
Review of:  Winter (1998) Flexible Boolean Semantics: Coordination,
Plurality and Scope in Natural Language.

Reviewed by: Roger Schwarzschild,  October 8, 1999

Chapters 2 and 3 of this dissertation are largely based on previous work on
conjunction (Winter 1996) and on the use of choice functions to explain apparent wide-
scope indefinites (Winter 1997).  In chapters 4 and 5 these two lines of investigation are
drawn together in an interesting way.  The result is a rich theory covering all three topics
mentioned in the subtitle.

As explained in the abstract above, on Winter’s view, and, even when collectively
understood, has a meaning derived from propositional conjunction (so called boolean
conjunction).   Since propositions are elements of type t, I will call this view “t-only-
conjunction”.  As is the nature of a rich system such as Winter’s, decisions in one part
can affect how things develop in another part and one can often understand the system by
trying to tease the various strands apart.  My goal here will be to look at some of the
results in chapters 4 and 5 and to trace the effects of adopting t-only-conjunction.
Somewhat surprisingly, in chapter 4 we will find that it has consequences in the syntax.
In chapter 5, we will find that t-only-conjunction leads to a view of type-shifters as the
locus of a lexical generalization in the area of generalized quantifier theory.

This is a marvelous dissertation chock-full of interesting analyses of various
phenomena.  I recommend it highly.  I couldn’t possibly say everything I’d like to about
it in this short review.

1. Predicate-quantifier flexibility (Chapter 4)
In this chapter various “flexibility operations” are discussed.  One of them, gcf , is

a generalization of the choice-function approach to indefinites, allowing the functions to
apply to various set denoting expressions, not just indefinites.  Another operator, gmin, is
essentially a predicativizer.  In a sense, it is a generalization of Partee (1987)’s BE
operator.  Finally, as we will see below, the composition of gcf with gmin effectively yields
the operation of Winter (1996) that produces a collective reading out of the conjunction
of two generalized quantifier denoting names. There is a third operator whose exclusion
here will not affect the main point.  The chart below provides further details on these
operators.

Null
Element

Syntax
Meaning
Operation

what it does an example

gmin Dp’ → gmin

Dq’
min takes a set of sets returns a

set containing the smallest
one

min(λP.P(j)) =
{{j}}

gcf Dq’ → gcf Dp’ <f> applies a choice function f to
a set S and gives the set of
sets containing f(S).
Exception: if S is empty, <f>
is empty.

Let A= {j,k,l}
Let  f(A) = k
<f>(A) = λP.P(k)
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These operators are used in an analysis of the syntax of copular sentences in Hebrew,
following discussion by Doron(1983).  The central body of data revolves around the fact
that the pronominal copula is obligatorily present in some cases but not in others. It must
be present, for example, when followed by a name (1-2) but it may be omitted when
followed by a bare indefinite (3):

1. ha-xavera haxi tova šeli  hi  Dana
the-friend most good mine  copular-pronoun Dana
‘My best friend is Dana’

2. *ha-xavera haxi tova šeli   Dana
the-friend   most good    mine  Dana
‘My best friend is a Dana’

3. ha-xavera haxi tova šeli (hi) mora
the-friend most good mine  (copular-pronoun)  teacher
‘My best friend is a teacher’

Winter’s analysis begins by assigning names to the category of D’q with meanings of type
<<e,t>,t>, while definites and indefinites (without an eize ‘some’) are treated as D’p and
denote sets of singularities or pluralities.  Here is a set of sample denotations in a model
where John and Mary are lawyers, John is the man and Mary is the woman:

expression syntactic
category

semantic type meanings

John D’q ett λP.P(j)
Mary and John D’q ett λP.P(m) & P(j)

the woman D’p et {m}
the lawyers D’p ett { {j,m} }

a lawyer D’p et {j,m}

Simplifying a bit, syntactically the predicative position must contain an expression in D’p

and the copula is obligatory if an operator has applied in the formation of that expression
(107,p192; expressions like every man are in DPq and are therefore forbidden to appear in
predicate position).  This automatically guarantees that simple indefinites and definites
can appear in predicative position without the copula.  As for names, they are generated
as D’q so they could only appear in predicative position if the gmin operator applied.  The
singular case is slightly more involved so let’s look at the plural.  If gmin applies to the D’q

Mary and John we get a D’p with exactly the meaning of the lawyers.  This is a fine
predicate but since an operator applied a copula is required, thus explaining data like in 2.
This system derives a number of impressive results beyond just capturing the copula
generalization stated so far.  The first result has to do with Doron’s observation “that
when bare indefinites appear in copula-less predicative position they must be interpreted
with narrowest scope” (p191).  The sentence Rina asked if Dani is a pianist whose name I
had forgotten has a wide-scope reading according to which Rina was asking about a
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particular pianist.  If the sentence is translated without a copula, this reading is missing.
In Winter’s system, the choice function operator gcf is a tool for generating wide-scope
indefinites.  In other words, to get the wide-scope you need an operator, if you need an
operator, you must have a copula. The operator analysis of obligatory copula explains
another surprising fact.  While the copula is not necessary when a simple indefinite is in
predicative position, as in 3 above, it becomes necessary, according to Winter, with
conjoined indefinites:

4. * štey ha-našim halalu soferet ve-mora
two-of the-women  those  author and-teacher

‘those two women are an author and a teacher’

5. štey      ha-našim     halalu hen                    soferet ve-mora
two-of the-women  those pronoun-copula  author and-teacher
‘those two women are an author and a teacher’

Even though it is possible to generate a D’p from two indefinites without the aid of any
operators, it turns out that to get the relevant reading of 5 operators must be used and this
again predicts the obligatory presence of the copula.

Demonstrating why operators are needed here will give the reader a quick
summary of much of chapters 2 and 4 of this dissertation.  The story begins with the
‘boolean’ assumption that conjunction always denotes intersection.  Now, if the meanings
of the predicates author and teacher are simply intersected we get the set of individuals
each of which is both an author and a teacher.  But that is not the intended reading here.
We are after a reading in which one of the women is an author and the other is a teacher.
How can this be achieved in this system?  Since (the Hebrew equivalents of) an author
and a teacher are D’p the gmin operator is syntactically out of the question at this point.
Instead we apply the gcf operator to each expression and we get:

gcf (an author) =>  λP[P(f(author’))]
gcf (a teacher) =>  λP[P(g(teacher’))]

Combining these with intersective conjunction we now get:

[gcf (an author) and  gcf (an teacher)] =>  (λP.P(f(author’)) ∩ λP.P(g(teacher’)))

= λP. P(f(author’)) & P(g(teacher’))

Assuming for a moment that f picks Mary from among the authors and g picks John from
among the teachers, this meaning is just the meaning of Mary and John given in the chart
above.  The expression is a D’q because that is what gcf produces, so, as we did earlier, we
apply gmin to the result to get a D’p.  This gives us:

6. gmin (gcf (an author) and  gcf (an teacher))  =  { {f(author’) , g(teacher’)}}
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This is now a predicate that holds of just one plurality, which is fine for us.  5 now says
that those two women are a plurality consisting of one author and one teacher (the
function variables are freely existentially quantified in Winter’s system).  And again, we
correctly predict that there should be a copula in this case because operators have applied.

The result in 6 is a predicate so if we wanted to use this in non-predicative
position, we would have to apply gcf again.  This would give us a generalized quantifier
over the plurality, that is, a set of sets each containing the author-teacher plurality. This
means that something very important has happened.  Winter has successfully produced a
collective reading for nominal conjunctions without departing from his assumption that
and always means intersection (see below for why this would be desirable).  The last step
in which gcf  is applied to a predicate to get a generalized quantifier is quite general and
would be used to create subject phrases out of the other predicative expressions discussed
above: the lawyers, a teacher, the lawyer, the woman, gmin (John and Mary).

One final fact which is explained by this approach to copular constructions has to
do with at-least/exactly readings of numeral indefinites like two lawyers.  As an
indefinite, two lawyers is interpreted as a set of pluralities, each plurality is a set of two
lawyers.  To say that those women over there are two lawyers is to say that the predicate
two lawyers applies to the plurality of those women over there.  This entails that there are
exactly two women over there.  One the other hand, if I want to use two lawyers in non-
predicative position I have to use gcf .  In this case, to say that two lawyers were sitting
over there is to say that there is a plurality of two lawyers over there.  This allows that
there could be more lawyers.  Thus, Winter’s system accounts for the fact that numeral
indefinites have an exactly reading in predicative position but not (necessarily) in non-
predicative position.

This proposal has a semantic and a syntactic component unlike the proposal of
Partee(1987), which forms the starting point for Winter’s discussion. Whereas Partee
relies on a semantic characterization of a predicative NP along with semantically driven
type-shifting principles, Winter relies on syntax to define the predicative position and he
uses null operators in the syntax.   This last point is significant.  These operators must be
syntactically present both to regulate the kinds of phrases they apply to and the kinds of
phrases they produce.  If these operators applied freely, constrained only by the semantic
type of their arguments, havoc would ensue, as the chart below demonstrates:

undesirable
collocation

what it would mean what prevents it

gmin (each man) the men each man is not a D’p

gcf (each man)
the men by themselves or with
others

each man is not a D’q

[gmin (John)] left only John left. [gmin (John)] is D’p, subjects are
D’q

[gcf (John)] paid $100
John by himself or with others paid
$100

John is a D’q, gcf  applies to D’p
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[the boys] left only the boys left the boys is a D’p, subjects are D’q

The presence of these syntactic structures raises a number of questions.  Is there
independent motivation for the different kinds of D’?  Is there syntactic evidence for the
null operators?  Are they overt in any language?  If they were, then, for example, wide-
scope indefinites would look different than narrow scope ones and conjoined NPs would
look different and more complex when collectively interpreted than when distributively
interpreted.  We might also expect to find further syntactic restrictions on the use of these
operators translating into syntactic constraints on the presence of collective readings
(Winter’s neat discussion of both…and p183-4 seems to point in this direction). Since the
syntactic differences between D’p and D’q (not to mention a third category D’- ) do not
correlate with semantic type, could we expect a language where the syntactic categories
are reversed, that is, a language where John is a D’p and where the boys is a D’q ?

Perhaps the most important point here is that this syntactic machinery turns out to
be a fairly direct result of Winter’s analysis of collective conjunction. Hence an argument
for or against the syntax counts as an argument for or against that analysis.  This is a
rather surprising result which bears elaboration.  Winter’s method for collective
conjunction relies on the fact that at the ‘bottom’ of a quantifier like λP[P(m) & P(j)] lies
a set, {j,m}.  To capitalize on this fact (a) we need an operation that applies to quantifiers
and (b) we need to identify pluralities with sets, more generally, a plurality has to be
identified with a predicate meaning.  Each of the problematic collocations in the chart
above can be traced to one or both of these assumptions.  What this means is that one
should in principle be able to pick and choose here, keeping Winter’s striking analysis of
the copula, without adopting t-only-conjunction. Here’s a sketch of what Winter’s
analysis might look like without t-only-conjunction:

Pluralities are members of the domain of entities.

Names are uniformly type e expressions, definites and indefinites are uniformly
type <e,t>

and<<e,e>,e> denotes plurality formation, indicated with a + (Link 1983).

Optional choice function operators apply to expressions of type <et> to produce
expressions of type e with no reflex in the syntax.  (§ 3.5, and possible objections
in §3.4.1, §3.4.2)

Q is an e à <e,t> type-shifter: Q = λx.{x}  (p.146)

Predicative positions are uniformly type <e,t>. (Partee 1987).

In Hebrew, the pronominal copula is obligatory only if Q has applied.

The facts discussed above all follow on this system.  Names need a copula because they
require the use of Q.  Wide-scope indefinites need a choice function and that produces
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type-e meanings so that again Q is pressed into service and the copula becomes
obligatory.  Q also becomes necessary to achieve the intended reading of the predicate be
a teacher and an author:

Q(f(ƒauthor„) +  g(ƒteacher„))

The exactly reading of predicative NPs follows in the same way.  Expressions like every
boy are excluded from predicate position for type reasons.

In §2.3.7 there are a number of reasons for adopting the t-only-conjunction view,
and the above system doesn’t necessarily answer these.  However, there is one initially
rather persuasive argument for t-only-conjunction which is worth revisiting now.
Winter’s method for arriving at collective conjunction correctly produces the collective
reading of the and in (62) repeated below, according to which it entails (63):

(62) Mary and (either) [Sue or John] met.

(63) Mary and Sue met or Mary and John met.

The claim in chapter 2 is that collective and in type <<e,e>,e> is no match for the
disjunctive Sue or John.  However once we learn about choice functions the argument
weakens.  The “Winter minus t-only-conjunction” system sketched above assigns the
subject of (62) the meaning in 7:

7. m+ f(Q(s) c Q(j)) =  m + f({s,j})

Here we capitalize on Winter’s discovery (p175) that the choice function mechanism
allows “disjunction to ‘take scope’ over the collectivization process”.  Depending on
what individual f chooses from {s,j}, either Mary met with Sue or she met with John, as
(63) claims.

A result of separating t-only-conjunction from the rest of Winter’s system is that
barring any type-shifting operations, names denote in type e rather than Winter's
<<et>,t>.   This means that we should not expect NP-based distributivity for name
conjunctions.   While there are potential objections to such a move in §6.1.3, there may
be arguments in its favor outside of simplicity.  With NP based distributivity excluded,
the locus of distributivity will always be in the predicate.  A potential argument for such a
setup might develop from cases in which for a given NP subject, distributivity is possible
for some predicates but not for others.  The examples in 8-11 afford us such a case.
While 8 cannot mean 9, 10 can mean 11.

8. Bill Clinton and Al Gore are the President or the Vice President.
9. Bill Clinton is the President or the Vice President and Al Gore is the President or the

Vice President.

10. Bill Clinton and Al Gore weigh over 150 lbs.
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11. Bill Clinton weighs over 150lbs and Al Gore weighs over 150lbs.

2.  Plural quantification  (chapter 5)
A centerpiece of chapter 5 is the analysis of plural quantificational noun phrases

such as exactly 2 ducks.  Winter has cleverly combined insights from Scha and van der
Does into a single type-shifter dfitw, which operates on determiner meanings.  The
penultimate proposal ((65)p230,  (109),p244—final version: (123)p249) is repeated
below:

dfitw(D) =   8A 8B.D(cA)(c(A 1 B))  &  [A 1 B … i  à ›W 0 A 1 B[D( cA) (W)]]

dfitw has three main features.  First, it incorporates the idea that quantification always
‘counts’ singularities, never pluralities.  exactly 2 ducks counts two individual ducks and
not two duck pluralities.  This is the reason for all the union symbols.  The next feature
has to do with the existential in the consequent of the conditional.  Winter (p243) finds it
false or highly marked to say:

(107) Exactly 5 students drank a glass of beer together.

to describe a situation where three students drank one beer together and two other
students drank a second beer.  In this situation there are exactly 5 cooperating beer
drinking students, so the first conjunct will hold true:

[exactly-5](c[students’])(c(students’ ∩ drink-a-beer-together’))

But there is no group of five students that drank together and that is what the consequent
of the conditional requires.  Finally, the effect of the antecedent of the conditional is to
nullify this requirement when the quantifier is monotone decreasing, unlike in previous
analyses (though see Nerbonne 1995).  We do not, for example, want to give existential
import to a noun phrase like no boys. I assume Winter also had in mind universal cases.
This formulation allows all the boys drank together to be vacuously true if there are no
boys.

I’d like to focus on the status of dfitw as a type-shifter.  The motivation for the type-
shifting mechanism can be appreciated in the context of the following two examples:

(94) All the committees reached a decision together last week.
(95) Every committee reached a decision together last week.

According to Winter, (94) has two readings which correlate with an ambiguity he posits
in the meaning of plural nouns.  On one reading, (94) is synonymous with (95).  This
reading is explained by taking all and every to have the same meaning and allowing that a
plural noun has the meaning of the corresponding singular (ignore the definite article in
(94)).   On the second reading of (94), the committees meet with each other.  This reading
is achieved by applying dfitw to the meaning of all and then combining it with the other
meaning of committees, a set of sets of committees.  I will symbolize this second
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meaning of committees with Winter’s operator pdist which just forms the power set
minus the empty set:

12. dfitw(all’)(pdist-committee’)(reach a decision together’)

Assuming there are committees, 12 requires the plurality consisting of all the committees
to be in the extension of reach a decision together.  dfitw comes in to shift the type of the
determiner when its argument is semantically plural.

I use the term “semantically plural” because this shift really only cares about semantics
and doesn’t help or hinder the syntax. Since diftw is a type-shifter it would apply if every
combined with plural nouns, but English syntax disallows that.  And, since every and all
have the same meaning, all could be combined with the meaning of a singular noun if
only the syntax allowed the combination.  This is all to say that the syntax of determiners
is completely irrelevant to dfitw.

Whereas in Scha and van der Does’ analyses, there are several shifts leading to an
ambiguity in the meanings of plural determiners, Winter has collapsed them into one,
leading to what appears to be a univocal meaning.  In this regard, it is interesting to note
that diftw could easily be modified so as to be applicable to any determiner, regardless of
what the semantics of its arguments is.  Instead of extracting singularities using the union
operator, we can use the operator defined below:

cA =  {x: x 0 A or ›W 0 A: x 0 W}

Making this substitution and modifying the antecedent of the conditional in dfitw slightly
we arrive at:

dfitw(D) =   λA λB.D(cA)(c(A 1 B))  &  [(›W 0 A 1 B)  à ›W 0 A 1 B[D( cA) (W)]]

This operation can apply now to all quantifiers.  If A,B contain only singularities, then
the conditional becomes trivially true (W is a variable over pluralities) and c is harmless.
If A,B contain pluralities, c amounts to c, and the antecedent of the conditional says
what it said before.  Since dfitw applies in all cases, we might wonder whether it really
should be implemented as type-shifter at all.  Could we not just view dfitw as general fact
about the true meanings of determiners? For example, could we just say that universals
like every or all simply denote the relation dfitw(D) where D is just the subset relation
and exactly 2 just means dfitw(2!) where 2! relates two sets just in case the cardinality of
their intersection is 2?  This question leads us right back to t-only-conjunction. Winter's
method for achieving collective conjunction depends on the fact that pluralities are the
same type as predicate meanings.  This means that semantically plural common nouns
denote in a different type from singular ones, hence a type-shifter is needed to allow a
determiner meaning to combine with both singular and plural nouns.  On the other hand,
if we allowed that pluralities and singularities were the same type of thing, we actually
couldn’t have a type-shift here.
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At this point, we’ve drawn a line from the Winter's implementation of t-only-
conjunction through to the status of dfitw as a type-shifter.  Here are some considerations
for addressing that issue.  Should the use of type shifting be restricted? If so how?
Partee(1987) talks about ‘natural type shifts’.  Is dfitw natural?  Another issue stems from
the fact that dfitw applies to a whole class of lexical items and doesn’t have to apply
within the course of derivation.  Is it correct to use type-shifters to express these lexical
generalizations?  For comparison, consider van Benthem’s(1984, 446) observation that
“the behaviour of Q is completely specified by the couples of cardinalities (a,b), with a =
*A-B*, b=*A 1 B*, for all E, A, B such that QEAB” .  Should we capture this
generalization by letting determiners denote relations between numbers and have a type
shifter that takes their syntactic arguments and delivers *A-B* and*A 1 B*?

These are very big questions and we aren’t about to settle them here.  The main
conclusion I’d like to draw from dfitw is that the explanatory value of Winter’s proposal
is not diminished by removing it from the t-only-conjunction setting and that doing so has
important consequences.

Finally, it is important to see that the issue of the status of dfitw is orthogonal to the
other part of the chapter 5 proposal.  In a nutshell, Winter claims that while both gather
and be a team can be predicated of plural DPs like the girls, gather is +S and has
pluralities in its extension while be a team is -S and has only singularities in its extension,
though these singularities are teams.  Assume the girls are team that gathered in the park.
This means that the girl team is in the extension of be a team and the plurality of its
members are in the extension of gather.  The following holds (girl’ is the set of girls):

girl’ ∩ be-a-team’ = ∅ pdist-girl’ ∩ be-a-team’ = ∅

girl’ ∩ gather’ = ∅ pdist-girl’ ∩ gather’ … ∅

These equations explain the judgements in (13) and (14) of Winter’s discussion above,
even if dfitw is part of the meaning of any determiner.  The judgement in (15) relies on
an independent and special treatment of the plural definite.

3. The Boolean Viewpoint

In Winter's summary, it is explained that the coordinators and and or denote the
boolean operators meet and join in various domains.  It is then pointed out that problems
arise with collectives such as (8) John and Mary met. "The standard boolean treatment
incorrectly predicts (8) to be equivalent to the unacceptable sentence Mary met and John
met."  This is so because the standard boolean treatment applies only to domains of type t
or those derived from type t.  This entails a treatment of John and Mary as in the chart
given earlier.

But the algebraic perspective allows for a different picture of how and works
according to which there is no problem with collectives.  On this view and simply
denotes one of the boolean operators, regardless of whether or not the domain is 't-based'.

https://www.phil.uu.nl/%7Eyoad/papers/fbs-sum.pdf
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This picture should of course be sketched in such a way that it is the same operator in all
domains.

When defined, join and meet are operations over partially ordered sets.  Consider
then the following plausible orderings (read $ as "is greater than or equal to"):

Propositions: p $ q   iff:  p entails q
Properties: P $ Q  iff:  having P entails having Q
Entities: x $ y   iff   x includes y

The intuition behind these orderings can be appreciated by thinking about more or less
ordinary uses of include:

Propositions: John's erasing his last sentence included John's erasing some of
the words in his last sentence.

Properties: walking includes leg-moving
Entities: the American Presidents include Bill Clinton

For any domain with elements a and b where meets and joins exist we have:

meet(a,b) =  the greatest element c such that:  a $ c and b $ c
join(a,b) =  the smallest element c such that:  c $ a and c $ b

Intuitively, meet(a,b) gets you minimally at or below a and b, join(a,b) gets you
minimally at or above a and b.  Working through a few examples, one finds that and
corresponds pretty closely to join in all three of the domains listed above.  For example, if
we take the properties of walking and riding and join them, we get a property that entails
both walking and riding, that is, the property denoted by walking and riding.  And if we
join John and Mary we get the plurality which includes the two of them.  That plurality
can perform collective acts that neither of its members performs.

Winter reports that Payne has observed that no language was found where or
shows "non-boolean" behavior.  This leads us to wonder what the status of or is on the
picture just sketched.  In t-based domains, or denotes meet, but not in the domain of
entities.  To some extent this makes sense.  For any two propositions, there is a
proposition that both of them entails, but for many pairs of entities, for example John and
Mary, there is no entity that both of them includes.  But this will not explain everything.
Even if John is included in the doctors and the lawyers, we cannot refer to him with the
doctors or the lawyers.  We are left then with the puzzle of why or cannot denote meet in
a domain where meet is partially defined.  But I don't see that this puzzle is particular to
the view outlined here.  It arises as soon as we posit that or denotes a boolean operator
and go on to ascribe to the entity domain a structure on which such operations are
defined.

Acknowledgement:  I enjoyed fruitful discussion with Yoad Winter about this review.  I
thank him for what he taught me and for his positive attitude towards the enterprise.
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