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1 The Cauchy-Schwarz Inequality
This document was made to summarize all the key parts of this UROP project. This includes theorems and
exercises from the book A View from the Top by Alex Iosevich, and general notes and pending questions from the
UROP. For the first five weeks of this UROP, from June 03-July 07, Yuqiu and I read through Chapters 1-8 of
Iosevich’s text, and from then on we started considering questions brought up Section 2. The first place we can
and will start off in these notes however is with the CS inequality (as the title of this Section implies).

1.1 The Inequality Itself
We will prove this inequality in a few ways, both of which are outlined in Iosevich’s text, either directly or in an
exercise.

Let a, b ∈ R. Then,

(a− b)2 ≥ 0

a2 − 2ab+ b2 ≥ 0

=⇒ ab ≤ a2 + b2

2
.

Hence, consider the finite sums

AN =

N∑
k=1

ak and BN =

N∑
k=1

bk

where ai, bi ∈ R for all 1 ≤ i ≤ N . To simplify terms long term, let

XN =

(
N∑
k=1

a2
k

) 1
2

and YN =

(
N∑
k=1

b2k

) 1
2

.

Note that XN and YN are just constants! Then, we get the following:

N∑
k=1

akbk = XNYN

N∑
k=1

an
XN
· bk
YN

.

Using the fact that ab ≤ a2+b2

2 for all a, b ∈ R,

#SN =

N∑
k=1

akbk ≤ XNYN ·

(
N∑
k=1

1

2
·
(
ak
XN

)2

+
1

2
·
(
bk
YN

)2
)

=
XNYN
2X2

N

(
N∑
k=1

a2
k

)
+
XNYN
2Y 2

N

(
N∑
k=1

b2k

)

=
XNYN
2X2

N

(
X2
N

)
+
XNYN
2Y 2

N

(
Y 2
N

)
= XNYN

=

(
N∑
k=1

a2
k

) 1
2
(

N∑
k=1

b2k

) 1
2

.

2



Theorem 1 (The Cauchy-Schwarz Inequality)
Therefore, we have

N∑
k=1

akbk ≤

(
N∑
k=1

a2
k

) 1
2
(

N∑
k=1

b2k

) 1
2

. (1)

For another way to prove this inequality, consider the standard Rn Hermitian inner product 〈a− tb, a− tb〉 for
t ∈ [0, 1]. We will minimize this inner product using calculus:

〈a− tb, a− tb〉 = (a1 − tb1)2 + (a2 − tb2)2 + · · ·+ (aN − tbN )2

=

N∑
k=1

a2
k − 2t

N∑
k=1

akbk + t2
M∑
k=1

b2k

= ‖a‖2 + t2‖b‖2 − 2t〈a, b〉.

It is evident that the critical point of this equation is located at t = 〈a,b〉
||b||2 . It is furthermore clear that this is where

the minimum of the equation is. Therefore, we get the following minimum value:〈
a− 〈a, b〉
||b||2

b, a− 〈a, b〉
||b||2

b

〉
= ‖a‖2 − 〈a, b〉

2

‖b‖2
.

Multiplying by ‖b‖2 on both sides, we can conclude

0 ≤
∥∥‖b‖2a− 〈a, b〉b∥∥2

=
〈
‖b‖2a− 〈a, b〉b, ‖b‖2a− 〈a, b〉b

〉
= ‖a‖2‖b‖2 − 〈a, b〉2

=⇒ 〈a, b〉 ≤ ‖a‖ · ‖b‖.

In Chapter 2, Iosevich begins to outline more of what we will be utilizing for this project: projections in R2

and R3 (which could extend over to Rd). He does so to begin using the CS inequality in a cool way. For both R2

and R3, I will write out the proof that Iosevich uses for the discrete case, and then prove the same inequalities for
the "continuous case".

1.2 2D Projections
Let SN be a set of N points in R2. Furthermore, let π1(x1, x2) = x2 and π2(x1, x2) = x1 where (x1, x2) ∈ R2.
Then, ∑

x1,x2

χSN (x1, x2) ≤
∑
x1,x2

χπ1(SN )(x2) · χπ2(SN )(x1)

=
∑
x1

χπ2(SN )(x1) ·
∑
x2

χπ1(SN )(x2)

= #π1(SN ) ·#π2(SN ).

From here you can state that N
1
2 ≤ maxi=1,2 #πi(SN ), but this isn’t as important for this project.

Now, instead of considering N points in R2, lets try to make this more general. Let Ω ⊂ R2, can we say
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something similar for this case? Well, the answer ends up being yes, using similar logic:

area(Ω) =

∫
R2

χΩ(x1, x2) dx1 dx2

≤
∫
R2

χπ1(Ω)(x2) · χπ2(Ω)(x1) dx1 dx2

=

∫
R
χπ2(Ω)(x1) dx1 ·

∫
R
χπ1(Ω)(x2) dx2

= m(π1(Ω)) ·m(π2(Ω))

where m is the measure (i.e. the length of the subset of R). We get a very useful equation for this project: for all
Ω ⊂ R2,

area(Ω) ≤ m(π1(Ω)) ·m(π2(Ω)). (2)

We can prove this one more way: geometrically. Let X = π2(Ω) and Y = π1(Ω) and consider

X × Y := {(x, y) | x ∈ X and y ∈ Y }.

Then, it is clear that Ω ⊂ X × Y , and then area(Ω) ≤ area(X × Y ). Hence,

area(Ω) ≤ area(X × Y ) = m(X) ·m(Y ) = m(π1(Ω)) ·m(π2(Ω)).

1.3 3D Projections
The 3D projections case is relatively the same, except this time it actually utilizes the CS inequality (and thus,
why it is in this section). Note that this part of the notes is not pivotal to the project itself in Section 2, and can
be skipped. This time, let π1(x1, x2, x3) = (x2, x3) and so on and so forth for π2 and π3. Hence, for the discrete
case, we get

#SN =
∑
x

χSN (x) ≤
∑

x1,x2,x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)χπ3(SN )(x1, x2)

=
∑
x1,x2

χπ3(SN )(x1, x2)

(∑
x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)

)
.

Applying the CS inequality,

≤

(∑
x1,x2

χ2
π3(SN )(x1, x2)

) 1
2

·

∑
x1,x2

(∑
x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)

)2
 1

2

.

Between this line and the next, we use the fact that χ2(~x) = χ(~x) as χ(~x) either equals 0 or 1 and 02 = 0 and
12 = 1.

=

(∑
x1,x2

χπ3(SN )(x1, x2)

) 1
2

·

∑
x1,x2

(∑
x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)

)2
 1

2

= #π3(SN ) ·

∑
x1,x2

(∑
x3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)

)2
 1

2

.
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Now don’t be intimidated by the large amount of variables and letters in this next line. All we are doing is adding
in a new variable when we square the inside sum. Then, the goal from here is to split up the sum by separating
these many variables.

= #π3(SN ) ·

∑
x1,x2

∑
x3,x′3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x3)χπ1(SN )(x2, x
′
3)χπ2(SN )(x1, x

′
3)

 1
2

≤ #π3(SN ) ·

∑
x1,x2

∑
x3,x′3

χπ1(SN )(x2, x3)χπ2(SN )(x1, x
′
3)

 1
2

= #π3(SN ) ·

∑
x2,x3

χπ1(SN )(x2, x3) ·
∑
x1,x′3

χπ2(SN )(x1, x
′
3)

 1
2

=
√

#π1(SN ) ·
√

#π2(SN ) ·
√

#π3(SN ).

Again, from here, we could get that N
2
3 ≤ maxi=1,2,3 #πi(SN ). Now we will show the continuous case, which works

out exactly the same but with integrals!
Let Ω ⊂ R3, and let Ai =

√
area(πi(Ω)). Then,

vol(Ω) =

∫
R3

χΩ(x) dx

≤
∫∫∫

χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3)χπ3(Ω)(x1, x2) dx1 dx2 dx3

=

∫∫
χπ3(Ω)(x1, x2)

(∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3) dx3

)
dx1 dx2.

Note that we can swap these integrals like this by Fubini’s Theorem! By the Cauchy-Schwarz inequality,

≤
(∫∫

χ2
π3(Ω)(x1, x2) dx1 dx2

)1/2(∫∫ (∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3) dx3

)2

dx1 dx2

)1/2

≤ A1/2
3

(∫∫∫∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x3)χπ1(Ω)(x2, x

′
3)χπ2(Ω)(x1, x

′
3) dx3 dx′3 dx1 dx2

)1/2

≤ A1/2
3

(∫∫∫∫
χπ1(Ω)(x2, x3)χπ2(Ω)(x1, x

′
3) dx3 dx′3 dx1 dx2

)1/2

= A
1/2
3

(∫∫
χ2
π1(Ω)(x2, x3) dx2 dx3

)1/2(∫∫
χ2
π2(Ω)(x1, x

′
3) dx1 dx′3

)1/2

= A
1/2
1 A

1/2
2 A

1/2
3 .

Hence, we achieve the nice inequality:

vol(Ω) ≤
√

area(π1(Ω)) ·
√

area(π2(Ω)) ·
√

area(π3(Ω)).

Question 2. Is there a nice geometric argument similar to the 2D case that we can use to prove this inequality?
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2 Sobolev’s Inequality
We start with a basic concept: if the derivative of a function is 0, then that function is a constant. But what does
it mean if the derivative of a function is approximately 0? Is that function approximately a constant? And how
would we describe the derivative of a function being nearly 0?

Well, consider a function f : R→ R such that f ∈ C1
0 (R), and

∫∞
−∞ |f

′(x)|dx ≤ 1. What can we say about f?
Well, using the Fundamental Theorem of Calculus, given −∞ < a, b <∞,

|f(b)− f(a)| =

∣∣∣∣∣
∫ b

a

f ′(x) dx

∣∣∣∣∣
≤
∫ b

a

|f ′(x)|dx

≤
∫ ∞
−∞
|f ′(x)|dx ≤ 1.

Hence, for all −∞ < a, b <∞, |f(b)− f(a)| ≤ 1.
How does this concept transfer over to higher dimensions? Consider the function f : R2 → R such that

f ∈ C1
0 (R2) and

∫
R2 |∇f(~x)|d~x ≤ 1. Is it true that |f(~b) − f(~a)| ≤ 1 for all ~a,~b ∈ R2? No. Here is a counter

example: consider the function

fε(~x) =

0 |~x| > 2ε

1 ~x = 0

and let fε smoothly interpolate between 0 and 1 for all values of ~x such that 0 < |~x| < 2ε. Then, ∇f is supported
in the region where 0 < |~x| < 2ε, and |∇f | ≤ 2

ε . Hence,∫
R2

|∇f(~x)|d~x =

∫
0≤|x|≤2ε

|∇f(~x)|d~x+

∫
|x|>2ε

|∇f(~x)|d~x

=

∫
0≤|x|≤2ε

|∇f(~x)|d~x

= area(Circle) · 2

ε

≤ Cε ε→ 0−−−→ 0

and where C > 0. However, it is not necessarily the case that |f(~b) − f(~a)| ≤ 1 for all ~a,~b ∈ R2. In other words,
though the "derivative" tends to 0, the difference |f(~b)− f(~a)| does not.

Hence, from here we want to try and prove something weaker. Suppose that f ∈ C1
0 (R2).

Remark 3. Recall that a function is compactly supported if there exists some finitely sized rectangle such that for
every (x, y) outside of this rectangle in R2, f(x, y) = 0. For our purposes, I will be picturing a square centered at
the origin instead of just "some rectangle", though this is logically equivalent.

Note 4
For now, I will denote Lp(R2) as simply p, i.e.,

‖f‖Lp(R2) := ‖f‖p =

(∫
R2

|f(~x)|p d~x

) 1
p

.

I will use the same notation when dealing with Lp(Rn), though this should be clear from the context.
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Now the question is: can we find an upper bound for ‖f‖p with respect to ‖∇f‖1?

2.1 Rescaling Arguments
We can instead ask a broader question than this which will prove helpful: can we find an upperbound for ‖f‖p
with respect to ‖∇f‖1? To start answering this question, we can ask: for which p and α does there exist a C > 0

such that
F (f, p, α) :=

‖f‖p
‖∇f‖α1

≤ C

for all f ∈ C1
0 (R2)?

For this, we can use rescaling arguments to prove that p = 2 and α = 1. Assume, for the sake of contradiction
that there exists such a C > 0 for all f, α, and p (with f ∈ C1

0 (R2)). Then, let 0 < β ∈ R and consider the following:
It should be the case that

F (βf, p, α) =
‖βf‖p
‖∇βf‖α1

=
β

βα
‖f‖p
‖f‖α1

≤ β

βα
· C.

Hence, α = 1, as if α > 1, letting β → 0 implies there doesn’t exist a finite bound for F (βf, p, α), and if α < 1 then
letting β → 0 implies C = 0 (clearly not the case by considering any nontrivial example).

Hence, we can now let α = 1, and we can do a similar rescaling argument to show that p = 2.
Let g(x, y) = f(βx, βy). Then,

‖g‖p =

(∫
R

∫
R

(g(x, y))p dx dy

) 1
p

=

(∫
R

∫
R
(f(βx, βy))p dxdy

) 1
p

.

Letting u = βx and v = βy,

=

(∫
R

∫
R

1

β2
· (f(u, v))p dudv

) 1
p

=
1

β
2
p

‖f‖p.

Similarly,

‖∇g‖1 =

∫
R

∫
R

√
(∂xg(x, y))

2
+ (∂yg(x, y))

2
dx dy

=

∫
R

∫
R

√
(∂xf(βx, βy))

2
+ (∂yf(βx, βy))

2
dxdy.

Letting u = βx and v = βy,

=

∫
R

∫
R

1

β2
·
√

(β∂uf(u, v))
2

+ (β∂vf(u, v))
2

dudv

=

∫
R

∫
R

1

β
·
√

(∂uf(u, v))
2

+ (∂vf(u, v))
2

dudv

=
1

β
· ‖∇f‖1.

Therefore,
‖g‖p
‖∇g‖1

= β1− 2
p
‖f‖p
‖∇f‖1

≤ β1− 2
p · C.

By a similar argument for α, this directly implies p can only be 2. Hence, if there exists a C such that F (f, p, α) ≤ C,
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then p = 2 and α = 1. Now the question is: given p = 2 and α = 1, does there exist such an upper bound?
This rescaling argument allows us to reframe our main goal of this project.

Remark 5. Note that as we assume f ∈ C1
0 (R2), f must be bounded.

Problem 6
Let f(x, y) ∈ C1

0 (R2) such that |f(x, y)| ≤ 1 for all (x, y) ∈ R2 and f(x, y) = 0 for (x, y) /∈ [−1, 1] × [−1, 1].
Let there exist an ~x such that |f(~x)| = 1. Show there exists an upper bound (C) for ‖f‖2

‖∇f‖1 .

This is equivalent to our previous problem, as previously we assumed f ∈ C1
0 (R2) was compactly supported, and

thus bounded. Therefore, we can rescale f to have upper bound 1, and to be 0 outside of a given square centered
at the origin (in this case, [−1, 1] × [−1, 1]). However, this part is just semantics and will simply be a corollary
when we solve Problem 6, so we will revisit in the Concluding Remarks.

Question 7. Can a rescaling argument be used to start to generalize this problem to functions with more variables?
Is it always the case that there is only one such scaling invariant Lp space (i.e., will there always only exist one
such p and α)? What if we were instead given ‖∇f‖q instead of ‖∇f‖1?

Let’s answer these questions! We will answer the most general version of this question.
Higher Dimensions, with ‖∇f‖q: Let f : Rn → R, and let β > 0. Assume that there exists a fixed C > 0, p,
and α such that for all f ∈ C1

0 (R2) such that ‖f‖p
‖∇f‖αq

< C. We will find values for both p and α.
Consider g(~x) = βf(~x). Then,

‖g‖p
‖∇g‖αq

=
‖βf‖p
‖∇βf‖αq

= β1−α · ‖f‖p
‖∇f‖αq

≤ β1−α · C =⇒ α = 1.

Of course, the more interesting part of this problem will be what p is. Let g(~x) = f(β~x). From the last part, we
have that ‖g‖p = β−

n
p · ‖f‖p. Now we consider ‖∇g‖q.

‖∇g‖q =

∫
Rn

√√√√ n∑
i=1

∂2
xig(~x)

q

d~x


1
q

=

∫
Rn

√√√√ n∑
i=1

∂2
xif(β~x)

q

d~x


1
q

.

Let ui = β xi. Hence, d~u = βn d~x, and ∂2
xif(β~x) = β2∂2

uif(~u). Therefore,

=

 1

βn
·
∫
Rn

√√√√ n∑
i=1

β2∂2
uif(~u)

q

d~u


1
q

= β1−nq ·

∫
Rn

√√√√ n∑
i=1

∂2
uif(~u)

q

d~u


1
q

= β1−nq · ‖∇f‖q.

Hence,
‖g‖p
‖∇g‖q

= β
n
q−

n
p−1 · ‖f‖1

‖∇f‖q
≤ β

n
q−

n
p−1 · C.

Therefore, p = nq
n−q . This agrees with what we have shown previously with q = 1 and n = 2.
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Question 8. What can we do if given both ‖∇f‖q1 and ‖∇f‖q2 for q1 6= q2? What happens if q = n?

2.2 Bounding ‖f‖2

Now we actually want to try and bound the ratio

‖f‖2
‖∇f‖1

=

(∫
R2 |f(~x)|2 d~x

) 1
2∫

R2

√
∂2
x(f(x, y)) + ∂2

y(f(x, y)) dx dy
.

To do so, we can try to find an upper bound for ‖f‖2 and find a lower bound to ‖∇f‖1. In this subsection, we will
try to find a bound for ‖f‖2.

First, we can split R2 into disjoint subsets in which we know the values of f . Consider the sets

V2−k := {~x | 2−k ≥ |f(~x)| > 2−k−1}.

Since |f(~x)| ≤ 1, we have the following:

‖f‖2 =

(∫
R2

|f(~x)|2 d~x

) 1
2

=

( ∞∑
k=0

∫
V
2−k

|f(~x)|2 d~x

) 1
2

.

Hence, taking the maximum over each set, we get

≤

( ∞∑
k=0

2−2k · area(V2−k)

) 1
2

.

Can we find an upper bound to the area part of this inequality? Would that result in some nice inequality?
Note that in the end finding an upper bound to the area won’t actually pan out. If the reader prefers, they can
skip ahead to the next subsection.

We can consider similarly defined sets such that Vλ is a subset of them, and thus has less area than them.
Consider the sets

Uλ :=

{~x | f(~x) ≥ λ} λ > 0

{~x | f(~x) ≤ λ} λ < 0
.

Note the following:

‖∇f‖1 =

∫
R2

|∇f(~x)|d~x

=

∫
R2

√
(∂xf(~x))

2
+ (∂yf(~x))

2
d~x

≥
∫
R2

√
(∂xf(~x))

2
d~x

‖∇f‖1 ≥
∫
R2

|∂xf(~x)|d~x.

Similarly,

‖∇f‖1 ≥
∫
R2

|∂yf(~x)|d~x.

Let’s consider the first of these two inequalities. Using the method we used for single variable functions (with
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the Fundamental Theorem of Calculus), we can obtain the following: For all x1, x2 ∈ R,

|f(x1, y)− f(x2, y)| =
∣∣∣∣∫ x2

x1

∂xf(x, y) dx

∣∣∣∣
≤
∫ x2

x1

|∂xf(x, y)|dx

≤
∫
R
|∂xf(x, y)|dx.

Integrating both sides of this inequality, we get that for all x1, x2 ∈ R (which may depend on y)∫
R
|f(x1, y)− f(x2, y)|dy ≤

∫
R

∫
R
|∂xf(x, y)|dx dy ≤ ‖∇f‖1. (3)

Replacing x with y, we can similarly get that for all y1, y2 ∈ R (which may depend on x),∫
R
|f(x, y1)− f(x, y2)|dx ≤

∫
R

∫
R
|∂yf(x, y)|dy dx ≤ ‖∇f‖1. (4)

Furthermore, as Uλ ⊂ R2, we have that

area(Uλ) ≤ m(π1(Uλ)) ·m(π2(Uλ)). (5)

Let y ∈ π1(Uλ). Now we are going to use equation (4). Since y ∈ π1(Uλ), there exists an x2 ∈ R such that
x2 = sup{x ∈ π2(Uλ) | f(x, y) = λ}. Furthermore, since f is compactly supported, there exists an x1 < x2 ∈ R
such that f(x1, y) = 0. Hence, using these values of x1 and x2 for each y ∈ π1(Uλ) in equation (2.1), we get that

‖∇f‖1 ≥
∫
π1(Uλ)

|f(x1, y)− f(x2, y)|dy

≥
∫
π1(Uλ)

|λ|dy

= |λ| ·m(π1(Uλ)) =⇒ m(π1(Uλ)) ≤ ‖∇f‖1
|λ|

.

Similarly,

1 ≥ |λ| ·m(π2(Uλ)) =⇒ m(π2(Uλ)) ≤ ‖∇f‖1
|λ|

.

Hence, applying equation (6), we have that

area(Uλ) ≤ ‖∇f‖
2
1

λ2
. (6)

Question 9. Is this inequality approximately sharp?

For simplicity, let ‖∇f‖1 = 1 to visualize this example, though note this would easily translate over ‖∇f‖ = c

for any nonnegative constant c. Consider the following example: f(x, y) = 1
max{|x|,|y|} .
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Thus, Uλ is a square of side-length 1
λ , and thus area(Uλ) = 1

λ2 for all λ 6= 0. However, f is neither continuous
(discontinuous at the origin) nor compactly supported. How we can "fix" this example? In the region where
R ≤ max{|x|, |y|} ≤ 2R, let f smoothly interpolate to 0, and let f be 0 if max{|x|, |y|} ≥ 2R. This lets f be
compactly supported, and we can make R arbitrarily large (though finite), implying that area(Uλ) ≤ 1

λ2 will be
approximately sharp, or exactly sharp, almost everywhere when R is sufficiently large. Addressing the discontinuity
at the origin, in the region of the region where 0 ≤ max{|x|, |y|} ≤ 1

R (related to the R in fixing compactly
supported), let f(~x) smoothly interpolate to the value R.

After making these changes to f , it seems to be the case that this works as a sufficient counterexample to show
that area(Uλ) ≤ ‖∇f‖

2
1

λ2 is approximately sharp.
So, given this inequality is approximately sharp, can we derive some sort of connection between area(Uλ) ≤ ‖∇f‖

2
1

λ2

and ‖f‖2?

Conjecture 10
Perhaps we can say something along the lines of(∫

R2

|f(~x)|2 d~x

) 1
2

≤ ‖∇f‖21 ⇐⇒ ∀λ 6= 0, area(Uλ) ≤ ‖∇f‖
2
1

λ2
.

Well we can certainly prove the forward direction.

‖∇f‖21 ≥
∫
R2

|f(~x)|2 d~x

≥
∫
Uλ

|f(~x)|2 d~x

≥
∫
Uλ

|λ|2 d~x.

Hence,

area(Uλ) =

∫
Uλ

1 d~x ≤ ‖∇f‖
2
1

λ2
.

This is known as Chebyshev’s inequality, which comes up in probability.
But in trying to prove the other direction, how can we use area(Uλ) ≤ ‖∇f‖21

λ2 to approximate this integral?
Well, this goes back to the initial part of this section: finding an upper bound for ‖f‖2. We could certainly try
and plug in the area inequality. However, this will give us a divergent series, as shown below:
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‖f‖2 ≤

(∑
k∈N

2−2(k−1) · area(V2−(k−1))

) 1
2

≤

(∑
k∈N

2−2(k−1) · area(U2−(k−1))

) 1
2

≤

(∑
k∈N

2−2(k−1) · ‖∇f‖
2
1

2−2(k−1)

) 1
2

=

(∑
k∈N
‖∇f‖21

) 1
2

.

Hence, unless ‖∇f‖1 = 0 (which implies f is constant and thus ‖f‖2 = 0 as f is compactly supported), we get
a divergent series. Thus, this approach of finding an upper bound for the area doesn’t quite pan out. Therefore,
we hope to (and will) instead find a lower bound for ‖∇f‖1 that depends on the areas of Vλ and hope that things
cancel out in the end (they will).

2.3 Bounding ‖∇f‖1

Instead, we can try to find a lower bound for ‖∇f‖1 without assuming ‖∇f‖1 ≤ 1. In trying to find an upper
bound to the ratio ‖f‖2

‖∇f‖1 , we don’t assume anything about the value of ‖∇f‖1, but the inequality ‖∇f‖1 ≤ 1 was
crucial in first proving area(Uλ) ≤ 1

λ2 , which we ultimately can’t use [as again, it leads to a divergent series]. Hence,
we will not be using this inequality, though it was useful to start exploring this problem. We have the following.

‖∇f‖1 =

∫
R2

√
∂2
xf(~x) + ∂2

yf(~x) d~x

≥
∫
R2

|∂xf(~x)|d~x

≥
∑
k even

∫
V
2−k∪V2−k−1

|∂xf(x, y)|dx dy.

Recall that we assume there exists a ~x such that |f(~x)| = 1, and thus we can state the last line. Then,

‖∇f‖1 ≥
∑
k even

∫
V
2−k∪V2−k−1

|∂xf(x, y)|dx dy

=
∑
k even

∫
π1(V

2−k∪V2−k−1 )

∫
{x|(x,y)∈(V

2−k∪V2−k−1 )}
|∂xf(x, y)|dx dy.

Similarly, we can get that

‖∇f‖1 ≥
∑
k odd

∫
π1(V

2−k∪V2−k−1 )

∫
{x|(x,y)∈(V

2−k∪V2−k−1 )}
|∂xf(x, y)|dxdy.

Adding these two inequalities together, we get that

‖∇f‖1 ≥
1

2

∞∑
k=0

∫
π1(V

2−k∪V2−k−1 )

∫
{x|(x,y)∈(V

2−k∪V2−k−1 )}
|∂xf(x, y)|dxdy

≥ 1

2

∞∑
k=0

∫
π1(V

2−k )

∫
{x|(x,y)∈(V

2−k∪V2−k−1 )}
|∂xf(x, y)|dxdy.
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We can pick x1,k and x2,k such that f(x1,k, y) = 2−k−2 and f(x2,k, y) = 2−k−1. I will explain at the end of this
proof why we can do this. By the Fundamental Theorem of Calculus,

‖∇f‖1 ≥
1

2

∞∑
k=0

∫
π1(V

2−k )

∫
{x|(x,y)∈(V

2−k∪V2−k−1 )}
|∂xf(x, y)|dxdy

≥
∞∑
k=0

∫
π1(V

2−k )

∫ x2,k

x1,k

|∂xf(x, y)|dx dy

=
1

2

∞∑
k=0

∫
π1(V

2−k )

1

4
· 2−k dxdy

‖∇f‖1 ≥
1

8

∞∑
k=0

2−k ·m(π1(V2−k)).

We can similarly do this with π2 instead of π1. Then we get the inequality

‖∇f‖1 ≥
1

8

∞∑
k=0

2−k ·m(π2(V2−k)).

Therefore,

‖∇f‖21 ≥
1

16

∞∑
k=0

2−2k ·m(π1(V2−k)) ·m(π2(V2−k)) ≥ 1

16

∞∑
k=0

2−2k · area(V2−k)

using equation (2).
There is just that one caveat that we need to prove on. In order to use the Fundamental Theorem of Calculus to

find a lower bound for ‖∇f‖1, we need to show that x1,k and x2,k are connected by a line segment in V2−k ∪V2−k−1

when y ∈ π1(V2−k).
This is why we went through the trouble of splitting the sum into even and odd parts– so that this step of the

proof worked out the way we wanted to. Let y ∈ π1(V2−k). Since this function is compactly supported, we know
that there exists an x such that f(x, y) = 2−k−1 and thus (x, y) ∈ V2−k ∪ V2−k−1 . Let x2,k be the smallest such x
that satisfies f(x2,k, y) = 2−k−1.

Since f is compactly supported, this implies that for all x ≤ x2,k, f(x, y) ≤ 2−k−1, as otherwise we would have
a smaller x2,k. Hence, there must exist an x1,k in the set

{x ∈ R | x ≤ x2,k and (x, y) ∈ V2−k−1}

with f(x1,k, y) = 2−k−2 such that [x1,k, x2,k]× y is a connected line segment in V2−k ∪ V2−k−1 . Therefore, we were
in fact able to apply the Fundamental Theorem of Calculus.

Hence,

‖∇f‖1 ≥
1

4

( ∞∑
k=0

2−2k · area(V2−k)

) 1
2

.

Therefore,
‖f‖2
‖∇f‖1

≤
(∑∞

k=0 2−2k · area(V2−k)
) 1

2

1
4 (
∑∞
k=0 2−2k · area(V2−k))

1
2

= 4.
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3 Concluding Remarks
So at this point, we have proven the following theorem:

Theorem 11
Let f(x, y) ∈ C1

0 (R2) such that |f(x, y)| ≤ 1 for all (x, y) ∈ R2 and f(x, y) = 0 for all (x, y) /∈ [−1, 1]× [−1, 1].
Then,

‖f‖2
‖∇f‖1

≤ 4.

We can very easily generalize this though for all two-dimensional continuous compactly-supported functions in
general:

Corollary 12
Let f(x, y) ∈ C1

0 (R2) such that |f(x, y)| ≤ Z for all (x, y) ∈ R2 and f(x, y) = 0 for all (x, y) /∈ [−R,R]×[−R,R].
Then, we have

‖f‖2
‖∇f‖1

≤ 4.

Proof : Assume Z is nonzero, as then this is trivially true. Consider the function g(x, y) = 1
Z · f(Rx,Ry). Hence,

g(x, y) ∈ C1
0 (R2), |g(x, y)| ≤ 1 for all (x, y) ∈ R2, and g(x, y) = 0 for all (x, y) /∈ [−1, 1]× [−1× 1]. Therefore, based

on Theorem 10,
‖g‖2
‖∇g‖1

≤ 4.

We can use this to find ‖f‖2
‖∇f‖1 :

4 ≥ ‖g‖2
‖∇g‖1

=

(∫
R2 |g(~x)|2 d~x

) 1
2∫

R2 |∇g(~x)|d~x

=

(∫
R2 | 1Z · f(R~x)|2 d~x

) 1
2∫

R2 |∇ 1
Z · f(R~x)|d~x

=

(∫
R2 |f(R~x)|2 d~x

) 1
2∫

R2 |∇f(R~x)|d~x
.

This actually shows something pretty interesting; the upper bound on |f | actually plays no effect on the ratio
‖f‖2
‖∇f‖1 , though perhaps this is inherently clear from the rescaling arguments earlier in this chapter. In any case, let
~u = R~x such that d~u = R2 d~x. Hence,

=

(∫
R2

1
R2 · |f(~u)|2 d~u

) 1
2∫

R2
R
R2 · |∇f(~u)|d~u

=
‖f‖2
‖∇f‖1

.

14


	The Cauchy-Schwarz Inequality
	The Inequality Itself
	2D Projections
	3D Projections

	Sobolev's Inequality
	Rescaling Arguments
	Bounding f2
	Bounding f1

	Concluding Remarks

