n
i=1 xi)

n

n
.

Now consider natural numbers of the form n = 2k − 2 for k ∈ N. Then, similarly,

(
n∑
i=1

xi

)
n∏
i=1

xi =

(( n∑
i=1

xi

)
n∏
i=1

xi

)1/(2k−1)
2k−1

≤
(

2 ·
∑n
i=1 xi

2k − 1

)2k−1

≤
(∑n

i=1 xi
2k−1

)2k−1

.

Therefore,

n∏
i=1

xi ≤
(
∑n
i=1 xi)

2k−2

(2k−1)
2k−1

≤
(
∑n
i=1 xi)

n

n
.

Reiterating this process, we have substantially ‘filled in the gaps’. Hence, for all n ∈ N,

n∏
i=1

xi ≤
(
∑n
i=1 xi)

n

n
.

Besides equation (3.15) that I am having trouble understanding, I plan to not look at these proofs again until
this Thursday.

June 13
Yuqiu was able to help me understand (3.15)! I had most of the right idea but his suggestion helped secure my
understanding. What was most confusing to me was that the scaling felt eerily similar to Exercise 1.4 (the proof of
Hölder’s Inequality). However, here we were able to scale two separate sequences to get the desired result, whereas
here we only had aj . Hence, I was thinking we could say something along the lines of "Let a′j =

aj
C1

", but this
doesn’t lead to a denominator of C2 that we want. Thus, Yuqiu suggested doing a more general version of the
proof in this chapter, by considering

as−αj bαj .

By 1.8,

as−αj bαj ≤
a
p(s−α)
j

p
+
bp
′α
j

p′
.
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Letting α = 2(s− 1) and p = 1
2−s , we get

as−αj bαj ≤
aj
p

+
b2j
p′
.

Relabel aj and bj with a′j =
aj
C1

and bj =
aj
C2
. Then,

asj

C
1/p
1 · C2/p′

2

=

(
aj
C1

)s−α(
aj
C2

)α
=

(
aj
C1

)1/p(
aj
C2

)2/p′

≤ aj
pC1

+
a2
j

p′C2
2

.

Summing this over j, ∑
asj

C
1/p
1 · C2/p′

2

≤ 1

p
+

1

p′
= 1.

This gives us the conclusion we were hoping for.
I also had the following question:

Question 5. For Theorem 3.16, why must 1 < s < 2?

I was able to pinpoint the line of the proof that leads to this conclusion:

p =
1

2− s
.

If s > 2, then p < 0, which is a contradiction. Furthermore, if s < 1, p < 1 =⇒ 1
p > 1 which implies there does

not exist a positive p′ such that 1
p + 1

p′ = 1. It is further clear that s 6= 1 and 2 as if s = 1, p′ must be infinity, and
if s = 2, p is undefined. This was a very satisfying part of the proof to figure out.

June 14-15
Firstly, I started considering Exercise 2.3. Yuqiu and I had started to discuss the concepts in this problem when
we met last week– noting that the proof likely follows the outline of the major proof done in this chapter. This is
reflected in my write up of the problem. I am also wondering the following:

Question 6. Must Ω be a convex subset?

Though I am currently unsure of the answer to this problem, I do have a theory as to why this detail is included.
I think that convexity may be required to let χπi be a continuous function over Ω, such that we can apply Fubini’s
Theorem. I am still uncertain if this is the case however. In any case, my write up is done below (with possible
notation issues regarding the integrals). Let Ai =

√
area(πi(Ω)). Furthermore, note that

∫
denotes

∫
R unless

stated otherwise.
Exercise 2.3: Let Ω be a convex subset of R3. Then,

vol(Ω) =

∫
R3

χΩ(x) dx

≤
∫∫∫

χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3)χπ3(Ω)(x1, x2) dx1 dx2 dx3

=

∫∫
χπ3(Ω)(x1, x2)

(∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3) dx3

)
dx1 dx2.
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By the Cauchy-Schwarz inequality,

≤
(∫∫

χ2
π3(Ω)(x1, x2) dx1 dx2

)1/2(∫∫ (∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3) dx3

)2

dx1 dx2

)1/2

≤ A1/2
3

(∫∫∫∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3)χπ1(Ω)(x2, x

′
3)χπ2(Ω)(x1, x

′
3) dx3 dx′3 dx1 dx2

)1/2

≤ A1/2
3

(∫∫∫∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x

′
3) dx3 dx′3 dx1 dx2

)1/2

= A
1/2
3

(∫∫
χ2
π1(Ω)(x2, x3) dx2 dx3

)1/2(∫∫
χ2
π2(Ω)(x1, x

′
3) dx1 dx′3

)1/2

= A
1/2
1 A

1/2
2 A

1/2
3 .

Exercise 3.2: I was able to figure this exercise out by starting to look at the same problem but in lower dimensions.
For now, consider the inequality on the first line of page 13 which is conceptually the same as this problem. For
simplicity, as opposed to focusing on N points, we will focus on infinitely many. Consider the set

S = {(x, y) | x2 + y2 = 1}.

The projection onto the x and y planes is the interval [−1, 1]. Now consider the set B = {(x, y) | x2 + y1 < 1.} For
all (x, y) ∈ B, x ∈ [−1, 1] and y ∈ [−1, 1], and thus, the product on the right hand side is 1, while the left hand
side of the inequality is 0. If we wanted specifically N points, we could picture a ‘lower resolution’ version of the
circle, instead looking at the set

S = {(0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 1), (2, 0), (1, 0)}

which is not sharp given the point (1, 1). We can consider this same concept in higher dimensions, (for instance,
inequality (2.1) is not sharp for hollow 3D-spheres). For our purposes of problem 3.2, we would need to consider
a set akin to the shell of a 4-dimensional hypersphere. The points on the interior of this shell would make the
inequality not sharp. To get a finite number of points instead of infinitely many, one can once again picture a
lower-resolution version of this picture. It is notable that these shapes do not need to be perfect spheres, just
topologically equivalent to them. In fact, it isn’t fully necessary for the shape to be a closed surface (picture if we
moved the translated the top half of the unit circle up by 1/2). This is just one way to start to picture what sets
make this inequality not sharp.

Now, the sets that make this inequality always sharp satisfy the following condition: for all x ∈ S there
does not exist y1, y2, . . . , y6 ∈ S (not necessarily distinct, but all not equal to x), such that π12(x) = π12(y1),
π13(x) = π13(y2), . . . , π34(x) = π34(y6). I wonder if there is a less rigorous way to state this that still encapsulates
the idea.

The concepts used in this problem also apply to Exercise 2.1:.
To be honest, there are some parts of chapter 4 that confuse me (specifically pertaining to calculus and higher

dimensions) that I am interested in talking about on Thursday. I am also interested in the following question:

Question 7. Given aj ≥ 0, and∑
j

akj

1/k

≤ Ck and

∑
j

ak+1
j

1/(k+1)

≤ Ck+1,

11



what can we say about ∑
j

asj

1/s

for s ∈ (k, k + 1)? Does the estimate get better as k increases, or worse? Furthermore, how is this concept (of
interpolation of estimates) used in harmonic analysis?

My goal between now and Thursday is to work on this problem, and depending on how quickly I finish it,
reread Chapter 4 closely to better understand the chapter. I have sent the notes so far to Yuqiu so we can be best
prepared for Thursday.

June 16
Today I worked on and completed Question 7, it followed the same process as the example in the book for k = 1.

Let p(s− α) = k

p′α = k + 1
.

This is analogous to the beginning of page 23. Then,

α = (s− k)(k + 1) and p =
k

s− α
=

k

s− (s− k)(k + 1)
.

Then, plugging everything into (3.14) and scaling, we get∑
j

asj ≤ C
k/p
k · C(k+1)/p′

k+1 = C
s−(s−k)(k+1)
k · C(s−k)(k+1)

k+1 .

Hence, ∑
j

asj

1/s

≤ C1−(1− ks )(k+1)

k · C(1− ks )(k+1)

k+1 = C
k2+k
s −k

k · Ck+1− k
2+k
s

k+1 .

This generalized form agrees at k = 1.
I finished of the day by rereading Chapter 4. I am still a bit confused with the calculus parts, namely the

concept of surface measure.

1.3 June 17-23

June 17
Hello Larry! I hope all is well with you. Once again, we have had a very productive week going through the
material. Today, I presented the major proofs from Chapters 2 and 3 (2D, 3D, and 4D projections onto lower
dimensions). These went very well. I found your suggestion to read through the material and work through it
again later to be very useful. It helped me think through the problems more closely, specifically at which terms
Iosevich chooses to keep and throw away (i.e. the top line of page 22 when he throws out 3 of the terms). There
were also parts of the problem that I hadn’t thought through super closely, and that I was able to work through
the previous week.

After presenting the proofs, we talked about Chapter 4. The first approach to finding the volume of a ball of
radius R in Rd seems to be more difficult than the one discussed in Exercise 4.2. My goal later today is to work

12



through Exercise 4.2– hopefully this way makes more sense for me.
Yuqiu also added another possible question to explore (as an add-on to Question 7 done on June 16):

Question 8. Given aj ≥ 0, and m ∈ N with∑
j

akj

1/k

≤ Ck and

∑
j

ak+m
j

1/(k+m)

≤ Ck+m,

what can we say about ∑
j

asj

1/s

for s ∈ (k, k +m)? Presumably this estimation is not as close as between two integers, but how does it compare?

Over the next week, I plan to do the following:

1. Answer Question 8.

2. Evaluate
∫ π

2

0
sind θ dθ for d ∈ N. This problem comes up in Exercise 4.2.

3. Closely working through the rest of Chapter 4 (namely the estimation portion), as well as reading through
Chapters 5 and 6.

I have still not figured out Question 6– if Ω must be a convex subset. My idea moving forward is to consider
possible counterexamples. The goal is to maximize the total number of "repeated" shadows when projected onto
each plane thus decreasing the areas but increasing the volume. Perhaps something akin to a Rubik’s cube with
space between each individual cube. However, the Rubik’s Cube example does raise some red flags, namely that
the area and volumes will be the same as one larger (convex) cube. I think this will continue to be an issue, which
raises another question:

Question 9. Can any concave subset of R3 be transformed into a convex subset of R3 with the same volume and
areas under projection? Similar to how we can move the individual cubes in the Rubik’s Cube example together to
form one large convex cube.

If this is the case, then this would show that any subset of R3 satisfies this inequality. I think this problem
should prove interesting. In two weeks from now, I hope to be able to present the major proofs in chapter 4, as
well as possibly some from Chapters 5 and 6.

I hope your summer is going well so far!
Now, I answer question 8. Starting again with the system of equationsp(s− α) = k

p′α = k +m
=⇒ α =

(k +m)(s− k)

m
and p =

m

(k +m)− s
.

Thus,

asj = as−αj aαj = a
k/p
j a

(k+m)/p′

j

≤
akj
p

+
ak+m
j

p′
.

13



Scaling this equation and summing, we get

∑
j

asj

C
k/p
k C

(k+m)/p′

k+m

=

(
aj
Ck

)k/p(
aj

Ck+m

)(k+m)/p′

≤
∑
j

akj
pCkk

+
ak+m
j

p′C
(k+m)
k+m

≤ 1

p
+

1

p′
= 1∑

j

asj ≤ C
k/p
k C

(k+m)/p′

k+m .

Plugging in p and p′, and raising to the 1/s power, we get (for s ∈ (k, k +m))∑
j

asj

1/s

≤ C
k(k+m−s)

ms

k C
(k+m)(s−k)

ms

k+m .

This agrees with the equation found in Question 7 (with m = 1).
Exercise 4.2: Firstly, we check that ωd(R) = Rdωd(1). However, this is not terribly hard to do. Let Br = {x ∈
Rd | |x| ≤ r}. Then,

ωd(R) =

∫
BR

dx.

Let y = x
R . Then, dy = dy1dy2 . . . dyd = 1

Rd
dx1dx2 . . . dxd = dx

Rd
. Hence, using this change of variable, we have

ωd(R) =

∫
BR

dx =

∫
B1

Rddy = Rdωd(1)

as B1 = {y ∈ Rd | |y| = |x|
R ≤ 1}.

Now we want to evaluate ωd(1). The following lines come from the book:

ωd(1) =

∫ 1

0

∫
x2
1+···+x2

d−1≤1−t2
dx′ dt

=

∫ 1

0

ωd−1(
√

1− t2) dt.

This is clear, as the set of x ∈ Rd−1 such that x2
1 + · · ·+ x2

d−1 ≤ 1− t2 is the ball of radius
√

1− t2 in Rd−1. Then,

= ωd−1(1)

∫ 1

0

(1− t2)
d−1
2 dt.

Let t = cos θ, and thus dt = − sin θ dθ. Hence, we have

= ωd−1(1)

∫ 0

π
2

−(1− cos2 θ)
d−1
2 sin θ dθ

= ωd−1(1)

∫ π
2

0

sind θ dθ.

Though this integral is interesting to prove, it is ultimately a calculus problem and thus for our purposes I will just
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state what it is equal to: ∫ π
2

0

sind θ dθ =


(d−1)!!
d!! · π2 d is even

(d−1)!!
d!! d is odd

.

where n!! = n(n− 2)(n− 4) . . . . Therefore, we will split this problem into two cases.
d is even: Let d = 2n. Then,

ω2n(1) = ω2n−1(1)

∫ π
2

0

sin2n θ dθ

= ω2n−1(1) · (2n− 1)!!

(2n)!!
· π

2

= ω2n−2(1) · (2n− 1)!!

(2n)!!
· π

2

∫ π
2

0

sin2n−1 θ dθ

= ω2n−2(1) · (2n− 1)!!

(2n)!!
· π

2
· (2n− 2)!!

(2n− 1)!!

= ω2n−2(1) · (2n− 2)!!

(2n)!!
· π

2

...

= ω2(1)
2

(2n)!!

(π
2

)n−1

= π · 2

(2n)!!

(π
2

)n−1

=
πn

2n−2(2n)!!
.

This is where I am slightly confused, as I do not think this should be the right answer, but have gotten the same
answer multiple times. Recall that ωd(1) is the volume of a ball with radius 1 in Rd. Therefore, we want to find
Rd such that ωd(Rd) = 1, which is fairly straight forward to do (at least by the calculations done thus far, if the
calculations are correct):

ωd(Rd) = Rdd · ωd(1) = Rdd ·
πn

2n−2(d)!!
= 1 =⇒ Rd =

(
2n−2(d)!!

πn

)1/d

.

Based on what we showed on page 29, it should be the case that

Rd =

(
d

|Sd−1|

)1/d

=⇒ |Sd−1| =
πn

2n−2(d− 2)!!
.

However, on page 31 we state that |Sd−1| = πn

n! . This should be a contradiction, which means I am likely making
an error with my calculation of ω2n(1). Any suggestions? It is close to the right form with πn, which makes me
think I am on the right track.

June 18
At this point I emailed my work to Yuqiu to ask for possible suggestions about how to move forward (as we had
talked about this problem that day). In the meantime, I started to work on reading the second half of chapter 4,
of which I have a few questions:

Question 10. Why must s ≥ 1? I thought the problem we were looking at required s = 1 (which would satisfy this
inequality, but still want to be sure).

– We let s be the largest side length of a unit cube such that when the ball is projected onto the k dimensional
plane, the unit ball fits into the unit cube. Thus, s is not necessarily 1, but is at least greater than or equal to it.
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Question 11. At the bottom of page 34, it says "In other words, we do not need to project the ball very far down
in order to be able to fit the unit cube inside." How does this follow from the calculations done thus far?

– What I missed was that we let k be the largest plane we can project the unit ball onto such that it fits into
the unit cube.
Exercise 4.4: Let an = log(n)

n . Then, a′n = 1−logn
n2 . For n > e, we have f ′(n) < 1. Hence, the sequence bn = an+3

is monotonically decreasing. Furthermore, bn is bounded, as an = log(n)
n ≤ 2 for all n (as n ≤ e2n for all n).

Therefore, by the monotone convergence theorem, the sequence converges. Furthermore, by Bolzano-Weierstrass
there exists a convergence subsequence bnk , which converges to the same limit as bn. Let nk = 2k. Then

lim
n→∞

an = lim
n→∞

bn = lim
k→∞

bnk = lim
n→∞

log(2k)

2k
= log(2) lim

k→∞

k

2k
= 0.

This last limit is clearly 0. This follows from L’Hospital’s Rule, or Combinatorics (the combinatorics technique is
done at the bottom of the page).

One thing that feels slightly weird about this problem is that basic calculus would have proved this from the
beginning. Is there a reason we tried to show this in a different way? Maybe it is just a segue into the combinatorics
section of this book.

June 19-21
Sincerely for the slight delay in notes (as you can see this section covers 3 days)– I was busy with birthday things.
Nonetheless I am back on top of it! Over these days, I read chapters 5 and 6, and continued on the exercises from
chapter 4. Yuqiu got back to my work on Exercise 4.2, and he isn’t quite certain where it goes wrong (if it indeed
does). I will revisit this problem later, as I have made some more progress on other aspects of the material.
Exercise 4.5: Let α > 0. Then, there exists an N ∈ N such that 1

N < α. Then, consider the following:

log n =

∫ n

1

dt

t

=

N−1∑
k=0

∫ Rk+1

Rk

dt

t

where 1 = R0 ≤ R1 ≤ · · · ≤ RN = n. Then,

≤
N−1∑
k=0

Rk+1 −Rk
Rk

.

Let Rk = nk/N .

=

N−1∑
k=0

n(k+1)/N − nk/N

nk/N

=

N−1∑
k=0

n1/N − 1

= N(n1/N − 1).

Therefore,
log n

nα
≤ N(n1/N − 1)

nα
→ 0 as n→∞,

given that 1
N < α.
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This follows the same logic as the argument on page 34, just generalized.
Exercise 4.6: Let In =

∫∞
0
e−ttn dt. Then, integrating by parts, we get the following:

In = −tne−t
∣∣∞
t=0

+ n

∫ ∞
0

e−ttn−1 dt

= n · In−1.

Reiterating this process, we get

= n(n− 1)(n− 2) . . . (2)(1)I0

= n!

∫ ∞
0

e−t dt

= n!
(
−e−t

∣∣∞
t=0

)
= n!.

It is also clear that the critical point of the integrand is at t = n, however I am uncertain how to progress from
here to finish the approximation.
Exercise 6.1: I will show this using induction on d. Firstly, consider Fq. This clearly has q elements:

{0, 1, . . . , q − 1}.

Then, assume for some k ∈ N, |Fkq | = qk. Now we will show that |Fk+1
q | = qk+1. However, this is clear as we can

simply write each coordinate in Fk+1
q as a k-tuple with a 1-tuple (i.e. as Fkq × Fq). Then, by assumption, there are

qk elements in Fkq and q elements in Fq (as we showed in the base case). Therefore,

|Fk+1
q | = |Fkq ||Fq| = qk · q = qk+1.

Exercise 6.2: Showing that the three lines are the same is fairly straight forward, but I will explain what is
going on. Firstly, (2, 2) = 2(1, 1), and note that 2{0, 1, 2} = {0, 2, 4} = {0, 2, 1}. This explains why the first 2 are
equivalent. Furthermore, note that (1, 2) = (0, 1) + (1, 1), and thus

L((1, 2), (1, 1)) = {(1, 2) + t(1, 1) | t = 0, 1, 2}

= {(0, 1) + (t+ 1)(1, 1) | t = 0, 1, 2}

= {(0, 1) + t(1, 1) | t = 1, 2, 3}

= {(0, 1) + t(1, 1) | t = 0, 1, 2} = L((0, 1), (1, 1)).

Exercise 6.3: This is, in some ways, a more general proof of exercise 6.2. Let v = λv′. Firstly, note that

{0, 1, . . . , q − 1} = λ{0, 1, . . . , q − 1}

for 0 6= λ ∈ Fq (this also uses the fact that q is prime). Thus,

L(x, v) = {x+ tv | t = 0, 1, . . . , q − 1}.
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Let t = λt′. Then

= {x+ λt′v | λt′ = 0, 1, . . . , q − 1}

= {x+ t′v′ | λt′ = 0, λ, . . . , λ(q − 1)}

= {x+ t′v′ | t′ = 0, 1, . . . , q − 1} = L(x, v′).

I am still working on the other direction of the proof, but it is proving a bit tricky. So far, my idea is that if
L(x, v) = L(x, v′) for v 6= v′ 6= ~0, then there exists t, t′ ∈ {0, 1, . . . , q − 1} such that

x+ tv = x+ t′v′ =⇒ tv = t′v′.

The idea from here would be to let t′ = λ + something, and utilize the fact that v − v′ 6= ~0. However, I have yet
to find a t′ that works out in this way.

I am sincerely sorry for being so behind on the material this week. Tomorrow, I will do the following:

1. Show that Fq is a field for q prime.

2. Exercise 6.6.

3. Chapter 5 problems. Exercise 5.8.

The Chapter 5 problems on graph theory seem interesting.

June 22-23
Firstly we will show that Fq is a field for q prime. Note that the multiplicative inverses property has already been
proven in the book. Most of this follows directly from the associativity, commutativity, and distributivity of plain
addition. Let a1, a2, a3 ∈ Fq. Then, there exists ki ∈ Z such that ai = a′i + qki for each i. Hence:

1. Associativity of addition:

a1 + (a2 + a3) = a′1 + qk1 + (a′2 + qk2 + a′3 + qk3)

= (a′1 + qk1 + a′2 + qk2) + a′3 + qk3

= (a1 + a2) + a3.

Associativity of multiplication:

a1(a2a3) = (a′1 + qk1)([a′2 + qk2][a′3 + qk3])

= ([a′1 + qk1][a′2 + qk2])(a′3 + qk3)

= (a1a2)a3.

2. The other properties (commutative, distributive) follow similarly.

3. The only other properties of note is that the additive identity is 0 as usual, the multiplicative identity is 1 as
usual, and the additive inverse for a ∈ Fq is q − a (as a+ q − a = q = 0).

The reason I am so quick to dismiss showing all of these properties is because Fq is a subset of Fq[
√

2] that is closed
under addition, multiplication, and contains the additive and multiplicative inverses. Thus, the fact that Fq is a
field follows from exercise 6.6:
Exercise 6.6: The biggest thing to show here is the multiplicative inverse, which is not all that bad. Consider
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a+ b
√

2 for a, b ∈ Fq. Note that a2 − 2b2 6= 0 for all a, b ∈ Fq. Hence,

(a+ b
√

2)

(
a− b

√
2

a2 − 2b2

)
= 1.

The other properties can be shown by the same process used in proving Fq is a field.
I was able to make some more progress on Exercise 4.2! I will copy and paste that section of the notes here,

and go back through the problems.
Exercise 4.2: (continued) Let d = 2n. Then,

ω2n(1) = ω2n−1(1)

∫ π
2

0

sin2n θ dθ

= ω2n−1(1) · (2n− 1)!!

(2n)!!
· π

2

= ω2n−2(1) · (2n− 1)!!

(2n)!!
· π

2

∫ π
2

0

sin2n−1 θ dθ

= ω2n−2(1) · (2n− 1)!!

(2n)!!
· π

2
· (2n− 2)!!

(2n− 1)!!

= ω2n−2(1) · (2n− 2)!!

(2n)!!
· π

2

...

= ω2(1)
2

(2n)!!

(π
2

)n−1

=
0!!

(2n)!!

(π
2

)n
=

πn

22n(n!)
.

This utilizes the fact that (2n)!! = 2n(n!), a fact I had not realized. Hence, we get that

ω2n(Rd) = Rdd

(
πn

22n(n!)

)
= 1 =⇒ Rd =

(n!)
1
2n

2
√
π
.

Now it is simply off by this factor of 2 that I am uncertain how to fix, but I am extremely close to getting the right
answer! After I figure out where this extra factor of 2 comes from, I will consider the odd case.

On the 23rd I reread chapters 4, 5, and 6 in preparation for Thursday.

1.4 June 24-30

June 24
Hello Larry! I hope your vacation is treating you well. This was a very exciting meeting because we were able to
finally figure out what was going wrong with Exercise 4.2. This and more is attached below.
Exercise 4.2:: (continued) The calculations I was doing on Exercise 4.2 were not wrong, it was an equation on
page 31 that was incorrect: the integral should go from −1 to 1, not 0 to 1:

ωd(1) =

∫ 1

−1

∫
x2
1+···+x2

d−1≤1−t2
dx′dt = 2

∫ 1

0

∫
x2
1+···+x2

d−1≤1−t2
dx′dt.
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Thus, we get the following:

ω2n(1) = 2ω2n−1(1)

∫ π
2

0

sin2n θ dθ

= 2 · ω2n−1(1) · (2n− 1)!!

(2n)!!
· π

2

= π · (2n− 1)!!

(2n)!!
· ω2n−2(1)

∫ π
2

0

sin2n−1 θ dθ

= 2π · (2n− 2)!!

(2n)!!
ω2n−2(1).

Repeating this process,

= 2n−1πn−1 · 2

(2n)!!
· ω2(1)

= πn · 2n

(2n)!!

=
πn

n!
.

Hence,

ω2n(R2n) = R2n
2n ·

πn

n!
= 1 =⇒ R2n =

(n!)
1
2n

√
π

.

Similarly,

ω2n+1(1) = 2ω2n(1)

∫ π
2

0

sin2n+1 θ dθ = 2 · πn · 2n

(2n)!!
· (2n)!!

(2n+ 1)!!
=
πn · 2n+1

(2n+ 1)!!
.

Therefore,

R2n+1 =

(
(2n+ 1)!!

πn · 2n+1

) 1
2n+1

.

In regards to the rest of the problem (i.e., how far down you’d have to project an odd-dimensional ball of volume
1 down for it to fit inside the unit cube), Yuqiu astutely pointed out that the answer should also be roughly d

4 as
you can project it one dimension down, and you once again get an even-dimensional ball.
Exercise 6.3: I had part of the right idea originally for 6.3, but Yuqiu helped put together the final piece. For
all t there exists a t′ such that x + tv = x + t′v′. Hence, let t = 1 and t′ = λ. Therefore, v = λv′ and then,
L(x, v) = L(x, v′) if and only if v = λv′ for λ ∈ Fq.

There is still more left to do in this exercise, but at the very least this part of the problem is now complete.
We then worked on the first problem in the Notes, remarks, and difficult questions in Chapter 5. Let A ⊂ Z.

Consider the (#A)2 lines (at, t+ a′) for all a, a′ ∈ A, and the set of #(A ·A) ·#(A+A) points. Yuqiu pointed out
that every line contains at least #A points (let t ∈ A). Hence, using the Szemeredi-Trotter incidence theorem, we
get that

(#A)3 ≤ I(n) ≤ C(#(A ·A) ·#(A+A) + (#A)2 + (#(A ·A) ·#(A+A) · (#A)2)2/3).

Let B = max{#(A ·A),#(A+A)}. Then,

(#A)3 ≤ C(B2 + (#A)2 + (B2 · (#A)2)2/3).

Therefore, one of the following cases must be true by the pigeonhole principle:

1. (#A)3

3 ≤ CB2. Then, (#A)
5
4√

3C
≤ (#A)

3
2√

3C
≤ B.

2. (#A)3

3 ≤ C(#A)2. Then, (#A) ≤ 3C =⇒ (#A)
1
4 ≤ (3C)

1
4 . Trivially, (#A) ≤ B. Hence, multiplying these

two inequalities together, we get (#A)
5
4

(3C)
1
4
≤ B.
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or 3. (#A)3

3 ≤ CB
4
3 (#A)

4
3 . Thus, (#A)

5
3

3C ≤ B 4
3 =⇒ (#A)

5
4

(3C)
3
4
≤ B.

Thus, B ≥ C ′(#A)
5
4 for some C ′ > 0.

One thing that confused me in this proof is that I thought the C here was the same as the one in the Szemeredi-
Trotter incidence theorem, however Yuqiu said this is not the case.

The goal over the next week is as follows:

1. Be able to prove the major theorems in Chapters 4 and 5 next Thursday.

2. The graph theory problems in Chapter 5.

3. Read and work on Chapters 7 and 8.

4. I will also go back through these notes and make a summarized version.

This version of notes is nice to see the thought process, but for ease and simplicity I figure that a summarized
version could be helpful. This will include exercises, as well as general questions on the content.

June 25
I started today by reading the main proofs in Chapters 4 and 5. I only had one question which I asked Yuqiu:

Question 12. On page 32, above equation (4.6), Iosevich states "we must have s ≥ 1". Why must this be true? I
thought that we were trying to fit the unit sphere inside a unit cube, which would imply s = 1 right? This wouldn’t
make this inequality wrong, but it does make it slightly confusing.

– He quickly responded later this day, stating: by s he might mean the largest side-length of a cube that is
centered at the center of the k-dimensional ball and can fit into that ball. So s could any positive number but s
has to be ≥ 1 for a unit side-length cube to fit into that ball.
Exercise 4.3: This doesn’t change too much, with the exception that if s = ε, then k ≤ 2d

πeε2 . Thus, k can be much
larger if the side length is smaller. This make sense, as fitting a smaller object into another object with a static
volume should be easier the smaller the first object is. I am uncertain if there are more conclusions to possibly be
reached in this exercise that Iosevich is alluding to.

I finished off this day by reading through Chapters 7 and 8. My goal for this weekend is to work through this
material more closely and work on better understanding the material.

June 26-27
I spent this weekend reading through chapters 7 and 8. Below are the main questions I have from this chapter.

Question 13. On Page 54 Iosevich states "It is pretty clear that the total number of points in B is at least
(q + 1) · q2". The one part I am slightly confused about is the 1

2 and wanted to check my understanding: We divide
by 2 to avoid double counting right?

– Yes! We can pick a line L1 at random, of which there are q points from other lines on it. However, pick one
of these q points, which by assumption lies on both the chosen line and another, L2. Then, L2 has q points, but
one of them has already been counted by L1. This is the ’double counting’ that occurs, and thus we have a factor
of 1

2 .

Question 14. In a similar way I am confused on the factor of 2 used in (7.1), in which we state

q+1∑
i=1

q+1∑
j=1

#(Li ∩ Lj) = 2q(q + 1).
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The reason this confuses me is because I thought it should be q(q + 1) based on this line of reasoning:

q+1∑
i=1

q+1∑
j=1

#(Li ∩ Lj) = #{(i, j) | i 6= j and 1 ≤ i, j ≤ q + 1}

= (q + 1)2 − (q + 1)

= q(q + 1).

Is there something I am missing here?

– I was able to figure this out a bit later. I was completely dismissing the case in which i = j, when in fact if
i = j, #Li ∩ Lj = #Li = q which gives us the additional q(q + 1) that results in the factor of 2.

Question 15. I am particularly confused in chapter 8. We start off the first proof by saying "Suppose that

#B ≤ q
d+1
2

4 ", and later show that #B ≥ q
d+1
2

4 on page 61. Doesn’t this imply that #B = q
d+1
2

4 ? I think I am
missing something. In general, I am confused on why we can/would want to simply assume the size of B to begin
with. What happens if #B is bigger than we initially supposed? Do we simply not care because then the inequality
is trivially true?

Exercise 8.1: Note that each line has q points. Thus, for all i,
∑
x∈B′ χLi(x) = q, and there are k lines. Hence,

∑
x∈B′

k∑
i=1

χLi(x) =

k∑
i=1

∑
x∈B′

χLi(x) =

k∑
i=1

q = qk.

This is why the first line in (8.2) is true. Additionally we used the Cauchy-Schwarz inequality in the second line:(∑
x∈B′

(
k∑
i=1

χLi(x)

))2

=

(∑
x∈B′

(
k∑
i=1

χLi(x)

)
· 1

)2

.

Using the C-S Inequality here,

=

(∑
x∈B′

12

)1/2
∑
x∈B′

(
k∑
i=1

χLi(x)

)2
1/2


2

=

(∑
x∈B′

12

)
·
∑
x∈B′

(
k∑
i=1

χLi(x)

)2

= #B′
∑
x∈B′

(
k∑
i=1

χLi(x)

)2

.

My goal moving forward with this week is to attempt the chapter 5 graph theory problem, as well as work on
Exercise 3.3 in a possible attempt to generalize this concept in higher dimensions.

June 28-29
What follows is a (rough) attempt to do Exercises 5.5-5.9.
Exercise 5.5: I imagine this can be done through induction on n and f , however I opted to do induction on e, the
number of edges. This problem initially really confused me: if n = 1, then there are no edges, and no faces right?
However, after talking to a friend of mine who is interested in Graph Theory, he pointed out that there is 1 face:
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the infinite unbounded space that remains outside of that vertex. Hence, our base case is complete: if e = 0, then
n = f = 1, and n− e+ f = 2. For some k ∈ N, assume that for e = k it is always true that n− e+ f = 2.

Now consider a graph with k+ 1 edges. There are 2 cases that can follow: whether or not there exists a vertex
that is only connected to one edge. If there exists a vertex that is only connected to one edge, consider a graph G′

that takes out both this vertex and this edge. Then, there are k edges and n− 1 vertices. Hence, by assumption:
(n− 1)− (k + 1− 1) + f = 2 =⇒ n− (k + 1) + f = 2. If there does not exist a vertex that is connected to only
one edge, then there must exist a loop in the graph G (as G is connected). Pick one of the edges in this loop, and
consider a graph with this edge removed. Then, the number of edges goes down by 1, and the number of faces
goes down by 1 as the face created by this loop is combined with another face in the graph. Then, by assumption,
n− (k + 1− 1) + (f − 1) = 2 and thus n− (k + 1) + f = 2.
Exercise 5.6: I am uncertain how we would make this completely rigorous, but the first inequality follows from
the fact that each face is bounded by at least 3 edges, and an edge (at most) has two faces on either side of it.
Then we have

2 = n− e+ f

2 ≤ n− e+
2

3
f

2 ≤ n− 1

3
e

e ≤ 3n− 6.

Exercise 5.7: Consider a graph G with crossing number cr(G), and n vertices, e edges, and f faces. Then, for
each crossing, remove one of the edges in the crossing to result in a new connected graph G′. Now, G′ is planar,
with n vertices and e − cr(G) edges. Using what we showed in Exercise 5.6, this implies e − cr(G) ≤ 3n − 6,
which implies (5.3).
Exercise 5.8: Let G′ be the subgraph of G described at the bottom of page 45. Then,

cr(G′) ≥ e′ − 3n′ + 6 ≥ e′ − 3n′

where e′ is the number of edges in G′ and similarly n′ is the number of vertices in G′. Then, letting E denote
expected value, we get

E(cr(G′)) ≥ E(e′)− 3E(n′) =⇒ p4cr(G) ≥ ep2 − 3np.

Optimizing in p (by letting p = 4n
e ), we obtain

cr(G) ≥ e3

16n2
− 3

e3

16n2
=

e3

64n2
.

Question 16. Is there a way to make this inequality sharper? How else can this probability method be used to solve
problems? Why is E(cr(G′)) = p4cr(G)?

– As per the last question, my best guess is that this follows from the fact that crossing points must arise from
two edges, each of comes from 2 vertices, and p is the probability of each of these four vertices surviving.

While I am still a bit confused on Exercise 5.8, I certainly understand this outline a lot more than I had. On
Wednesday I will work on Exercise 3.3, and start reviewing material from Chapters 2 and 3 as Yuqiu suggested (in
preparation for Larry’s big project idea for this summer). Speaking of which, Larry, Yuqiu, and I will try to meet
next week to discuss material. Larry has an idea for a problem regarding Chapters 2, 3, and 4. I also had another
idea for a project, which Larry succinctly summarized:
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Remark 17. I could consider projections of Rn to k-dimensional planes. "The most general theorem of this type
is called the Brascamp-Lieb inequality. There was a lot of work on it in the 60s and 70s (and more recently too).
We can talk about it as the summer goes on. It builds on the paper that Iosevich mentions by Loomis-Whitney.
Learning the full Loomis-Whitney theorem might also be a good project."

More to follow.

June 30
Before working on Exercise 3.3, I first wanted to check one part of Euler’s formula (n− e+ f = 2):

Question 18. How would we rigorously show that if there does not exist a vertex that is connected to only one
edge that there must exist a loop?

To show this, we use a proof by contradiction. Assume that there does not exist a loop in a graph G, and that
each vertex of G is connected to at least two distinct edges. Then, there must exist a longest path in this graph
P = {v1, v2, . . . , vn} of n distinct vertices. Now consider vn: vn must be connected to two distinct vertices by
assumption. Thus, there must exist an adjacent edge that connects to a vertex vα. If vα = vi for 1 ≤ i ≤ n − 1,
then there exists a loop which is a contradiction. If vα 6= vi for 1 ≤ i ≤ n−1, then the path P ′ = {v1, v2, . . . , vn, vα}
is a longer path than P . This is also a contradiction. Thus, there must exist a loop in the graph G if G is planar,
and every vertex is connected to at least two distinct edges.
Exercise 3.3: I started to consider Exercise 3.3 today. I started by trying the dimensional analysis concept
described on page 18:

inches4 = ((inches3)4)α =⇒ α =
1

3
.

Note that the 4 comes from the fact that there are 4 3-D projections of a 4D object. Instead of using π for
projections, for now I will use τ . I am hoping that this helps cut down on confusion down the road when we
transition to 2D projections. Hence, let

τ1(x) = (x2, x3, x4), τ2(x) = (x1, x3, x4), τ3(x) = (x1, x2, x4), and τ4(x) = (x1, x2, x3).

Then,

N = #SN =
∑
x

χSN (x)

≤
∑
x

χτ1(SN )(x2, x3, x4)χτ2(SN )(x1, x3, x4)χτ3(SN )(x1, x2, x4)χτ4(SN )(x1, x2, x3)

=
∑

x1,x2,x3

χτ4(SN )(x1, x2, x3)
∑
x4

χτ1(SN )(x2, x3, x4)χτ2(SN )(x1, x3, x4)χτ3(SN )(x1, x2, x4)

≤

( ∑
x1,x2,x3

χ3
τ4(SN )(x1, x2, x3))

) 1
3

·

 ∑
x1,x2,x3

(∑
x4

χτ1(SN )(x2, x3, x4)χτ2(SN )(x1, x3, x4)χτ3(SN )(x1, x2, x4)

) 3
2


2
3

= 3
√

#τ4(SN ) ·

 ∑
x1,x2,x3

(∑
x4

χτ1(SN )(x2, x3, x4)χτ2(SN )(x1, x3, x4)χτ3(SN )(x1, x2, x4)

) 3
2


2
3

.

From here I would want to attempt estimation through interpolation, but am having trouble doing so. In the
example where we did this in Chapter 3, we had 5 terms instead of 3, allowing us to pick out terms with independent
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variables. This however is impossible to do in both of the cases of F1 and F2.
Let’s say, however, that we were able to complete this and show that

N ≤ 3
√

#τ1(SN ) · 3
√

#τ2(SN ) · 3
√

#τ3(SN ) · 3
√

#τ4(SN ). (1.2)

Then, applying equation (2.2) [on Page 15], we get

#SN = N ≤ 6
√

#π2,3#π2,4#π3,4 · 6
√

#π1,3#π1,4#π3,4 · 6
√

#π1,2#π1,4#π2,4 · 6
√

#π1,2#π1,3#π2,3

= 3

√
#π1,2(SN ) · 3

√
#π1,3(SN ) · 3

√
#π1,4(SN ) · 3

√
#π2,3(SN ) · 3

√
#π2,4(SN ) · 3

√
#π3,4(SN )

=

 ∏
i<j;1≤i,j≤4

#πi,j(SN )

 1
3

.

This uses the fact that π1(τ1(x)) = (x3, x4) =⇒ #π1(#τ1(SN )) = #π3,4(SN ). What is left to show is equation
(2).

1.5 July 01-07

July 01
Hi Larry! Sorry for the semi-late update, it took me a quick second to write them up. This meeting went very
well! I was able to present the proofs of Chapter 4 and Chapter 5. After this, we began to talk about Exercise
3.3 for a bit, and I described what I had done so far to approach the problem. We both agreed that the way I had
started to approach the problem so far (shown above) makes the most natural sense, even if we don’t have enough
terms for the second sum. We didn’t finish this problem, but it was helpful to talk through what I was thinking
when I worked on the problem, and the issues I was running into with it. Maybe there is another approach that
works better here, though this one follows the process used in the other proofs of the same form in the book.

Afterwards, we started discussing Chapters 7 and 8, and things used in this chapter. In Chapter 8, we discussed
the last equation on page 61 in particular. I was confused where the 1 comes up in this problem (it comes from the
p0). Yuqiu and I are also confused about why it’s L and not L

2 . One of my goals for this week is to go back through
this material and figure out if there is a typo somewhere, and if not, why it isn’t L

2 . Finally, we talked about the
bigger picture– what these proofs actually showed (which I was a bit confused about (though now I am not). These

proofs show (by contradiction), the #B must be bigger than q
d+2
2

8 . The ultimate goal is to keep improving this
exponent until we get Cqd. Though in hindsight this feels pretty straight forward, it was useful to take a step back
and take a look at the bigger picture.

All things considered, this week was straightforward in terms of our meeting. My goals for next week is as
follows:

1. Read through Chapters 2, 3, and 4 more closely. We hope that this will best prepare me for meeting with
Larry next Friday to talk about his problem (which is based on these 3 chapters).

2. Read and work through Chapters 9 and 10. We will talk about these chapters next Thursday.

3. Work through Exercises 6.3, 6.4, and hopefully 3.3.

Excited to meet you next week!!
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July 02-03
Over these two days I read through Chapters 2, 3, and 4 again so that these would be fresh in my mind for meeting
with Larry this Friday. Nothing too much I noted during this preliminary read, though I am interested in Exercise
4.7 and how that problem might go.

July 04-05
Over these days I read through Chapters 9 and 10, trying to work on the examples before reading the solution (i.e.,
trying to prove the value of the infinite sums before reading how they are derived). I do have a few questions and
concepts that I hope to talk about on Thursday with Yuqiu.

Firstly, I started on an informal exercise on page 67: generalizing the binomial theorem to trinomials and more.
The trinomial problem I was able to solve. Applying the binomial theorem twice,

(a+ b+ c)n = (a+ (b+ c))n

=

n∑
k=0

C(k, n)ak(b+ c)n−k

=

n∑
k=0

C(k, n)ak

(
n−k∑
m=0

C(m,n− k)bmcn−k−m

)

=

n∑
k=0

n−k∑
m=0

C(k, n)C(m,n− k)akbmcn−k−m

=

n∑
k=0

n−k∑
m=0

n!

k!m!(n− k −m)!
akbmcn−k−m.

Doing the same process for a 4-degree polynomial, we get

(a+ b+ c+ d)n =

n∑
k=0

n−k∑
m=0

n−k−m∑
l=0

n!

k!m!l!(n− k −m− l)!
akbmcldn−k−m−l.

If I had to guess, I would imagine that we could generalize this to the following formula:(
N∑
i=1

ai

)n
=

n∑
k1=0

n−k1∑
k2=0

· · ·
n−
∑N−2
i=1 ki∑

kN−1=0

n!(∏N−1
i=1 ki!

)(
n−

∑N−1
i=1 ki

)
!
·

(
N−1∏
i=1

akii

)
· an−

∑N−1
i=1 ki

N .

Right now I wonder if there is a better way to write this series of
∑

s. Furthermore, if this formula is in fact correct,
then I can use induction to prove it. I will wait until Thursday to discuss these ideas with Yuqiu.

Question 19. How does one formally define expected value?

Question 20. How can one intuitively calculate the expected value? I.e., the "‘expected’ number of flips needed to
get heads is 2!" on page 69. I don’t quite get how I would intuitively reach this conclusion (even though Iosevich
outlines the reasoning).

Question 21. I believe equation (9.22) can be proven by induction, but my main question is if one can use logic
to inductively prove it (as opposed to brute forcing it with DeMorgan’s Laws). I am also confused as to what the
equation actually is. For instance, is the first sum

∑
#(Ai1 ∩ Ai2) =

∑
i1 6=i2;i1<i2

#(Ai1 ∩ Ai2)? Should the last
term simply be (−1)n+1#

⋂n
i=1Ai supposed to Ai1 ∩Ai2 ∩ · · · ∩Ain?
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July 06-07
On this day I read through Chapter 8 again to try and figure out if the equation on page 61 should be

#B ≥ 1 +
1

2
L(q − 1) ≥ q

d−1
2

4
.

Given that the coefficient of q
d+1
2 is 1

4 I believe this should be the case. This is the same concept as in Question
13 on the notes from June 26-27– we add in this factor of 1

2 to avoid double counting of the points.
In reading through this chapter, I believe there is another typo. We should assume that #B is strictly less than

q
d+1
2

4 and q
d+2
2

8 . Otherwise, we don’t reach a contradiction at the end of both proofs, and we would instead obtain
that #B is equal to both of these quantities (which clearly cannot be true as these quantities are not equal for
fixed q).
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Chapter 2

Project

2.1 July 08-14

July 08
Hi Larry! Excited to meet you tomorrow. I will send these notes after tomorrow’s meeting so that I can include
notes from that meeting in the weekly update. Yuqiu and I met this week to discuss concepts in Chapter 9, mostly
pertaining to the questions that I had throughout this week.

Yuqiu said that my general formula for N degree polynomials to the n power is correct, and noted that we can
in fact improve the notation. We can denote

n∑
k1=0

n−k1∑
k2=0

· · ·
n−
∑N−2
i=1 ki∑

kN−1=0

as
∑

k1+k2+···+kN=n

.

Hence, kN = n−
∑N−1
i=1 k1, and thus the formula simplifies to(

N∑
i=1

ai

)n
=

∑
k1+k2+···+kN=n

n!(∏N−1
i=1 ki!

)(
n−

∑N−1
i=1 ki

)
!
·

(
N−1∏
i=1

akii

)
· an−

∑N−1
i=1 ki

N =
∑

k1+k2+···+kN=n

n! ·
N∏
i=1

akii
ki!

.

However, using this form to prove the equation by induction is proving a bit notationally difficult. I completed this
proof after the meeting: Consider the set {a1, . . . , aN+1}. Let

bi =

ai 1 ≤ i ≤ N − 1

aN + aN+1 i = N
.

Hence, (
N+1∑
i=1

ai

)n
=

(
N∑
i=1

bi

)n

=
∑

k1+···+kN=n

n! ·
N∏
i=1

bkii
ki!

=
∑

k1+···+kN=n

n! ·

(
N−1∏
i=1

bkii
ki!

)
· (aN + aN+1)kN

kN !
.
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Applying the binomial theorem,(
N+1∑
i=1

ai

)n
=

∑
k1+···+kN=n

n! ·

(
N−1∏
i=1

bkii
ki!

)
· (aN + aN+1)kN

kN !

=
∑

k1+···+kN=n

n! ·

(
N−1∏
i=1

bkii
ki!

)
· 1

kN !
·

kN∑
kN+1=0

C(kN+1, kN )a
kN+1

N a
kN−kN+1

N+1

=
∑

k1+···+kN=n

kN∑
kN+1=0

n! ·

(
N−1∏
i=1

akii
ki!

)
· 1

kN !
· C(kN+1, kN )a

kN+1

N a
kN−kN+1

N+1

=
∑

k′1+···+k′N+k′N+1=n

n! ·

(
N−1∏
i=1

akii
ki!

)
· 1

kN !
· kN !

k′N+1!(k′N − k′N+1)!
· ak

′
N+1

N a
k′N−k

′
N+1

N+1 .

Since k′N = n−
∑N−1
i=1 ki and k′N+1 = n−

∑N
i=1 ki, it follows that k

′
N − k′N+1 = kN . Hence,(

N+1∑
i=1

ai

)n
=

∑
k′1+···+k′N+k′N+1=n

n! ·

(
N−1∏
i=1

a
k′i
i

k′i!

)
· 1

kN !
· kN !

k′N+1!(k′N − k′N+1)!
· ak

′
N+1

N a
k′N−k

′
N+1

N+1

=
∑

k′1+···+k′N+k′N+1=n

n! ·

(
N−1∏
i=1

a
k′i
i

k′i!

)
·
a
k′N
N

k′N !
·
a
k′N+1

N+1

k′N+1!

=
∑

k′1+···+k′N+1=n

n! ·
N∏
i=1

a
k′i
i

k′i!

=
∑

k1+···+kN+1=n

n! ·
N∏
i=1

akii
ki!

.

I am slightly worried that somewhere here I have primes in the wrong spots, but I believe this is the essence of
the rigorous proof.

After this, Yuqiu and I discussed how one formally defines expected value. This conversation included topics
like weighted sums, random variables, and probability spaces. We also discussed how one could intuitively calculate
the expected value, as is often done in the book to hypothesize what sums should equal. I am still left slightly
confused, but for now I am not going to worry about this as I haven’t taken a class on probability yet (and this
will not be the main topic of the project, which is projected to be on Chapters 2-4).

Yuqiu and I also discussed the equation at the top of page 84. We came to the conclusion that the equation
should be:

#

(
n⋃
i=1

Ai

)
=
∑
i

#Ai −
∑

i1 6=i2;1≤i1<i2≤n

#(Ai1 ∩Ai2) + · · ·+ (−1)n+1 ·#

(
n⋂
i=1

Ai

)
.

I tried to think about how I would prove this inductively with rigorous notation, but I feel like the proof on
page 84 is already enough.

Between today and tomorrow’s meeting, I am going to reread through Chapters 2-4.

July 09
We met today! It was again, super nice to meet you. What follows are the notes from today’s meeting– I am very
excited to continue working on this project and concept.

We start with a basic concept: if the derivative of a function is 0, then that function is a constant. But what
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does it mean if the derivative of a function is approximately 0? Is that function approximately a constant? And
how would we describe the derivative of a function being nearly 0?

Well, consider a function f : R → R such that f ∈ C1, and
∫∞
−∞ |f

′(x)|dx ≤ 1. Then, what can we say about
f? Well, using the Fundamental Theorem of Calculus, given −∞ < a, b <∞,

|f(b)− f(a)| =

∣∣∣∣∣
∫ b

a

f ′(x) dx

∣∣∣∣∣
≤
∫ b

a

|f ′(x)|dx

≤
∫ ∞
−∞
|f ′(x)|dx ≤ 1.

Hence, for all −∞ < a, b <∞, |f(b)− f(a)| ≤ 1.
How does this concept transfer over to higher dimensions? Consider the function f : R2 → R such that f ∈ C1

and
∫
R2 |∇f |d~x ≤ 1. Is it true that |f(~b) − f(~a)| ≤ 1 for all ~a,~b ∈ R2? No. Here is a counter example: Consider

the function

fε(~x) =

0 |x| > 2ε

1 x = 0

and furthermore fε smoothly interpolates between 0 and 1 for all values of ~x such that 0 < |~x| < 2ε. Then, ∇f is
supported in the region where 0 < |~x| < 2ε, and |∇f | ≤ 2

ε . Hence,∫
R2

|∇f(~x)|d~x =

∫
0≤|x|≤2ε

|∇f(~x)|d~x+

∫
|x|>2ε

|∇f(~x)|d~x

=

∫
0≤|x|≤2ε

|∇f(~x)|d~x

= area(Circle) · 2

ε

≤ Cε ε→ 0−−−→ 0

and where C > 0. However, it is not necessarily the case that |f(~b)− f(~a)| ≤ 1 for all ~a,~b ∈ R2.
Hence, from here we want to try and prove something weaker. Suppose that f : R2 → R such that f ∈ C1 and

f is compactly supported (i.e. that there exists some rectangle such that for every (x, y) outside of this rectangle,
f(x, y) = 0). Furthermore, suppose that ∫

R2

|∇f(~x)|d~x ≤ 1.

Now given this, we want to estimate the area({~x | f(~x) > λ}) in terms of λ.

Question 22. How will estimating this value help us better understand this problem? I.e., is there a bigger problem
that we are actually trying to solve that this will be a key step in?

Question 23. Larry mentioned that long term, a question we could look at is the integral
∫
R2 |f |p d~x, but let’s not

get ahead of ourselves.

In any case, my first idea in the meeting was to consider the set Uλ = {~x | |f(~x)| > λ}, and split the integral
of ∇f over R2 into two integrals over Uλ and U cλ. However, this immediately led into some more issues/questions.
We have bounds on the integral of ∇f , but how do we relate this to just f? Hence, we went back to the drawing
board, in which I suggested using the FTC in one variable as follows:

1 ≥
∫
R2

|∇f(~x)|d~x =

∫
R

∫
R

√
(∂xf)2 + (∂yf)2 dxdy.
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Therefore,
∫
R
∫
R |∂xf |dxdy ≤ 1 and

∫
R
∫
R |∂yf |dxdy ≤ 1. Let’s consider the first of these integrals. Using what

we had shown earlier for single variable functions (with the FTC), we can obtain the following: For all x1, x2 ∈ R,

|f(x1, y)− f(x2, y)| =
∣∣∣∣∫ x2

x1

∂xf(x, y) dx

∣∣∣∣
≤
∫ x2

x1

|∂xf(x, y)|dx

≤
∫
R
|∂xf(x, y)|dx.

Integrating both sides of this inequality, we get that for all x1, x2 ∈ R (which may depend on y)∫
R
|f(x1, y)− f(x2, y)|dy ≤

∫
R

∫
R
|∂xf(x, y)|dxdy ≤ 1. (2.1)

Replacing x with y, we can similarly get that for all y1, y2 ∈ R (which may depend on x),∫
R
|f(x, y1)− f(x, y2)|dx ≤

∫
R

∫
R
|∂yf(x, y)|dy dx ≤ 1. (2.2)

Then we went back to my previous idea of splitting an integral over R2 into an integral over Uλ and U cλ– but
instead of looking at the integral of ∇f , consider the integral of f :∫

R2

|f(~x)|d~x =

∫
Uλ

|f(~x)|d~x+

∫
Ucλ

|f(~x)|d~x ≥
∫
Uλ

|f |d~x ≥ λ · area(Uλ).

Hence, if we can get an upper bound on the left hand side in terms of λ, we can get an inequality for area(Uλ).

Question 24. Can we get this upper bound using equations (2.1) and (2.2)?

Question 25. Also, how do projections come into this? Given that this project should utilize concepts from Chapters
2-4.

As for question 25, perhaps we can state the following: for Ω ⊂ R2,

area(Ω) ≤ m(π1(Ω)) ·m(π2(Ω)). (2.3)

One could prove this in a similar manner to Exercise 2.3, though it arguably makes more sense pictorially. We
surround Ω by the smallest possible rectangle(s) such that Ω is completely in said rectangles. Though, I have the
same question that I had for 2.3– must Ω be convex? I imagine not, based on the pictoral reasoning, but I am
uncertain. In any case, we have the following equation:

area(Uλ) ≤ m(π1(Uλ)) ·m(π2(Uλ)). (2.4)

Here I changed π1(Uλ) to m(π1(Uλ), where m is the measure function.
There was only a bit more we discussed in today’s meeting. Let y ∈ π1(Uλ). Now we are going to use equation

(2.1). Since y ∈ π1(Uλ), there exists an x2 ∈ R such that x2 = sup{x ∈ π2(Uλ) | f(x, y) = λ}. Furthermore, since
f is compactly supported, there exists an x1 < x2 ∈ R such that f(x1, y) = 0. Hence, using these values of x1 and
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x2 for each y ∈ π1(Uλ) in equation (2.1), we get that

1 ≥
∫
π1(Uλ)

|f(x1, y)− f(x2, y)|dy

≥
∫
π1(Uλ)

|λ|dy

= |λ| ·m(π1(Uλ)) =⇒ m(π1(Uλ)) ≤ 1

|λ|
.

This leaves me slightly concerned though, as when we met we had come to a different conclusion, namely∫
R
|∂xf(x, y)|dx ≥ λ.

[At least this is what I have in my notes.]
For now, assuming that I didn’t make a mistake previously, we can similarly state that

1 ≥ |λ| ·m(π2(Uλ)) =⇒ m(π2(Uλ)) ≤ 1

|λ|
.

Question 26. Could we conclude from here, using equation (2.4), that

area(Uλ) ≤ m(π1(Uλ)) ·m(π2(Uλ)) ≤ 1

λ2
?

Question 27. Even if this is a solution, can we reach a stronger upper bound by finding an upper bound on∫
R2 |f(~x)|d~x? Would finding an upper bound on this integral help us begin to look at Question 23?

July 10
My first goal for today is to rigorously prove equation (2.4):

area(Ω) =

∫
R2

χΩ(~x) d~x

≤
∫∫

χπ1(Ω)(x2)χπ2(Ω)(x1) dx1 dx2

=

∫
R
χπ1(Ω)(x2) dx2 ·

∫
R
χπ2(Ω)(x1) dx1

= m(π1(Ω)) ·m(π2(Ω)).

The question still remains– does Ω need to be convex though? If so, is Uλ convex?
Now I want to figure out (presuming I am right about Question 27) what we can say about area(Uλ) if∫

R2

|∇f(~x)|d~x ≤ α

where α ≥ 0. Going through the same process as before with αs instead of 1s, we can conclude that

area(Uλ) ≤ α2

λ2
.

While this certainly gives us a way to calculate an upper bound for area(Uλ), I wonder if there is a way to find
an upper bound on

∫
R2 |f |dx that could lend itself nicely to Question 23, and that could possibly allow us to have

a weaker condition than f being compactly supported.
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July 11-12
On July 11th I worked on trying to prove equation (2.3). I did so by drawing a lot of pictures and trying to
visualize m(π1(Ω)) ·m(π2(Ω)) as a rectangle, but I was having trouble figuring out the exact process for proving
the equation. However, on July 12th I think I finished the problem.

Consider the sets X = π2(Ω) and Y = π1(Ω), and consider the Cartesian product X × Y . It is clear that
Ω ⊂ X × Y , as by definition

X × Y = {(x, y) | x ∈ π2(Ω) and y ∈ π1(Ω)}.

Therefore,

area(Ω) =

∫
R2

χΩ(x, y) dxdy ≤
∫
R2

χX×Y (x, y) dxdy = m(π1(Ω)) ·m(π2(Ω)).

I feel like this should be sufficient, whether or not Ω is convex. However, this argument doesn’t easily lend itself to
the same equation for 3-dimensions, as here we want that

vol(Ω) ≤
√
area(π1(Ω)) ·

√
area(π2(Ω)) ·

√
area(π1(Ω))

as opposed to (the true statement)

vol(Ω) ≤ area(π1(Ω)) · area(π2(Ω)) · area(π1(Ω)).

July 13
I started thinking about how we could possibly prove the last statement from July 12. I was initially frustrated
with the fact that we couldn’t immediately translate the previous method to this equation, but now I think we
might be able to. Consider the following:

Let X = {x | (x, y, z) ∈ Ω}, and similarly define Y and Z. Then, it is clear that

vol(Ω) ≤ m(X) ·m(Y ) ·m(Z)

as this is like surrounding every disjoint path-connected subset of Ω with it’s own rectangular prism (similar to
surrounding every disjoint path-connected subset of Ω in the 2-D case with it’s own little rectangle). Then,

vol(Ω) ≤
√
m(x) ·m(Y ) ·

√
m(X) ·m(Z) ·

√
m(Y ) ·m(Z).

Hence, using the 2-D analogous equation, we get

vol(Ω) ≤
√
m(x) ·m(Y )·

√
m(X) ·m(Z) ·

√
m(Y ) ·m(Z) ≥

√
area(π1(Ω)) ·

√
area(π2(Ω)) ·

√
area(π3(Ω)).

So far this has all the parts of the inequality we want, but is just slightly off. This makes me hopeful that this
concept is close to the right approach.

I had another question in what I have done so far:

Question 28. Is it true that ∫
R2

|∇f(~x)|d~x ≤ 1 =⇒
∫
R2

|∂xf(~x)|d~x ≤ 1?

We said this is true in the meeting, and I thought this might follow the triangle inequality. However, I do not
think this is the case: ∫

R2

|∂xf(~x)|d~x+

∫
R2

|∂yf(~x)|d~x =

∫
R2

|∂xf(~x)|+ |∂yf(~x)|d~x.
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Applying the triangle inequality,∫
R2

|∂xf(~x)|d~x+

∫
R2

|∂yf(~x)|d~x ≥
∫
R2

|∇f(~x)|d~x ≤ 1.

This makes me slightly worried that what we had discussed in the meeting might have been incorrect.

July 14
Using what I have found so far (which I am not certain is fully correct), I was wondering how we might apply this
to |f(x1, y1)− f(x2, y2)| for any two points in R2.

Let f(x1, y1) = λ, and let |f(x1, y1)− f(x2, y2)| < α. My goal here is to try and find the "volume" of elements
in R2 such that this inequality is satisfied. It must be true that (x2, y2) ∈ Ui for i ∈ [λ− α, λ+ α]. Hence consider
the following:

∫ λ+α

λ−α
area(Uβ) dβ ≤

∫ λ+α

λ−α

1

β2
dβ

=
1

λ− α
− 1

λ+ α

=
2α

λ2 − α2
.

I am uncertain how helpful this currently is.

2.2 July 15-21

July 15-16
Hi Larry! I hope the past week has treated you well. It has been very fun working on this problem! For our
purposes, I am going to make the notes from today both an update and summary of key results for this problem,
from throughout the notes so far.

Firstly, we discussed a bit of confusion regarding the notation |∇f |, which deals with my confusion from July
13th. I thought we meant that

|∇f | = |∂xf + ∂yf | .

However, Yuqiu said that we take |∇f | to be

|∇f | =
√

(∂xf)2 + (∂yf)2. (2.5)

Hence, now it makes sense why ∫
R2

|∂xf(~x)| ≤ 1 and
∫
R2

|∂yf(~x)|d~x ≤ 1.

We then discussed how I proved area(Ω) ≤ m(π1(Ω)) ·m(π2(Ω)) for all Ω ⊂ R2:
Consider the sets X = π2(Ω) and Y = π1(Ω), and consider the Cartesian product X × Y . It is clear that

Ω ⊂ X × Y , as by definition
X × Y = {(x, y) | x ∈ π2(Ω) and y ∈ π1(Ω)}.

34



Therefore,

area(Ω) =

∫
R2

χΩ(x, y) dxdy ≤
∫
R2

χX×Y (x, y) dxdy = m(π1(Ω)) ·m(π2(Ω)).

I asked Yuqiu if there might be a similar way to prove the inequality for the volume, as I wasn’t quite certain if
the proof I had done earlier this summer was sufficient. I was worried that the requirement of convexity had snuck
its way into the proof somehow. Thus, we went back to that proof and went through it line by line:

Let Ω be a subset of R3, and let Ai =
√
area(πi(Ω)). Then,

vol(Ω) =

∫
R3

χΩ(x) dx

≤
∫∫∫

χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3)χπ3(Ω)(x1, x2) dx1 dx2 dx3

=

∫∫
χπ3(Ω)(x1, x2)

(∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3) dx3

)
dx1 dx2.

By the Cauchy-Schwarz inequality,

≤
(∫∫

χ2
π3(Ω)(x1, x2) dx1 dx2

)1/2(∫∫ (∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3) dx3

)2

dx1 dx2

)1/2

≤ A1/2
3

(∫∫∫∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3)χπ1(Ω)(x2, x

′
3)χπ2(Ω)(x1, x

′
3) dx3 dx′3 dx1 dx2

)1/2

≤ A1/2
3

(∫∫∫∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x

′
3) dx3 dx′3 dx1 dx2

)1/2

= A
1/2
3

(∫∫
χ2
π1(Ω)(x2, x3) dx2 dx3

)1/2(∫∫
χ2
π2(Ω)(x1, x

′
3) dx1 dx′3

)1/2

= A
1/2
1 A

1/2
2 A

1/2
3 .

There was a few typos here and there (i.e., double integrals where there should be one integral, and vice versa),
but we ultimately came to the conclusion that this proof is sufficient for all subsets of R3.

Question 29. Is there a way to prove that

vol(Ω) ≤
√
area(π1(Ω)) ·

√
area(π2(Ω)) ·

√
area(π3(Ω))

geometrically? In a similar way to how I proved the 2-D case using X × Y.

After this, we started to discuss the actual project some more. I raised a concern that to get the equation
area(Uλ) ≤ 1

λ2 , we have to use the fact that λ 6= 0. It seems unlikely that we will not be able to reach an inequality
for U0, but we dismissed this for now. I also asked if f must be bounded– as the equation area(Uλ) ≤ 1

λ2 implies
that f is unbounded. Yuqiu rephrased this question as: how high can f be from 0?

Yuqiu also pointed out something interesting: In this problem we have assumed that f is compactly supported,
but not every function is like this. In fact, functions of the form f(x, y) = c ∈ {R− 0} have ∇f = 0, however these
functions are not compactly supported.

Yuqiu then said that area(Uλ) ≤ 1
λ2 suggests a nice connection to L2(R2).

Conjecture 30
Maybe we can say something along the lines of:

area(Uλ) ≤ 1

λ2
⇐⇒

(∫
R2

|f(~x)|2 d~x

) 1
2

≤ 1.
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One of these directions is more clear than the other certainly:

1 ≥
∫
R2

|f(~x)|2 d~x

≥
∫
Uλ

|f(~x)|2 d~x

≥
∫
Uλ

|λ|2 d~x.

Hence,

area(Uλ) =

∫
Uλ

1 d~x ≤ 1

λ2
.

Yuqiu said that this is known as Chebyshev’s inequality, which comes up in probability.
In trying to prove the other direction, Yuqiu suggested introducing new notation to be able and split the integral

up into different Uλs:
Vλ := {~x | 2λ > f(~x) ≥ λ}.

Note that Vλ ⊂ Uλ. Then, we can consider the following:

(∫
R2

|f(~x)|d~x
) 1

2

=

(∑
k∈N

∫
V
2k

|f(~x)|2 dx

) 1
2

≤

(∑
k∈N

(
2k+1

)2 · area(V2k)

) 1
2

≤

(∑
k∈N

22(k+1) · 1

22k

) 1
2

= 2

(∑
k∈N

1

) 1
2

.

This sadly diverges, but if we allow f to be bounded, then this becomes a finite sum. Let f(~x) ≤ Z ∈ R for all
~x ∈ R2. Then,

(∫
R2

|f(~x)|2 d~x

) 1
2

≤ 2

dlog2(Z)e∑
k=1

1

 1
2

= 2 ·
√
dlog2(Z)e.

This sadly diverges if Z →∞, which means (at least with the approximations done thus far), f must be bounded.
However, Yuqiu and I quickly realized some issues that come up here.

Issues start to come up if λ ≤ 0 (in regards to Uλ), and especially when λ = 0. This is sadly something that we
can’t just dismiss by putting a condition on f , as it cannot be the case that there exists an ε such that f(~x) > ε > 0

for all ~x and have it be the case that f is compactly supported.
So, we are left with a few questions:

Question 31. How can we estimate area(U0)? Is there a way around this? How can we incorporate negative
values for f(~x) into the sum to try and estimate ||f ||L2(R2)?

Yuqiu suggested revisiting the inequalities derived thus far to work on making them sharper. Namely, he
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suggested that we could look into making this series of inequalities sharper:

1 ≥
∫
R
|f(x1, y)− f(x2, y)|dy

≥
∫
π1(Uλ)

|f(x1, y)− f(x2, y)|dy

≥
∫
π1(Uλ)

|λ|dy

= |λ| ·m(π1(Uλ)) =⇒ m(π1(Uλ)) ≤ 1

|λ|
.

Here we go from R to π1(Uλ), which throws out a lot of elements in R. To make this sharper, we could consider
the following:

1 ≥
∫
R
|f(x1, y)− f(x2, y)|dy

≥
N∑
k=1

∫
π1(V

2k
)

|f(x1, y)− f(x2, y)|dy

≥
N∑
k=1

2k ·m(π1(V2k))

where N ∈ N. The hope is to possibly use this inequality and another for π2, to derive a new inequality for
area(Uλ). We also hope that it may be possible to utilize the CS-inequality to do so. This concept hasn’t been
fully explored yet.

Before we left, I wanted to consider to see if how we defined Vλ affected the final result. My hope is that
changing this definition could lead to a convergent sum in the case where f is unbounded.

Let
Wα,λ = {~x | αλ > f(~x) ≥ λ}.

Then,

(∫
R2

|f(~x)|2 d~x

) 1
2

=

(∑
k∈N

∫
W
α,αk

|f(~x)|2 d~x

) 1
2

≤

(∑
k∈N

α2(k+1) · 1

α2k

) 1
2

.

Letting f be bounded by Z again, we get

≤

dlogα(Z)e∑
k=1

α2

 1
2

≤ α ·
√
dlogα(Z)e.

I am currently uncertain if this is a better upper bound then the one derived before where α = 2, but in either case
it still seems to require f to be bounded, as letting Z →∞ should result in this upper bound go to ∞ as well (if,
very slowly). This also does not address the issue of negative values for f .

A lot of progress has been made over the last week! I am excited to continue working on the questions at hand
here. My goal is to try make a better estimate for area(Uλ) that addresses the issues where λ ≈ 0. I am also
hopeful that long term this process will lead to a way to estimate ||f ||Lp(R2) for p ≥ 1.
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July 17
Today I worked on trying to find a bound on the area(U0). Based on the approximation found so far (namely,
area(Uλ) ≤ 1

λ2 where λ 6= 0), it seems to be the case that area(U0) might just be infinite. This make sense based
off of our conditional statements for f : we assume f to be compactly supported, which means there must exist an
infinitely large subset of R2 such that f(~x) = 0. However, consider this:

If λ1 ≤ λ2, then Uλ2
⊂ Uλ1

by construction. Thus, area(Uλ) ≤ area(Uλ2
). Let λ2 = 0 and λ1 = α < 0. Hence,

area(U0) ≤ area(Uα) ≤ 1

α2

α→ −∞−−−−−−→ 0.

This seems to be a contradiction with what we have assumed in the problem– that area(U0) must be infinite.
However, perhaps we can redefine Uλ to address a few of our concerns so far. Maybe, for the moment, we can
assume that f is strictly non-negative, and then later on redefine our sets Uλ to deal with the cases where f is
negative. One idea might be to consider the set

Aλ = {~x | |f(~x)| ≥ λ}.

Thus, area(Aλ) =∞ if λ ≤ 0, which satisfies our understanding of f being compactly supported, that wasn’t seen
by our previous approximation for area(Uλ). However, then another question arises– even though this deals with
negative values for λ, what is the new approximation for area(Aλ)?

July 21
In talking to Yuqiu, we believe that the inequality

area(Uλ) ≤ 1

λ2

should be incorrect if λ < 0 for the reasons on July 17th, but we aren’t certain what goes wrong in the proof.
Thus, I spent today going back over the proof of the above inequality to see where, if anything, something should
go wrong.

To derive this inequality, we stated that m(πi(Uλ)) ≤ 1
λ . However, this certainly shouldn’t be true if λ < 0,

as f is compactly supported and thus the subset of R2 where f(~x) > λ is infinite. This would imply that the
m(πi(Uλ)) should also be infinite. It seems reasonable that this should be the case if λ > 0, but clearly there
is some misconception in those few lines. As of right now, I do not particularly see what breaks in my line of
reasoning. For now, I am going to go back over the proof so far to try and figure this out. If I still cannot see what
is going wrong, I plan to try going through the proof using the notation Aλ to see if this error fixes itself in this
method.

Next, I started to consider estimating m(πi(Uλ)) in terms of λ. Yuqiu and I had started to discuss this earlier,
though I realize there was an issue with our reasoning. We stated that

1 ≥
∫
R
|f(x1, y)− f(x2, y)|dy

≥
N∑
k=0

∫
V
2k

|f(x1, y)− f(x2, y)|dy.

These two lines are certainly correct, and the hope is to use them to estimate the area(Uλ). However, from here
we have a few options. Before, we chose x1 amd x2 such that this difference was always λ. Here, we have a few
more options:
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Option 1: Assume that f is unbounded. Then, there exists x1 and x2 such that f(x1, y) = 2k and f(x2, y) = 2k+1.
At the very least, we want to assume that there exists ~x such that f(~x) ≥ 2N+1 for this difference to work. Then,
we have

1 ≥
∫
R
|f(x1, y)− f(x2, y)|dy

≥
N∑
k=0

∫
π1(V

2k
)

|f(x1, y)− f(x2, y)|dy

=

N∑
k=0

∫
π1(V

2k
)

|2k+1 − 2k|dy

=

N∑
k=0

|2k+1 − 2k| ·m(π1(V2k)).

Option 2: Here, we do not need to assume that f is unbounded. Choose x1 and x2 such that f(x1, y) = 0 and
f(x2, y) = 2k. Note that if there does not exist an x2 such that f(x2, y) = 2k, then V2k = ∅, and thus this wouldn’t
effect our sum in the end. Hence, we have

1 ≥
∫
R
|f(x1, y)− f(x2, y)|dy

≥
N∑
k=0

∫
π1(V

2k
)

|f(x1, y)− f(x2, y)|dy

=

N∑
k=0

∫
π1(V

2k
)

|2k|dy

=

N∑
k=0

|2k| ·m(π1(V2k)).

Perhaps we can use these inequalities together to solve for
∑
m(π1(V2k)). Note that

∞∑
k=α

m(V2k) = m(U2α)

as this is the union of all elements in R2 that have value at least value 2α when plugged into f . This is how I hope
to go from an estimate of

∑
m(π1(V2k)) to m(π1(Uλ)).

2.3 July 22-29

July 22
Good evening Larry! I hope the week has treated you well, we have made quite a bit of progress I think on this
project.

First we started to discuss different possible ways to define Uλ and Vλ. I think the following definitions might
be useful to deal with the cases where f is negative: (let λ 6= 0)

Uλ :=

{~x | f(~x) ≥ λ} λ > 0

{~x | f(~x) ≤ λ} λ < 0
and Vλ :=

{~x | 2λ > f(~x) ≥ λ} λ > 0

{~x | 2λ < f(~x) ≤ λ} λ < 0
.
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This is particularly nice as area(Uλ) ≤ 1
λ2 for all λ 6= 0 (at least conceptually this makes more sense for λ < 0).

Then, we can start considering splitting up the integral we did last Thursday, but with negative values for λ: Let
N = dlog2(sup~x∈R2 |f(~x)|)e. Then,

(∫
R2

|f(~x)|d~x
) 1

2

=

(
N∑

k=−N

∫
V
2k

|f(~x)|2 dx+

∫
V−2k

|f(~x)|2 dx

) 1
2

≤

(
2 ·

N∑
k=−N

(
2k+1

)2 · area(V2k)

) 1
2

≤

(
N∑
k=0

16

) 1
2

= 4 ·

√⌈
log2

(
sup
~x∈R2

|f(~x)|
)⌉

.

Except, there’s an issue here, and it isn’t λ = 0. Note that we don’t particularly need to worry about λ = 0 as∫
U0
|f(~x)|2 d~x = 0. However, the issue now includes numbers close to 0, as these aren’t all included in V2−N . Hence,

the first line above should not be equality but ≥. For now, Yuqiu and I dismissed this problem to discuss another
that is somewhat related:

Question 32. Is area(Uλ) ≤ 1/λ2 approximately sharp? Can you find some examples of functions f where Uλ is
close to that upper bound for almost all λ?

Larry proposed this question last week and I have been playing around with possible pictures to consider. I
wanted to use the fact that 1

λ2 is the area of a square with side-length 1
λ , and the fact that if λ1 ≤ λ2, Uλ2 ⊂ Uλ1 .

To describe the example, I first start off with a definition:
Consider the following function: f(x, y) = λ if (x, y) is on the square of side-length 1

λ centered at the origin.
Thus, area(Uλ) = 1

λ2 for all λ 6= 0. For the time being, I will call squares of side length k centered at the origin, a
square of radius 1

2k .
However, f is neither continuous (discontinuous at the origin) nor compactly supported. Hence, Yuqiu and I

discussed how we can "fix" this example. In the region between the squares of radius R and 2R, let f smoothly
interpolate to 0, and let f be 0 outside of the square of radius 2R. This lets f be compactly supported, and we
can make R arbitrarily large (though finite), implying that area(Uλ) ≤ 1

λ2 will be approximately sharp, or exactly
sharp, almost everywhere when R is sufficiently large. Addressing the discontinuity at the origin, in the region of
the square of radius 1

R (related to the R in fixing compactly supported), let f(~x) smoothly interpolate to the value
R.

After making these changes to f , it seems to be the case that this works as a sufficient counterexample to show
that area(Uλ) ≤ 1

λ2 is approximately sharp.
In discussing this question, I also realized that f must be bounded. This follows directly from f being both

continuous and compactly supported (which I hadn’t quite internalized up until this point). After this, Yuqiu and
I started to discuss why we look at ||f ||L2(R2) instead of L3 or Lp for that matter.

First we considered our Main Problem in a slightly different way. We want to find an upperbound for ||f ||Lp
only given ||∇f ||L1 ≤ 1. We can rephrase this question as follows: does there exist C > 0 such that

F (f, p, α) =
||f ||Lp
||∇f ||αL1

≤ C?

We can show that we can only find such a C if p = 2 and α = 1. Assume, for the sake of contradiction that there
exists such a C > 0 for all f, α, and p (with f ∈ C1). Then, let β > 0 and consider the following:
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It should be the case that F (βf, p, α) =
||βf ||p
||∇βf ||α1

≤ C. However, ||βf ||p||∇βf ||α1
= β

βα
||f ||p
||f ||α1

≤ β
βα · C. Hence, α = 1, as

if α > 1, letting β → 0 implies there doesn’t exist a bound for F (βf, p, α), and if α < 1 then letting β → 0 implies
C = 0 (clearly not the case).

Hence, we can now let α = 1, and we can do a similar rescaling argument to show that p = 2. Let g(x, y) =

f(βx, βy). Hence, we get the following:

||g||Lp(R2) =

(∫
R

∫
R

(g(x, y))p dx dy

) 1
p

=

(∫
R

∫
R

(f(βx, βy))p dxdy

) 1
p

.

Letting u = βx and v = βy,

=

(∫
R

∫
R

1

β2
· (f(u, v))p dudv

) 1
p

=
1

β
2
p

||f ||Lp .

Similarly,

||∇g|| =
∫
R

∫
R

√
(∂xg(x, y))

2
+ (∂yg(x, y))

2
dxdy

=

∫
R

∫
R

√
(∂xf(βx, βy))

2
+ (∂yf(βx, βy))

2
dxdy.

Letting u = βx and v = βy,

=

∫
R

∫
R

1

β2
·
√

(β∂uf(u, v))
2

+ (β∂vf(u, v))
2

dudv

=

∫
R

∫
R

1

β
·
√

(∂uf(u, v))
2

+ (∂vf(u, v))
2

dudv

=
1

β
· ||∇f ||L1 .

Therefore,
||g||Lp
||∇g||L1

= β1− 2
p
||f ||Lp
||∇f ||L1

≤ β1− 2
p · C.

By a similar argument for α, this directly implies p can only be 2. Hence, if there exists a C such that F (f, p, α) ≤ C,
then p = 2 and α = 1.

This actually answers Question 23; we can only possibly find an upperbound for ||f ||Lp if p = 2. Now the
question is: given p = 2, does there exist such an upper bound?

This thought process lends itself to a few new questions:

Question 33. Can this argument be used to start to generalize this problem to functions with more variables? Is
it always the case that there is only one such scaling invariant Lp space (i.e., will there always only exist one such
p and α)? What if we were instead given ||∇f ||Lq?

Furthermore, the rescaling argument allows us to reframe our problem.

Problem 34
Let f(x, y) ∈ C1 be a compactly supported function, such that |f(x, y)| ≤ 1 for all (x, y) ∈ R2 and f(x, y) = 0

for (x, y) /∈ [−1, 1]× [−1, 1]. Given ||∇f ||L1 ≤ 1, find an upper bound for ||f ||L2 .

41



This is equivalent to our previous problem, as previously we assumed f was compactly supported and bounded.
Therefore, we can rescale f to have upper bound 1, and to be 0 outside of a given rectangle (in this case, [−1, 1]×
[−1, 1]).

My goals for this upcoming week:

1. Go through the argument we have started to go through, with these additional constrictions on f . We still
have the issue of

∫
Uε
|f | for ε relatively small, but I hope that these additional constrictions can illuminate a

way to approach this issue.

2. I also would like to start a summary of the work done so far in it’s own small self-contained document.

Have a good week!

July 24
Today I started working on making a summary of the project work done so far, but I did want to note something.
The function created this last Thursday as an example of Uλ being sharp, can equivalently be written as

f =
1

max{|x|, |y|}
.

2.4 July 30-August 05

July 30
Hi Larry! We made a lot of good progress this week; in fact, I think we might be done with this problem with up
to some small nuanced parts of the problem (i.e., notation and summation indexing). For today’s purposes, I will
put a summary of what we talked about during this meeting.

First, we started discussing the rescaling arguments for functions of more variables. Let f : Rn → R, and let
β > 0. Assume that there exists a fixed C > 0, p, and α such that for all f ∈ C1 with f compactly supported such
that ||f ||p

||∇f ||α1
< C.

To see that α = 1, consider the function g(~x) = βf(~x). Then,

||g||p
||∇g||α1

=
||βf ||p
||∇βf ||α1

=
β

βα
· ||f ||p
||∇f ||α1

≤ β1−α · C.

Just as we showed in last week’s argument, this implies that α = 1.
Now we will show that p = n

n−1 (note that this agrees with the case where n = 2 where p = 2). Consider the
function g(~x) = f(β~x). Then,

||g||p =

(∫
Rn
|g(~x)|p d~x

) 1
p

=

(∫
Rn
|f(β~x)|p d~x

) 1
p

.
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Let ui = βxi, such that d~u = βn d~x. We will use this substitution in the next part of the problem too. Hence,

=

(∫
Rn

1

βn
· |f(~u)|p d~u

) 1
p

= β−
n
p · ||f ||p.

Similarly,

||∇g||1 =

∫
Rn

√√√√ n∑
i=1

∂2
xi(g(~x)) d~x

=

∫
Rn

√√√√ n∑
i=1

∂2
xi(f(β~x)) d~x

=
1

βn
·
∫
Rn

√√√√β2 ·
n∑
i=1

∂2
ui(f(~u)) d~u

= β1−n · ||∇f ||1.

Therefore,
||g||p
||∇g||1

= βn−
n
p−1 ||f ||
||∇f ||

≤ βn−
n
p−1 · C.

Hence,
n− n

p
− 1 = 0 =⇒ p =

n

n− 1
.

Therefore, if there exists a C > 0, such that for all compactly supported and continuous f : Rn → R, ||f ||p||∇f ||α < C,
then p = n

n−1 and α = 1.

The numbers here feel oddly related to the Loomis-Whitney inequality. It might be interesting to looking into
this inequality next if we are indeed done with this problem.

Next, I discussed how I had tried to redefine Vλ such that the splitting of the integral over R2 led to a
better/stronger inequality than the one we already have. However, no matter how I defined Vλ, I reached the
conclusion that (∫

R

∫
R
|f(~x)|2 d~x

) 1
2

≤

(∑
k∈N

1

) 1
2

.

Hence, Yuqiu suggested that we can’t just play around with notation/sets to get an inequality that we want.
Rather, we should look back on our problem in totality and try and find places where we lose sharpness and work
on those.

Specifically, we started to reconsider the following (which we had done earlier):

1 ≥
∫
R2

|∂xf(~x)|d~x

≥
∫
R

∫ x2

x1

|∂xf(~x)|d~x

=

∫
R
|f(x1, y)− f(x2, y)|dy.

This last line uses the FTC. From here, we would go into splitting up R into π1(V2k). However, as Yuqiu pointed
out, we throw out a lot of R when we go from that to [x1, x2]. So, instead Yuqiu suggested starting by splitting R2

into V2k , and then applying the FTC, as follows.
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Firstly, instead of assuming that ||∇f || ≤ 1, for now we will just keep it as ||∇f ||. Then, we have

||∇f ||1 ≥
∫
R2

|∂xf(~x) d~x.

Choose N sufficiently large such that 2−N ≤ sup~x∈R2 f(~x) ≤ 1. Then,

≥
N∑
k=0

∫
V
2−k

|∂xf(x, y)|dx dy

=

N∑
k=0

∫
π1(V

2−k )

∫
{~x|~x∈V

2−k}
|∂xf(x, y)|dx dy.

Choose x1,k and x2,k such that f(x1,k, y) = 2−k−1 and f(x2,k, y) = 2−k. We know that we can choose such values
as 2−N ≤ sup f(~x). There is one such caveat with this that I will address later in this summary. Anyways, then

≥
N∑
k=0

∫
π1(V

2−k )

∫ x2,k

x1,k

|∂xf(x, y)|dx dy

=

N∑
k=0

∫
π1(V

2−k )

|f(x2,k, y)− f(x1,k, y)|dy

=

N∑
k=0

∫
π1(V

2−k )

|2−k − 2−k−1|dy

=

N∑
k=0

|2−k − 2−k−1| ·m(π1(V2−k))

=

N∑
k=0

2−k ·
∣∣∣∣1− 1

2

∣∣∣∣ ·m(π1(V2−k))

Therefore, we have the two inequalities

||∇f ||1 ≥
1

2

N∑
k=0

2−k ·m(π1(V2−k)).

||∇f ||1 ≥
1

2

N∑
k=0

2−k ·m(π2(V2−k)).

Therefore,

||∇f ||21 ≥
1

4

N∑
k=0

2−2k ·m(π1(V2−k)) ·m(π2(V2−k)) ≥ 1

4

N∑
k=0

2−2k · area(V2−k)

using equation (2.4).
Hence,

||∇f ||1 ≥
1

2

(
N∑
k=0

2−2k · area(V2−k)

) 1
2

.
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We can similarly estimate ||f ||2:

||f ||2 =

(∫
R2

|f(~x)|2 d~x

) 1
2

=

(∫ 1

−1

∫ 1

−1

|f(~x)|2 d~x

) 1
2

=

(∑
k∈N

∫
V
2−k

|f(~x)|2 d~x

) 1
2

≤

(∑
k∈N

2−2k · area(V2−k)

) 1
2

.

Therefore,

||f ||2
||∇f ||1

≤
(∑

k∈N 2−2k · area(V2−k)
) 1

2

1
2

(∑N
k=0 2−2k · area(V2−k)

) 1
2

≤ 2 ·

(∑N
k=0 2−2k · area(V2−k)∑N
k=0 2−2k · area(V2−k)

) 1
2

= 2. (2.6)

From here, I am mostly concerned with indexing of these sums, but this feels fairly close. Below are my goals for
this week:

1. Consider the rescaling argument if given ||∇f ||q instead of ||∇f ||1.

2. Go back through this argument, and double check every line for errors in indexing and making the argument
more refined.

3. Yuqiu also pointed one more thing out: x1,k and x2,k must be connected by a line segment. Yuqiu says that
this should be the case, so my goal is to prove this small portion of the proof.

4. I want to add these new topics to the project’s official notes (which will be sent in today’s email).

There are quite a few questions and places for this project to go from here. I think the Loomis-Whitney inequality
may be neat to explore, but for now will work on the items above. This is very exciting!

August 4
Okay! Mostly done with notes but there is One Main Question left which Yuqiu suggests should have an answer
to it. I will phrase the question.

Right now we have that

||∇f ||1 ≥
∞∑
k=N

∫
V
2−k

|∂xf(~x)|d~x

=

∞∑
k=N

∫
π1(V

2−k

∫
π−1
2 (V

2−k

|∂xf(x, y)|dx dy

and then we choose x1,k and x2,k such that etc etc. However, the question is: does there exist an x1,k and x2,k

such that [x1,k, x2,k] ⊂ π−1
2 (V2−k) with the properties that f(x1,k, y) = 2−k−1 and f(x2,k, y) = 2−k? Or similarly,

swap the values of x1,k and x2,k. Question: Do these ys need to be the same? I do not believe so conceptually, but
also the dy in the integral makes me suspicious of this. Based on our choice of N , we certainly know that there
exists ~x1 and ~x2 such that f(~x1) = 2−k−1 and f(~x2) = 2−k, but how do we know that there is a specific interval
where they are connected in π2(V2−k)? Does this follow from the continuity of π1f and π2f?
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Chapter 3

The Project In All of It’s Glory

3.1 The Cauchy-Schwarz Inequality
This document was made to summarize all the key parts of this UROP project. This includes theorems and
exercises from the book A View from the Top by Alex Iosevich, and general notes and pending questions from the
UROP. For the first five weeks of this UROP, from June 03-July 07, Yuqiu and I read through Chapters 1-8 of
Iosevich’s text, and from then on we started considering questions brought up Section 2. The first place we can
and will start off in these notes however is with the CS inequality (as the title of this Section implies).

3.1.1 The Inequality Itself
We will prove this inequality in a few ways, both of which are outlined in Iosevich’s text, either directly or in an
exercise.

Let a, b ∈ R. Then,

(a− b)2 ≥ 0

a2 − 2ab+ b2 ≥ 0

=⇒ ab ≤ a2 + b2

2
.

Hence, consider the finite sums

AN =
N∑
k=1

ak and BN =

N∑
k=1

bk

where ai, bi ∈ R for all 1 ≤ i ≤ N . To simplify terms long term, let

XN =

(
N∑
k=1

a2
k

) 1
2

and YN =

(
N∑
k=1

b2k

) 1
2

.

Note that XN and YN are just constants! Then, we get the following:

N∑
k=1

akbk = XNYN

N∑
k=1

an
XN
· bk
YN

.
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Using the fact that ab ≤ a2+b2

2 for all a, b ∈ R,

#SN =

N∑
k=1

akbk ≤ XNYN ·

(
N∑
k=1

1

2
·
(
ak
XN

)2

+
1

2
·
(
bk
YN

)2
)

=
XNYN
2X2

N

(
N∑
k=1

a2
k

)
+
XNYN
2Y 2

N

(
N∑
k=1

b2k

)

=
XNYN
2X2

N

(
X2
N

)
+
XNYN
2Y 2

N

(
Y 2
N

)
= XNYN

=

(
N∑
k=1

a2
k

) 1
2
(

N∑
k=1

b2k

) 1
2

.

Theorem 35 (The Cauchy-Schwarz Inequality)
Therefore, we have

N∑
k=1

akbk ≤

(
N∑
k=1

a2
k

) 1
2
(

N∑
k=1

b2k

) 1
2

. (3.1)

For another way to prove this inequality, consider the standard Rn Hermitian inner product 〈a− tb, a− tb〉 for
t ∈ [0, 1]. We will minimize this inner product using calculus:

〈a− tb, a− tb〉 = (a1 − tb1)2 + (a2 − tb2)2 + · · ·+ (aN − tbN )2

=

N∑
k=1

a2
k − 2t

N∑
k=1

akbk + t2
M∑
k=1

b2k

= ‖a‖2 + t2‖b‖2 − 2t〈a, b〉.

It is evident that the critical point of this equation is located at t = 〈a,b〉
||b||2 . It is furthermore clear that this is where

the minimum of the equation is. Therefore, we get the following minimum value:〈
a− 〈a, b〉
||b||2

b, a− 〈a, b〉
||b||2

b

〉
= ‖a‖2 − 〈a, b〉

2

‖b‖2
.

Multiplying by ‖b‖2 on both sides, we can conclude

0 ≤
∥∥‖b‖2a− 〈a, b〉b∥∥2

=
〈
‖b‖2a− 〈a, b〉b, ‖b‖2a− 〈a, b〉b

〉
= ‖a‖2‖b‖2 − 〈a, b〉2

=⇒ 〈a, b〉 ≤ ‖a‖ · ‖b‖.

In Chapter 2, Iosevich begins to outline more of what we will be utilizing for this project: projections in R2

and R3 (which could extend over to Rd). He does so to begin using the CS inequality in a cool way. For both R2

and R3, I will write out the proof that Iosevich uses for the discrete case, and then prove the same inequalities for
the "continuous case".
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3.1.2 2D Projections
Let SN be a set of N points in R2. Furthermore, let π1(x1, x2) = x2 and π2(x1, x2) = x1 where (x1, x2) ∈ R2.
Then, ∑

x1,x2

χSN (x1, x2) ≤
∑
x1,x2

χπ1(SN )(x2) · χπ2(SN )(x1)

=
∑
x1

χπ2(SN )(x1) ·
∑
x2

χπ1(SN )(x2)

= #π1(SN ) ·#π2(SN ).

From here you can state that N
1
2 ≤ maxi=1,2 #πi(SN ), but this isn’t as important for this project.

Now, instead of considering N points in R2, lets try to make this more general. Let Ω ⊂ R2, can we say
something similar for this case? Well, the answer ends up being yes, using similar logic:

area(Ω) =

∫
R2

χΩ(x1, x2) dx1 dx2

≤
∫
R2

χπ1(Ω)(x2) · χπ2(Ω)(x1) dx1 dx2

=

∫
R
χπ2(Ω)(x1) dx1 ·

∫
R
χπ1(Ω)(x2) dx2

= m(π1(Ω)) ·m(π2(Ω))

where m is the measure (i.e. the length of the subset of R). We get a very useful equation for this project: for all
Ω ⊂ R2,

area(Ω) ≤ m(π1(Ω)) ·m(π2(Ω)). (3.2)

We can prove this one more way: geometrically. Let X = π2(Ω) and Y = π1(Ω) and consider

X × Y := {(x, y) | x ∈ X and y ∈ Y }.

Then, it is clear that Ω ⊂ X × Y , and then area(Ω) ≤ area(X × Y ). Hence,

area(Ω) ≤ area(X × Y ) = m(X) ·m(Y ) = m(π1(Ω)) ·m(π2(Ω)).

3.1.3 3D Projections
The 3D projections case is relatively the same, except this time it actually utilizes the CS inequality (and thus,
why it is in this section). Note that this part of the notes is not pivotal to the project itself in Section 2, and can
be skipped. This time, let π1(x1, x2, x3) = (x2, x3) and so on and so forth for π2 and π3. Hence, for the discrete
case, we get

#SN =
∑
x

χSN (x) ≤
∑

x1,x2,x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)χπ3(SN )(x1, x2)

=
∑
x1,x2

χπ3(SN )(x1, x2)

(∑
x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)

)
.
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Applying the CS inequality,

≤

(∑
x1,x2

χ2
π3(SN )(x1, x2)

) 1
2

·

∑
x1,x2

(∑
x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)

)2
 1

2

.

Between this line and the next, we use the fact that χ2(~x) = χ(~x) as χ(~x) either equals 0 or 1 and 02 = 0 and
12 = 1.

=

(∑
x1,x2

χπ3(SN )(x1, x2)

) 1
2

·

∑
x1,x2

(∑
x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)

)2
 1

2

= #π3(SN ) ·

∑
x1,x2

(∑
x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)

)2
 1

2

.

Now don’t be intimidated by the large amount of variables and letters in this next line. All we are doing is adding
in a new variable when we square the inside sum. Then, the goal from here is to split up the sum by separating
these many variables.

= #π3(SN ) ·

∑
x1,x2

∑
x3,x′3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)χπ1(SN )(x2, x
′
3)χπ2(SN )(x1, x

′
3)

 1
2

≤ #π3(SN ) ·

∑
x1,x2

∑
x3,x′3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x
′
3)

 1
2

= #π3(SN ) ·

∑
x2,x3

χπ1(SN )(x2, x3) ·
∑
x1,x′3

χπ2(SN )(x1, x
′
3)

 1
2

=
√

#π1(SN ) ·
√

#π2(SN ) ·
√

#π3(SN ).

Again, from here, we could get that N
2
3 ≤ maxi=1,2,3 #πi(SN ). Now we will show the continuous case, which works

out exactly the same but with integrals!
Let Ω ⊂ R3, and let Ai =

√
area(πi(Ω)). Then,

vol(Ω) =

∫
R3

χΩ(x) dx

≤
∫∫∫

χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3)χπ3(Ω)(x1, x2) dx1 dx2 dx3

=

∫∫
χπ3(Ω)(x1, x2)

(∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3) dx3

)
dx1 dx2.

49



Note that we can swap these integrals like this by Fubini’s Theorem! By the Cauchy-Schwarz inequality,

≤
(∫∫

χ2
π3(Ω)(x1, x2) dx1 dx2

)1/2(∫∫ (∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3) dx3

)2

dx1 dx2

)1/2

≤ A1/2
3

(∫∫∫∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3)χπ1(Ω)(x2, x

′
3)χπ2(Ω)(x1, x

′
3) dx3 dx′3 dx1 dx2

)1/2

≤ A1/2
3

(∫∫∫∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x

′
3) dx3 dx′3 dx1 dx2

)1/2

= A
1/2
3

(∫∫
χ2
π1(Ω)(x2, x3) dx2 dx3

)1/2(∫∫
χ2
π2(Ω)(x1, x

′
3) dx1 dx′3

)1/2

= A
1/2
1 A

1/2
2 A

1/2
3 .

Hence, we achieve the nice inequality:

vol(Ω) ≤
√

area(π1(Ω)) ·
√

area(π2(Ω)) ·
√

area(π3(Ω)).

Question 36. Is there a nice geometric argument similar to the 2D case that we can use to prove this inequality?
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3.2 Sobolev’s Inequality
We start with a basic concept: if the derivative of a function is 0, then that function is a constant. But what does
it mean if the derivative of a function is approximately 0? Is that function approximately a constant? And how
would we describe the derivative of a function being nearly 0?

Well, consider a function f : R→ R such that f ∈ C1
0 (R), and

∫∞
−∞ |f

′(x)|dx ≤ 1. What can we say about f?
Well, using the Fundamental Theorem of Calculus, given −∞ < a, b <∞,

|f(b)− f(a)| =

∣∣∣∣∣
∫ b

a

f ′(x) dx

∣∣∣∣∣
≤
∫ b

a

|f ′(x)|dx

≤
∫ ∞
−∞
|f ′(x)|dx ≤ 1.

Hence, for all −∞ < a, b <∞, |f(b)− f(a)| ≤ 1.
How does this concept transfer over to higher dimensions? Consider the function f : R2 → R such that

f ∈ C1
0 (R2) and

∫
R2 |∇f(~x)|d~x ≤ 1. Is it true that |f(~b) − f(~a)| ≤ 1 for all ~a,~b ∈ R2? No. Here is a counter

example: consider the function

fε(~x) =

0 |~x| > 2ε

1 ~x = 0

and let fε smoothly interpolate between 0 and 1 for all values of ~x such that 0 < |~x| < 2ε. Then, ∇f is supported
in the region where 0 < |~x| < 2ε, and |∇f | ≤ 2

ε . Hence,∫
R2

|∇f(~x)|d~x =

∫
0≤|x|≤2ε

|∇f(~x)|d~x+

∫
|x|>2ε

|∇f(~x)|d~x

=

∫
0≤|x|≤2ε

|∇f(~x)|d~x

= area(Circle) · 2

ε

≤ Cε ε→ 0−−−→ 0

and where C > 0. However, it is not necessarily the case that |f(~b) − f(~a)| ≤ 1 for all ~a,~b ∈ R2. In other words,
though the "derivative" tends to 0, the difference |f(~b)− f(~a)| does not.

Hence, from here we want to try and prove something weaker. Suppose that f ∈ C1
0 (R2).

Remark 37. Recall that a function is compactly supported if there exists some finitely sized rectangle such that for
every (x, y) outside of this rectangle in R2, f(x, y) = 0. For our purposes, I will be picturing a square centered at
the origin instead of just "some rectangle", though this is logically equivalent.

Note 38
For now, I will denote Lp(R2) as simply p, i.e.,

‖f‖Lp(R2) := ‖f‖p =

(∫
R2

|f(~x)|p d~x

) 1
p

.

I will use the same notation when dealing with Lp(Rn), though this should be clear from the context.
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Now the question is: can we find an upper bound for ‖f‖p with respect to ‖∇f‖1?

3.2.1 Rescaling Arguments
We can instead ask a broader question than this which will prove helpful: can we find an upperbound for ‖f‖p
with respect to ‖∇f‖1? To start answering this question, we can ask: for which p and α does there exist a C > 0

such that
F (f, p, α) :=

‖f‖p
‖∇f‖α1

≤ C

for all f ∈ C1
0 (R2)?

For this, we can use rescaling arguments to prove that p = 2 and α = 1. Assume, for the sake of contradiction
that there exists such a C > 0 for all f, α, and p (with f ∈ C1

0 (R2)). Then, let 0 < β ∈ R and consider the following:
It should be the case that

F (βf, p, α) =
‖βf‖p
‖∇βf‖α1

=
β

βα
‖f‖p
‖f‖α1

≤ β

βα
· C.

Hence, α = 1, as if α > 1, letting β → 0 implies there doesn’t exist a finite bound for F (βf, p, α), and if α < 1 then
letting β → 0 implies C = 0 (clearly not the case by considering any nontrivial example).

Hence, we can now let α = 1, and we can do a similar rescaling argument to show that p = 2.
Let g(x, y) = f(βx, βy). Then,

‖g‖p =

(∫
R

∫
R

(g(x, y))p dx dy

) 1
p

=

(∫
R

∫
R
(f(βx, βy))p dxdy

) 1
p

.

Letting u = βx and v = βy,

=

(∫
R

∫
R

1

β2
· (f(u, v))p dudv

) 1
p

=
1

β
2
p

‖f‖p.

Similarly,

‖∇g‖1 =

∫
R

∫
R

√
(∂xg(x, y))

2
+ (∂yg(x, y))

2
dx dy

=

∫
R

∫
R

√
(∂xf(βx, βy))

2
+ (∂yf(βx, βy))

2
dxdy.

Letting u = βx and v = βy,

=

∫
R

∫
R

1

β2
·
√

(β∂uf(u, v))
2

+ (β∂vf(u, v))
2

dudv

=

∫
R

∫
R

1

β
·
√

(∂uf(u, v))
2

+ (∂vf(u, v))
2

dudv

=
1

β
· ‖∇f‖1.

Therefore,
‖g‖p
‖∇g‖1

= β1− 2
p
‖f‖p
‖∇f‖1

≤ β1− 2
p · C.

By a similar argument for α, this directly implies p can only be 2. Hence, if there exists a C such that F (f, p, α) ≤ C,
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then p = 2 and α = 1. Now the question is: given p = 2 and α = 1, does there exist such an upper bound?
This rescaling argument allows us to reframe our main goal of this project.

Remark 39. Note that as we assume f ∈ C1
0 (R2), f must be bounded.

Problem 40
Let f(x, y) ∈ C1

0 (R2) such that |f(x, y)| ≤ 1 for all (x, y) ∈ R2 and f(x, y) = 0 for (x, y) /∈ [−1, 1] × [−1, 1].
Let there exist an ~x such that |f(~x)| = 1. Show there exists an upper bound (C) for ‖f‖2

‖∇f‖1 .

This is equivalent to our previous problem, as previously we assumed f ∈ C1
0 (R2) was compactly supported, and

thus bounded. Therefore, we can rescale f to have upper bound 1, and to be 0 outside of a given square centered
at the origin (in this case, [−1, 1] × [−1, 1]). However, this part is just semantics and will simply be a corollary
when we solve Problem 6, so we will revisit in the Concluding Remarks.

Question 41. Can a rescaling argument be used to start to generalize this problem to functions with more variables?
Is it always the case that there is only one such scaling invariant Lp space (i.e., will there always only exist one
such p and α)? What if we were instead given ‖∇f‖q instead of ‖∇f‖1?

Let’s answer these questions! We will answer the most general version of this question.
Higher Dimensions, with ‖∇f‖q: Let f : Rn → R, and let β > 0. Assume that there exists a fixed C > 0, p,
and α such that for all f ∈ C1

0 (R2) such that ‖f‖p
‖∇f‖αq

< C. We will find values for both p and α.
Consider g(~x) = βf(~x). Then,

‖g‖p
‖∇g‖αq

=
‖βf‖p
‖∇βf‖αq

= β1−α · ‖f‖p
‖∇f‖αq

≤ β1−α · C =⇒ α = 1.

Of course, the more interesting part of this problem will be what p is. Let g(~x) = f(β~x). From the last part, we
have that ‖g‖p = β−

n
p · ‖f‖p. Now we consider ‖∇g‖q.

‖∇g‖q =

∫
Rn

√√√√ n∑
i=1

∂2
xig(~x)

q

d~x


1
q

=

∫
Rn

√√√√ n∑
i=1

∂2
xif(β~x)

q

d~x


1
q

.

Let ui = β xi. Hence, d~u = βn d~x, and ∂2
xif(β~x) = β2∂2

uif(~u). Therefore,

=

 1

βn
·
∫
Rn

√√√√ n∑
i=1

β2∂2
uif(~u)

q

d~u


1
q

= β1−nq ·

∫
Rn

√√√√ n∑
i=1

∂2
uif(~u)

q

d~u


1
q

= β1−nq · ‖∇f‖q.

Hence,
‖g‖p
‖∇g‖q

= β
n
q−

n
p−1 · ‖f‖1

‖∇f‖q
≤ β

n
q−

n
p−1 · C.

Therefore, p = nq
n−q . This agrees with what we have shown previously with q = 1 and n = 2.
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Question 42. What can we do if given both ‖∇f‖q1 and ‖∇f‖q2 for q1 6= q2? What happens if q = n?

3.2.2 Bounding ‖f‖2

Now we actually want to try and bound the ratio

‖f‖2
‖∇f‖1

=

(∫
R2 |f(~x)|2 d~x

) 1
2∫

R2

√
∂2
x(f(x, y)) + ∂2

y(f(x, y)) dx dy
.

To do so, we can try to find an upper bound for ‖f‖2 and find a lower bound to ‖∇f‖1. In this subsection, we will
try to find a bound for ‖f‖2.

First, we can split R2 into disjoint subsets in which we know the values of f . Consider the sets

V2−k := {~x | 2−k ≥ |f(~x)| > 2−k−1}.

Since |f(~x)| ≤ 1, we have the following:

‖f‖2 =

(∫
R2

|f(~x)|2 d~x

) 1
2

=

( ∞∑
k=0

∫
V
2−k

|f(~x)|2 d~x

) 1
2

.

Hence, taking the maximum over each set, we get

≤

( ∞∑
k=0

2−2k · area(V2−k)

) 1
2

.

Can we find an upper bound to the area part of this inequality? Would that result in some nice inequality?
Note that in the end finding an upper bound to the area won’t actually pan out. If the reader prefers, they can
skip ahead to the next subsection.

We can consider similarly defined sets such that Vλ is a subset of them, and thus has less area than them.
Consider the sets

Uλ :=

{~x | f(~x) ≥ λ} λ > 0

{~x | f(~x) ≤ λ} λ < 0
.

Note the following:

‖∇f‖1 =

∫
R2

|∇f(~x)|d~x

=

∫
R2

√
(∂xf(~x))

2
+ (∂yf(~x))

2
d~x

≥
∫
R2

√
(∂xf(~x))

2
d~x

‖∇f‖1 ≥
∫
R2

|∂xf(~x)|d~x.

Similarly,

‖∇f‖1 ≥
∫
R2

|∂yf(~x)|d~x.

Let’s consider the first of these two inequalities. Using the method we used for single variable functions (with
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the Fundamental Theorem of Calculus), we can obtain the following: For all x1, x2 ∈ R,

|f(x1, y)− f(x2, y)| =
∣∣∣∣∫ x2

x1

∂xf(x, y) dx

∣∣∣∣
≤
∫ x2

x1

|∂xf(x, y)|dx

≤
∫
R
|∂xf(x, y)|dx.

Integrating both sides of this inequality, we get that for all x1, x2 ∈ R (which may depend on y)∫
R
|f(x1, y)− f(x2, y)|dy ≤

∫
R

∫
R
|∂xf(x, y)|dx dy ≤ ‖∇f‖1. (3.3)

Replacing x with y, we can similarly get that for all y1, y2 ∈ R (which may depend on x),∫
R
|f(x, y1)− f(x, y2)|dx ≤

∫
R

∫
R
|∂yf(x, y)|dy dx ≤ ‖∇f‖1. (3.4)

Furthermore, as Uλ ⊂ R2, we have that

area(Uλ) ≤ m(π1(Uλ)) ·m(π2(Uλ)). (3.5)

Let y ∈ π1(Uλ). Now we are going to use equation (4). Since y ∈ π1(Uλ), there exists an x2 ∈ R such that
x2 = sup{x ∈ π2(Uλ) | f(x, y) = λ}. Furthermore, since f is compactly supported, there exists an x1 < x2 ∈ R
such that f(x1, y) = 0. Hence, using these values of x1 and x2 for each y ∈ π1(Uλ) in equation (2.1), we get that

‖∇f‖1 ≥
∫
π1(Uλ)

|f(x1, y)− f(x2, y)|dy

≥
∫
π1(Uλ)

|λ|dy

= |λ| ·m(π1(Uλ)) =⇒ m(π1(Uλ)) ≤ ‖∇f‖1
|λ|

.

Similarly,

1 ≥ |λ| ·m(π2(Uλ)) =⇒ m(π2(Uλ)) ≤ ‖∇f‖1
|λ|

.

Hence, applying equation (6), we have that

area(Uλ) ≤ ‖∇f‖
2
1

λ2
. (3.6)

Question 43. Is this inequality approximately sharp?

For simplicity, let ‖∇f‖1 = 1 to visualize this example, though note this would easily translate over ‖∇f‖ = c

for any nonnegative constant c. Consider the following example: f(x, y) = 1
max{|x|,|y|} .
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Thus, Uλ is a square of side-length 1
λ , and thus area(Uλ) = 1

λ2 for all λ 6= 0. However, f is neither continuous
(discontinuous at the origin) nor compactly supported. How we can "fix" this example? In the region where
R ≤ max{|x|, |y|} ≤ 2R, let f smoothly interpolate to 0, and let f be 0 if max{|x|, |y|} ≥ 2R. This lets f be
compactly supported, and we can make R arbitrarily large (though finite), implying that area(Uλ) ≤ 1

λ2 will be
approximately sharp, or exactly sharp, almost everywhere when R is sufficiently large. Addressing the discontinuity
at the origin, in the region of the region where 0 ≤ max{|x|, |y|} ≤ 1

R (related to the R in fixing compactly
supported), let f(~x) smoothly interpolate to the value R.

After making these changes to f , it seems to be the case that this works as a sufficient counterexample to show
that area(Uλ) ≤ ‖∇f‖

2
1

λ2 is approximately sharp.
So, given this inequality is approximately sharp, can we derive some sort of connection between area(Uλ) ≤ ‖∇f‖

2
1

λ2

and ‖f‖2?

Conjecture 44
Perhaps we can say something along the lines of(∫

R2

|f(~x)|2 d~x

) 1
2

≤ ‖∇f‖21 ⇐⇒ ∀λ 6= 0, area(Uλ) ≤ ‖∇f‖
2
1

λ2
.

Well we can certainly prove the forward direction.

‖∇f‖21 ≥
∫
R2

|f(~x)|2 d~x

≥
∫
Uλ

|f(~x)|2 d~x

≥
∫
Uλ

|λ|2 d~x.

Hence,

area(Uλ) =

∫
Uλ

1 d~x ≤ ‖∇f‖
2
1

λ2
.

This is known as Chebyshev’s inequality, which comes up in probability.
But in trying to prove the other direction, how can we use area(Uλ) ≤ ‖∇f‖21

λ2 to approximate this integral?
Well, this goes back to the initial part of this section: finding an upper bound for ‖f‖2. We could certainly try
and plug in the area inequality. However, this will give us a divergent series, as shown below:
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‖f‖2 ≤

(∑
k∈N

2−2(k−1) · area(V2−(k−1))

) 1
2

≤

(∑
k∈N

2−2(k−1) · area(U2−(k−1))

) 1
2

≤

(∑
k∈N

2−2(k−1) · ‖∇f‖
2
1

2−2(k−1)

) 1
2

=

(∑
k∈N
‖∇f‖21

) 1
2

.

Hence, unless ‖∇f‖1 = 0 (which implies f is constant and thus ‖f‖2 = 0 as f is compactly supported), we get
a divergent series. Thus, this approach of finding an upper bound for the area doesn’t quite pan out. Therefore,
we hope to (and will) instead find a lower bound for ‖∇f‖1 that depends on the areas of Vλ and hope that things
cancel out in the end (they will).

3.2.3 Bounding ‖∇f‖1

Instead, we can try to find a lower bound for ‖∇f‖1 without assuming ‖∇f‖1 ≤ 1. In trying to find an upper
bound to the ratio ‖f‖2

‖∇f‖1 , we don’t assume anything about the value of ‖∇f‖1, but the inequality ‖∇f‖1 ≤ 1 was
crucial in first proving area(Uλ) ≤ 1

λ2 , which we ultimately can’t use [as again, it leads to a divergent series]. Hence,
we will not be using this inequality, though it was useful to start exploring this problem. We have the following.

‖∇f‖1 =

∫
R2

√
∂2
xf(~x) + ∂2

yf(~x) d~x

≥
∫
R2

|∂xf(~x)|d~x

≥
∑
k even

∫
V
2−k∪V2−k−1

|∂xf(x, y)|dx dy.

Recall that we assume there exists a ~x such that |f(~x)| = 1, and thus we can state the last line. Then,

‖∇f‖1 ≥
∑
k even

∫
V
2−k∪V2−k−1

|∂xf(x, y)|dx dy

=
∑
k even

∫
π1(V

2−k∪V2−k−1 )

∫
{x|(x,y)∈(V

2−k∪V2−k−1 )}
|∂xf(x, y)|dx dy.

Similarly, we can get that

‖∇f‖1 ≥
∑
k odd

∫
π1(V

2−k∪V2−k−1 )

∫
{x|(x,y)∈(V

2−k∪V2−k−1 )}
|∂xf(x, y)|dxdy.

Adding these two inequalities together, we get that

‖∇f‖1 ≥
1

2

∞∑
k=0

∫
π1(V

2−k∪V2−k−1 )

∫
{x|(x,y)∈(V

2−k∪V2−k−1 )}
|∂xf(x, y)|dxdy

≥ 1

2

∞∑
k=0

∫
π1(V

2−k )

∫
{x|(x,y)∈(V

2−k∪V2−k−1 )}
|∂xf(x, y)|dxdy.
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We can pick x1,k and x2,k such that f(x1,k, y) = 2−k−2 and f(x2,k, y) = 2−k−1. I will explain at the end of this
proof why we can do this. By the Fundamental Theorem of Calculus,

‖∇f‖1 ≥
1

2

∞∑
k=0

∫
π1(V

2−k )

∫
{x|(x,y)∈(V

2−k∪V2−k−1 )}
|∂xf(x, y)|dxdy

≥
∞∑
k=0

∫
π1(V

2−k )

∫ x2,k

x1,k

|∂xf(x, y)|dx dy

=
1

2

∞∑
k=0

∫
π1(V

2−k )

1

4
· 2−k dxdy

‖∇f‖1 ≥
1

8

∞∑
k=0

2−k ·m(π1(V2−k)).

We can similarly do this with π2 instead of π1. Then we get the inequality

‖∇f‖1 ≥
1

8

∞∑
k=0

2−k ·m(π2(V2−k)).

Therefore,

‖∇f‖21 ≥
1

16

∞∑
k=0

2−2k ·m(π1(V2−k)) ·m(π2(V2−k)) ≥ 1

16

∞∑
k=0

2−2k · area(V2−k)

using equation (2).
There is just that one caveat that we need to prove on. In order to use the Fundamental Theorem of Calculus to

find a lower bound for ‖∇f‖1, we need to show that x1,k and x2,k are connected by a line segment in V2−k ∪V2−k−1

when y ∈ π1(V2−k).
This is why we went through the trouble of splitting the sum into even and odd parts– so that this step of the

proof worked out the way we wanted to. Let y ∈ π1(V2−k). Since this function is compactly supported, we know
that there exists an x such that f(x, y) = 2−k−1 and thus (x, y) ∈ V2−k ∪ V2−k−1 . Let x2,k be the smallest such x
that satisfies f(x2,k, y) = 2−k−1.

Since f is compactly supported, this implies that for all x ≤ x2,k, f(x, y) ≤ 2−k−1, as otherwise we would have
a smaller x2,k. Hence, there must exist an x1,k in the set

{x ∈ R | x ≤ x2,k and (x, y) ∈ V2−k−1}

with f(x1,k, y) = 2−k−2 such that [x1,k, x2,k]× y is a connected line segment in V2−k ∪ V2−k−1 . Therefore, we were
in fact able to apply the Fundamental Theorem of Calculus.

Hence,

‖∇f‖1 ≥
1

4

( ∞∑
k=0

2−2k · area(V2−k)

) 1
2

.

Therefore,
‖f‖2
‖∇f‖1

≤
(∑∞

k=0 2−2k · area(V2−k)
) 1

2

1
4 (
∑∞
k=0 2−2k · area(V2−k))

1
2

= 4.

58



3.3 Concluding Remarks
So at this point, we have proven the following theorem:

Theorem 45
Let f(x, y) ∈ C1

0 (R2) such that |f(x, y)| ≤ 1 for all (x, y) ∈ R2 and f(x, y) = 0 for all (x, y) /∈ [−1, 1]× [−1, 1].
Then,

‖f‖2
‖∇f‖1

≤ 4.

We can very easily generalize this though for all two-dimensional continuous compactly-supported functions in
general:

Corollary 46
Let f(x, y) ∈ C1

0 (R2) such that |f(x, y)| ≤ Z for all (x, y) ∈ R2 and f(x, y) = 0 for all (x, y) /∈ [−R,R]×[−R,R].
Then, we have

‖f‖2
‖∇f‖1

≤ 4.

Proof : Assume Z is nonzero, as then this is trivially true. Consider the function g(x, y) = 1
Z · f(Rx,Ry). Hence,

g(x, y) ∈ C1
0 (R2), |g(x, y)| ≤ 1 for all (x, y) ∈ R2, and g(x, y) = 0 for all (x, y) /∈ [−1, 1]× [−1× 1]. Therefore, based

on Theorem 10,
‖g‖2
‖∇g‖1

≤ 4.

We can use this to find ‖f‖2
‖∇f‖1 :

4 ≥ ‖g‖2
‖∇g‖1

=

(∫
R2 |g(~x)|2 d~x

) 1
2∫

R2 |∇g(~x)|d~x

=

(∫
R2 | 1Z · f(R~x)|2 d~x

) 1
2∫

R2 |∇ 1
Z · f(R~x)|d~x

=

(∫
R2 |f(R~x)|2 d~x

) 1
2∫

R2 |∇f(R~x)|d~x
.

This actually shows something pretty interesting; the upper bound on |f | actually plays no effect on the ratio
‖f‖2
‖∇f‖1 , though perhaps this is inherently clear from the rescaling arguments earlier in this chapter. In any case, let
~u = R~x such that d~u = R2 d~x. Hence,

=

(∫
R2

1
R2 · |f(~u)|2 d~u

) 1
2∫

R2
R
R2 · |∇f(~u)|d~u

=
‖f‖2
‖∇f‖1

.
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