
1 Introduction
One of the key difficulties faced by all models of object recognition is the fact that any
complex 3-D object can give rise to a highly varied set of 2-D images. If a vision
system (computational or biological) is to accurately recognize an object in a variety of
settings, it must be capable of generalizing over image-changing transformations that
preserve object identity while remaining sensitive to image differences that indicate a
different object is being viewed (Moghaddam et al 2000; Moses et al 1994). There have
been multiple attempts to achieve invariant recognition in computer vision systems
by detecting local features and pooling across object parts in a hierarchical manner
(Fukushima 1980; LeCun et al 1998; Riesenhuber and Poggio 1999; Ullman et al 2002;
Weber et al 2000), but most of these systems require some form of implicit label to
function adequately. Ultimately, if an observer were forced to learn about novel objects
solely from a set of unlabelled 2-D views, it is unclear how the correct pattern of
generalization and selectivity could develop.

Luckily, the world does not force us to learn about objects in this manner. Instead,
we are able to observe persisting objects in a dynamic world. Furthermore, the world
is `kind' in that object appearance tends to change smoothly and slowly over time. This
scenario offers a great advantage to the observer attempting to learn to recognize com-
plex objects. In a dynamic world, the ways in which an object's 2-D appearance can
change within some interval will become apparent, with temporal proximity providing
a link between images that may be substantially different from one another. Recent
years have seen the development of computational vision systems that use temporal
proximity within image sequences as a means for learning specific object invariants
(Foldiak 1991; Stone and Harper 1999; Ullman and Bart 2004; Wallis 1996, 1998),
demonstrating that this is indeed a useful strategy for building robust object represen-
tations. Given the simplicity and computational power of using temporal association
as a cue for object learning, understanding the role of dynamic information in visual
recognition is a fundamental challenge. In the current study we attempt to gain insight
into how dynamic input influences the subsequent representation and recognition
of static images. Understanding how dynamic input affects static recognition is a vital
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step towards linking classical work on static object recognition to ongoing efforts to
characterize recognition in real-world dynamic settings.

How can one tell whether or not biological recognition systems make use of tem-
poral proximity to bind together distinct object views? If such linkages are indeed
created following exposure to a dynamic stimulus, temporal neighbors that are bound
together should give rise to the same neural or behavioral response. One can think
of this as a temporal `smearing' of appearance, whereby images that appear close in
time become less distinguishable as object labels are propagated forward. A variety
of methodologies have demonstrated that this sort of behavior emerges after training
with image sequences. For example, neurons in the primate inferotemporal cortex
begin to respond similarly to highly distinct fractal patterns if those patterns are
consistently presented as temporal neighbors during prolonged viewing of a training
sequence (Miyashita 1988, 1993; Miyashita and Chang 1988). Human observers also
demonstrate intriguing behavioral effects of temporal association across a range of
tasks. Increased confusability between individual faces can result from temporal asso-
ciation of those faces in smooth motion sequences (Wallis and Bu« lthoff 2001), and the
learned sequence of 2-D views can impair recovery of 3-D form via the kinetic depth
effect (Sinha and Poggio 1996). Even simple translation invariance can be `broken' by
presenting two different objects within a small temporal window (Cox et al 2005). Clearly,
temporal association can play a pivotal role in object and face recognition (O'Toole
et al 2002). We note, however, that most accounts of the effects of temporal association
on recognition have stressed its role in linking images together for invariant recognition.
We suggest that such studies consider only one aspect of a learning process that has two
important parts.

The ability to generalize object identity across appearance changes is undeniably
important, but so, too, is the ability to detect these changes. The goal of an object-
recognition system should be to decouple changes in appearance from object identity,
rather than to achieve the singular goal of invariance (Ullman 1996). An observer
who is perfectly invariant to object transformations by virtue of an inability to dis-
cern appearance changes is likely to be at a profound disadvantage. For example, a
head-on view of a car requires a very different response than a side view, even though
both are to be classified as depicting the same object. Ideally, learning about an
object through temporal association of neighboring images would not impair the
ability to discriminate between them at the image level. Having the opportunity to
observe a change in appearance over time could potentially alert observers to specific
regions of the image that are likely to change, or, as we will suggest later, provide
for a neural representation of global appearance that supports both generalization
and selectivity.

In the current study we asked whether temporal association could lead to both
increased generalization over neighboring images and increased sensitivity to the differ-
ences between those same images. Using relatively brief amounts of exposure to novel
moving objects we found that adult observers did in fact display exactly this pattern
of behavior. Neighboring images began to be treated as the same stimulus (as deter-
mined by an implicit priming criterion), yet in another task these same images become
more discriminable after training. Contrary to the hypothesis of temporal `smearing'
of appearance, we found that observers became more sensitive to appearance changes
they observed in a dynamic sequence. We suggest that our results can be interpreted
if one assumes an underlying population code for appearance (a proposal that is
supported by previous behavioral and physiological studies) that undergoes particular
changes in neural tuning in response to observed object motion.
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2 Experiment 1: The effect of observed object motion on generalization
In this experiment we used a priming task to examine the effect of passively observed
object motion on the representation of static form. Our goal was to extend previous
work regarding temporal association and object perception by using novel objects,
novel non-rigid motion, parametric variation of object appearance, and the use of an
implicit measure of generalization following training. To ensure that observed motion
(rather than spatial similarity between static frames or repeated stimulus exposure)
was specifically relevant to increased generalization, we compared the effects of train-
ing sequences depicting smooth object motion to sequences containing interstitial
`blanks' that disrupted the motion percept.

2.1 Subjects
Nineteen volunteers from the MIT community participated in this experiment, all
between the ages of 18 and 35 years. All participants reported normal or corrected-
to-normal acuity, and were compensated for their participation. Ten observers were
randomly assigned to the `smooth-motion' group, and the remaining nine observers
were assigned to the `no-motion' group.

2.2 Stimuli
To ensure that observers could not apply previous knowledge concerning how object
appearance might change, we used a novel class of objects that underwent non-rigid
deformation during the training sequences presented to our participants. The use of
non-rigid motion has the additional benefit of ruling out representational strategies
based on a static 3-D object model. Since non-rigid objects have no `ground truth'
3-D form, observers must learn invariant recognition by linking together distinct
appearances rather than by applying general-purpose mechanisms based on rigid-body
geometry.

The objects we used (which we will refer to as `blobs') are constructed from two
spherical harmonics that can be independently rotated through various phase angles
(Nederhouser et al 2002). By separately rotating each harmonic through the complete
range of distinct angles in equal increments, one can construct a toroidal space of
images in which `horizontal' and `vertical' paths through the space give rise to complex
and distinct non-rigid motions (see figure 1). An important aspect of this stimulus
set is that the appearance space has been scaled relative to a Gabor-jet-based image
similarity metric such that city-block distance is a meaningful measure of low-level sim-
ilarity along the appearance axes. In experiment 1, one 16-image `horizontal' strip of blob
images was used for training and test stimuli. We used blob images to create training
sequences depicting objects in motion and also as static test stimuli.

We created two types of training stimuli by concatenating images into movie
sequences (figure 2b). The `smooth-motion' training sequence was generated by displaying
the 16 selected images in forward, then reverse, order at a rate of 12 frames sÿ1. The
resulting movie depicted a blob smoothly deforming in an oscillatory fashion. `No-motion'
sequences were created by inserting a 100 ms empty frame between each frame in the
smooth-motion movie. The resulting sequence depicted the same sequence of blob appear-
ances as the smooth-motion sequence, but without a strong motion percept (though
it is possible that some apparent motion may have been evident to some subjects).

2.3 Procedure
We used an instant priming task (Sekuler and Palmer 1992) to characterize the extent
of generalization over distinct object appearances following exposure to a moving
object. In instant priming, observers display an RT advantage for judging simulta-
neously presented targets to be identical if they have been precued with an image
that matches the two targets (figure 2a). This paradigm has been successfully used by
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Figure 1. An 868 space of `blob'
stimuli. The horizontal and vert-
ical axes of this space are defined
by the phase angle of the 2nd and
3rd harmonic. Movement along
each axis induces non-rigid motion
that is distinct from that generated
by movement along the other axis.
This image is a schematic view of
the full 16616 blob space used
in our experiments. This smaller
version has been included for ease
of viewing.
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Fast Slow

(a)

500 ms
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3000 ms
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(d)
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Same pairs Different pairs
{CUE, CUE}

{CUE�1, CUE�1}
{CUE�2, CUE�2}
{CUE�3, CUE�3}

or {CUE, CUE�2}

Figure 2. (a) In instant priming, responding that simultaneously presented targets are identical
is facilitated by pre-cuing with an image that also matches the targets. There is an RT cost for
cue/target dissimilarity. (b) In our training periods, we presented observers with either a smooth-
motion stimulus or a no-motion sequence consisting of the same images. Our hypothesis was that
continuing exposure to the smoothly deforming object, but not the no-motion sequence, would
increase generalization over the strip of object appearances selected for presentation. (c) Following
each training round, the test period consisted of go ^ no-go instant priming trials in which a cue
image was followed by two images that either matched each other or differed. RT was measured
for `̀ same'' responses. (d) Cue/target dissimilarity was parametrically varied during the test period.
We calculated the RT cost for making `̀ same'' judgments with targets that do not match the cue for
several cue/target distances in blob space. Note that, as before, the depicted 868 space in (b) is a
smaller version of the full blob space used in our tasks.
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Kourtzi and Shiffrar to probe the representational content of rigid and non-rigid
objects undergoing apparent motion (Kourtzi and Nakayama 2002; Kourtzi and Shiffrar
1997, 1999, 2001). For our purposes, instant priming offers an attractive means for
characterizing the relationship between arbitrary cue images and targets via an implicit
behavioral effect based on an image-level judgment.

Participants completed three rounds of our task, each round consisting of a train-
ing period and an instant priming test period. During each training period, subjects
passively viewed the training sequence assigned to them (either the smooth-motion
movie or no-motion movie) for 3 min (figure 2b). No response was required during
exposure to the motion sequence. Following each training period, subjects performed a
go ^ no-go image-matching task using the static images that composed the training
sequences. During this task, each trial began with the presentation of a cue image for
500 ms. Then, after a 500 ms blank interval, two target images were simultaneously
presented for 3000 ms (figure 2c). These target images were either identical to one
another or different. Subjects were instructed to press the spacebar on the computer
keyboard as fast as possible if the two target images were identical and to withhold
their response if they were different. RTs to correct ``same'' judgments were recorded.
Since no response was required when targets differed from one another, data from these
trials were not analyzed.

Critically, four types of matching target pairs were characterized by their similarity
to the cue image presented on each trial. Matching pairs were separated from the cue
image by 0, 1, 2, or 3 units in appearance space (figure 2d). The speed advantage
conferred by instant priming depends on cue/target similarity, so parametric manipu-
lation of the distance between the cue and target images should lead to systematically
increased RTs for responding `̀ same'' to targets of increasing dissimilarity to the cue
image. Target pairs that were different from one another always contained the cue image
and a blob that was 2 units away from the cue in appearance space. Note that all
distances between blob images refer to distances along the horizontal strip of images
used in this task.

Observers completed 96 `̀ same'' trials per round (24 trials64 types of `̀ same'' target
pairs), and 96 `̀ different'' trials. The presentation order of each type of target pair
was fully randomized within each test period. Observers typically completed the task
in approximately 1 h.

All stimuli were presented on a 19 inch Dell LCD monitor with a 60 Hz refresh
rate. Training and test stimuli subtended approximately 2 deg of visual angle. Training
sequences and cue images were all presented at the center of the monitor, while target
images presented during the test period were displayed 3 deg to the left and right
of the center of the monitor. Subject head and eye movements were not restricted or
monitored. All stimulus display parameters and response collection routines were
controlled by the Matlab Psychophysics toolbox (Brainard 1997; Pelli 1997).

2.4 Results
Our hypothesis was that before observers were given much exposure to the training
sequences, ``same'' responses would be more effectively primed by cues that matched
the target pairs than by cue images that were dissimilar to the targets. Specifically, we
expected that `̀ same'' responses would be produced fastest when the cue and target
images were the same, and slowest when the cue was very dissimilar to the targets.
The difference in RT between the ideal case (cue image matches targets) and the other
conditions was expected to provide a measure of the c̀ost' of dissimilarity between the
cue and the targets.

We further hypothesized that our two training sequences would have differential
effects on the RT cost following continued exposure. We expected that, as observers
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received continued exposure to the smooth-motion training sequence, temporal asso-
ciation between nearby frames in the sequence would lead to increased generalization
over neighboring images. That is, we expected that neighboring images would be bound
together into a common representation as training continued, leading to a decrease
in RT cost during subsequent test periods. Given the lack (or at least weakening) of a
strong-motion percept in the no-motion training sequence, we predicted that continued
exposure to this stimulus would not reduce the RT cost substantially.

To test these predictions, we computed the mean RT for correct `̀ same'' judgments in
each cue/target condition for each subject. We then subtracted out the mean RT for
`̀ same'' judgments primed by identical cue images (the de facto optimal cue) to yield
the RT cost for each condition in which cues did not match targets. If generalization
over neighboring images occurred, an initial positive cost for non-matching cues should
have given way to a reduced, possibly nil cost after training was completed. Furthermore,
if our initial hypotheses were correct, this decrease in RT cost should not have occurred
after exposure to the no-motion training sequence. We display the results of this analysis
for observers in the smooth-motion and no-motion groups in figure 3.

First, we examined the results from observers in the smooth-motion group. We
carried out a 362 repeated-measures ANOVA with cue/target dissimilarity and testing
round (first or last) as within-subjects factors. Our analysis revealed a significant effect
of testing round (F1 9 � 8:26, MSE � 0:146, p � 0:014, Z 2

p � 0:48) but no significant
effect of cue/target dissimilarity (F2 8 � 2:12, MSE � 0:024, p � 0:15, Z 2

p � 0:19). There
was no significant interaction between the two factors (F2 8 5 1). The data from
this group of observers thus support our initial hypothesis that continued exposure to
object motion can reduce the RT cost of cue/target dissimilarity in the instant priming
task.

We continued by conducting the same analysis on the data obtained from observ-
ers in the no-motion group. We found no effects of training round (F1 8 5 1) or cue/
target dissimilarity (F2 7 5 1). The interaction between the two factors was also not
significant (F2 7 5 1). These results support our additional prediction that the absence
of perceived motion during passive training periods does not reduce the cost of cue/
target dissimilarity.

To examine the extent of generalization over cue/target dissimilarity, we conducted
a posteriori comparisons of the RT cost at each cue/target distance in the smooth-
motion condition. A two-tailed paired-differences t-test was significant at the smallest
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Figure 3. (a) After three rounds of training, an initial RT cost for responding `̀ same'' to targets
that do not match the cue disappears for observers in the smooth-motion group. (b) Conversely,
observers in the no-motion group show no effects of multiple rounds of dynamic exposure.
Error bars represent �1 SEM across the group data in each condition.
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level of cue/target dissimilarity (t9 � 2:84, p � 0:019), marginally significant at the
next level (t9 � 2:25, p � 0:05), and not significant at the greatest dissimilarity level
(t9 � 1:8, p � 0:11). From this analysis, we conclude that while observed motion led to
increased generalization over object appearance, this is most evident over the nearest
neighbors in appearance and in time.

2.5 Discussion
Passive observation of a smooth-motion sequence induced a reduction in the RT cost
for cue/target dissimilarity in our priming task, from which we infer that generalization
over the presented object appearances occurred following observed object motion. This
result extends previous work by demonstrating measurable effects of temporal associa-
tion via observed object motion on a novel object class that moves in an unfamiliar
and non-rigid way. Furthermore, our results from the smooth-motion group reveal that
the extent of generalization over object appearance is strongest for the nearest neighbors
in appearance and/or time. Finally, the use of an implicit criterion for characteriz-
ing the effects of temporal association between images provides important evidence
that the effects of temporal proximity on appearance encoding are not driven by
high-level cognitive factors or by response uncertainty. The effect of temporal associa-
tion on object perception is observable in the context of a purely image-level matching
task.

Critically, the data from the no-motion group rule out several trivial explanations
of the reduced RT cost observed in the smooth-motion group. The lack of a signifi-
cant effect of testing round in this group makes it unlikely that the flattened RT costs
in the smooth-motion group resulted from task repetition, for example, or repeated
exposure to the same static images. Also, since image order was matched in both types
of training sequence, we can infer that temporal contingency between frames is not
sufficient to drive associations between neighboring images; it is likely that `real' object
motion must be perceived between frames for generalization to occur. This latter point
is difficult to state unequivocally, since it is extremely difficult to selectively remove
motion from a dynamic stimulus while preserving all other spatial and temporal factors
of the input (for example, our insertion of blank frames also lengthens the sequence).
At present, we thus cannot firmly conclude that observed object motion per se must
be experienced to induce the effects we have observed. For our purposes, this is accept-
able insofar as we are presently more interested in exploring the consequences of
observed object motion rather than determining the full set of critical properties a
stimulus must possess to induce effects like those we have observed in experiment 1.

In experiment 2, we continue by examining the effects of observed object motion
on sensitivity for differences in static form. Given that passively observed object
motion can lead to measurable changes in generalization within the context of an
image-level matching task, how does exposure to the same stimulus modulate sensitiv-
ity to image differences? The answer to this question provides us with a more complete
description of how object perception is affected by ongoing observation of objects in
motion.

3 Experiment 2: The effect of observed object motion on sensitivity
In this task, we investigated how exposure to object motion affects sensitivity to differ-
ences in object appearance. We used a change-detection task to measure image-level
sensitivity before and after exposure to training sequences with the same parameters
as the smooth-motion and no-motion sequences used in experiment 1. This experiment
thus allowed us to determine whether exposure to a training stimulus that leads to
increased generalization over appearance (as observed in experiment 1) simultaneously
induces an increase or decrease in sensitivity to object appearance.
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3.1 Subjects
Twenty-one volunteers from the MIT community participated in this experiment (eleven
in the smooth-motion condition and ten in the no-motion condition), all between 19
and 35 years of age. All participants reported normal or corrected-to-normal acuity, and
were compensated for their participation. Subject pools for experiments 1 and 2 were
mutually exclusive. The data of an additional participant who completed the task was
discarded owing to a failure to follow task instructions.

3.2 Stimuli
For this experiment, training and test stimuli were drawn from the space of blob
objects described previously. Multiple training stimuli were generated by selecting hori-
zontal and vertical strips of images and concatenating them into extended sequences.
As in experiment 1, each individual sequence depicted a blob deforming in an oscillatory
fashion. The full sets of `horizontal' and `vertical' training sequences were composed of
parallel strips of images spaced one image apart in the appearance space (figure 4).
Organizing the composition of the training sequences in this manner allowed us to use
mutually exclusive image sets for training and test by selectively drawing test images
from the gaps left in between the strips of images used to create training sequences.

3.3 Procedure
Participants in this task completed two rounds of a change-detection task, both before
and after passive exposure to either `horizontal' or `vertical' training sequences.

On each trial of the change-detection task, observers sequentially viewed two blob
images and had to decide if they were identical or different. First, one blob image
was presented for 250 ms, followed by a 200 ms blank period, a 200 ms presentation
of a 1=f fractal noise mask, and the presentation of a second blob stimulus for an
additional 250 ms. The position of each of the two blobs was randomly jittered within
a �1 deg interval around the center of the monitor. On each trial, the two blob
stimuli presented could be identical, differ in their position along the `horizontal' axis,

`Horizontal' training

Pre-test session Post-test session

or

`Vertical' training

Figure 4. In our change-detection paradigm, we first measured subjects' sensitivity to static
image differences between `horizontal' and `vertical' image pairs in a same/different task. Follow-
ing this, subjects were exposed to training sequences depicting blobs deforming along one axis
(either horizontal or vertical) through appearance space. Sensitivity to image changes along the
trained and untrained axes was reassessed after the training period, and changes in sensitivity
along each axis were recorded. As in the previous figures, an 868 schematic view of blob space is
displayed here for ease of viewing. The full stimulus set used consisted of 16616 images.
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or differ in their position along the `vertical' axis. Stimulus pairs that were different
were always separated by 2 distance units in the underlying appearance space. Observ-
ers were presented with 256 `different' pairs, half of which differed in the `horizontal'
direction and half of which differed in the `vertical' direction. Also, 256 `̀ same'' trials
were included for a grand total of 512 trials per test session. The order of pairs
presented during the experiment was randomized for each subject. During the pre-
training session, auditory feedback was given to subjects to indicate incorrect
responses. During the post-training session, no feedback was given.

During the training period, participants passively viewed 8 unique image sequences.
Half of our observers were shown only the 8 training sequences in the `horizontal' set
of movies and the remaining half were shown only the 8 training sequences in the
`vertical' set of movies. Each individual sequence lasted approximately 30 s, and was
displayed at a rate of 12 frames sÿ1. Each individual sequence was presented 3 times,
and the order of sequence presentation was randomized for each subject. The full training
period lasted approximately 12 min.

Smooth-motion sequences were not manipulated further for display during the
training period. No-motion sequences were modified such that a blank frame lasting
100 ms was inserted between all image frames in the original sequence. The resulting
stimulus (as in experiment 1) depicted the same sequence of static images as each
corresponding smooth-motion sequence, but with a substantially weakened motion
percept.

3.4 Results
Our goal in this experiment was to determine how exposure to object motion affects
sensitivity to static form. In experiment 1 we observed that exposure to smooth object
motion increased generalization over static images presented close together in time,
leading to a reduced RT cost for dissimilar cue images in our priming task. In experi-
ment 2, we asked how exposure to similar smooth and `jerky' sequences modulated
observers' ability to discriminate between images arranged along the trained and untrained
appearance axes.

In both pre-test and post-test sessions, the ability to detect image differences along
the horizontal and vertical axes of appearance space was characterized by calculat-
ing d 0 for `horizontal' and `vertical' pairs. We collapsed d 0 values across observers by
relabeling trials as having contained `trained' and `untrained' form differences, accord-
ing to the set of sequences observed during the training period. This was done to
obviate the need to consider potential differences in baseline sensitivity along the two
appearance axes. Within a test session, d 0 values in the trained and untrained direction
were calculated with a shared false alarm obtained from all `̀ same'' trials presented
in that session. This means that differences in d 0 observed between the trained and
untrained direction within a session are really only differences in hit rate. However,
we report d 0 values here rather than hit rates, since the false-alarm rate could differ
between the pre-test and post-test sessions and we wished to meaningfully compare
performance across these two sessions.

In figure 5 we display the mean d 0 values across all smooth-motion observers in
all conditions.

We carried out a 262 repeated-measures ANOVA on the d 0 values from smooth-
motion observers, with type of stimulus pair (trained or untrained form differences)
and testing session (pre-exposure and post-exposure) as within-subjects factors. This
analysis revealed a main effect of testing session (F1 10 � 11:68, MSE � 0:55, p � 0:007,
Z 2
p � 0:54), but no significant effect of stimulus type (F1 10 � 1:14, MSE � 1:14,
p � 0:31, Z 2

p � 0:10). The interaction between these two factors was also not significant
(F1 10 � 1:41, MSE � 0:057, p � 0:26, Z 2

p � 0:12).

,
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We also carried out two planned comparisons on these d 0 values to examine the
effects of the training sequences more closely. We compared pre-test performance to
post-test performance in the trained and untrained directions. This analysis revealed a
significant effect of the exposure period on d 0 values recorded in the trained direction
(two-tailed paired-differences t-test, t10 � 3:68, p � 0:004) but no effect of training on
performance in the untrained direction (two-tailed paired-differences t-test, t10 � 1:56,
p � 0:15). This analysis suggests that the previously observed main effect of testing
session is driven primarily by improved sensitivity for differences along the appearance
axis observed during the training period.

Given only these data, it is difficult to conclude whether or not increased sensitivity
in the trained direction depends critically on observing object motion, or depends
solely on observing a collection of static images. To help disambiguate between these
two possibilities, we next turn to the data from the no-motion group. We analyze the
data from the pre-test and post-test change-detection sessions in the same manner as
described above for the smooth-motion group. The mean d 0 values for pre-test and
post-test performance in the trained and untrained direction are reported in table 1.

A 262 repeated-measures ANOVA reveals that there are no main effects of stim-
ulus type (F1 9 5 1) or testing session (F1 9 � 2:8, p � 0:13). The interaction between
these factors was also not significant (F1 9 � 1:8, p � 0:23). Finally, as in our analysis
of the smooth-motion data, we also carried out two pre-planned comparisons of the
d 0 values in the trained and untrained directions before and after exposure to the blob
sequences. This also revealed no significant effects of testing session in either the
trained (t9 � 1:72, p � 0:12, two-tailed paired-differences t-test) or untrained direction
(t9 � 1:36, p � 0:21). The lack of any increases in sensitivity following observation of
the no-motion sequences supports the conclusion that observing object motion (rather
than simply many static images) is critical in this task.
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Pre-test
Post-test

trained untrained
Direction

Figure 5. Sensitivity to form differences following expo-
sure to object motion: average d 0 scores across observers
in the trained and untrained directions of appearance
change before and after a passive exposure period. There
is only a significant effect of the exposure period for
image differences along the appearance axis observed
during training. Error bars represent �1 SEM across the
group data in each condition.

Table 1. Sensitivity (d 0 ) to appearance changes in the trained and untrained directions following
exposure to the `no-motion' sequences. As reported in the text, there are no significant differences
between pre-exposure and post-exposure means. The data reported in each cell are the mean d 0

values across subjects, with the standard deviation in parentheses.

Direction Pre-exposure test Post-exposure test

Trained 1.14 (0.51) 1.37 (0.69)
Untrained 1.15 (0.52) 1.28 (0.43)
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3.5 Discussion
Given exposure to the same type of smooth-motion sequences that induced increased
generalization in experiment 1, observers in experiment 2 showed improved sensitivity
for the changes observed during training. This was not observed in the group that
was exposed to no-motion sequences, indicating that exposure to the static stimuli is
not sufficient to induce this effect. This result (an increase in sensitivity following
observed motion) was somewhat unexpected, since increased confusion between images
presented close together in time is often used as an index of associative mechanisms
at work during exposure to a moving object. The results of previous research thus
might have led one to predict decreased sensitivity in the trained direction of appear-
ance space, or no change at all due to the benefits of practice being cancelled out by
reduced sensitivity brought on by association between neighboring images.

Several simple explanations can be ruled out that are based on our design. For
example, it is unlikely that observers used the training sequence to identify local image
regions where change was expected. Comparing specific object-centered image regions
across test stimuli was made difficult both by the smoothness of the blobs and the
fact that we randomly jittered the position of both test images on each trial. Also,
given the global, non-rigid, and non-uniform nature of the deformations depicted in
the training sequences, singling out any one region of the image on randomly selected
trials would have been an ineffective strategy. The role of learned prediction in per-
forming this task was also minimized. Each image in the training sequences predicted
two images equally well (owing to the forward and backward oscillation along appear-
ance axes during training), so that there was no unambiguous prediction to be made
from any individual image. Finally, mere exposure effects can be ruled out. Observers
were only tested on images that did not appear in the training sequences, and our use
of the no-motion condition as a control further rules out this explanation.

As we discussed following experiment 1, it is difficult to state unequivocally that
real object motion is necessary to induce these effects. However, we can safely con-
clude that the effects observed in experiments 1 and 2 are consequences of object
motion, even if some more fundamental aspect of the stimulus actually causes these
changes in behavior. Our goal throughout this study has been to characterize the
impact of observed object motion on subsequent static form processing, and the results
of these two experiments provide a rich and complex picture of that relationship.
We conclude by presenting a unified interpretation of the data from experiments 1
and 2, arguing that the combination of increased generalization and sensitivity may
reveal an important aspect of the underlying perceptual code for object appearance.

4 General discussion
We have found that the observation of object motion was followed by increased gen-
eralization over temporally close images and also increased sensitivity to the differences
between those images. These results support the notion that object learning is a dual
process of acquiring invariance and learning to detect subtle variations in object
appearance. The visual system learns about objects such that the ultimate goal of a
balance between good recognition and good discrimination is met. Our results also
suggest that temporal association (in our case, via observed object motion) plays an
important role in both aspects of this learning.

In experiment 1 we demonstrated that generalization to temporal neighbors is not
just evident at the level of object naming, but also affects performance in an image-level
task. Moreover, we assessed the strength of image binding over increasing dissimilarity
between images, finding that image binding is strongest over images that are the closest
neighbors in time and appearance. Finally, our comparison of smooth motion to dis-
continuous presentation of distinct object appearances makes a strong case for temporal
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continuity as a stronger cue for object learning than mere exposure to static images.
Though observers can use spatial continuity to bolster view-invariant performance
(Perry et al 2006), our results indicate that temporal continuity is of primary impor-
tance for generalization. The results of experiment 2 are also important in that the use of
an image-level judgment makes a strong case for a perceptual, rather than cognitive, effect
of observed object motion on form processing. Furthermore, the result that sensitivity
improves along the axis of observed appearance change is novel to the best of our knowl-
edge, and leads us to an important insight regarding the nature of object representation.

It appears difficult at first to account for both our priming results and our change-
detection results with one mechanism. If the sole function of temporal association is
to bind images together into a common representation, we might expect that increased
generalization would lead to impaired sensitivity. Learning to treat two images as though
they were the same might be thought to make them hard to discriminate, but this is
not what we observe in our change-detection task. If observers are becoming better
at generalizing over observed appearance changes, how are they also becoming more
sensitive to the same changes?

One possibility is that the implicit measure used in experiment 1 and the explicit
measure of discriminability used in experiment 2 tap into different levels of object
representation. This distinction between the results obtained with implicit and explicit
measures has been discussed before (Biederman and Gerhardstein 1993; Lawson 2004;
Seamon and Delgado 1999) and our data are generally consistent with the proposal
that invariant recognition tends to be more evident with the use of implicit, rather
than explicit, measures. To the extent that this is an accurate characterization of the
relationship between implicit and explicit measures of object perception, our results
represent a generalization of this model beyond 3-D view sensitivity to more general
(non-rigid) appearance change.

On a neural level, we must also recognize the possibility that our results reveal the
operation of two distinct neural populations: one in which motion is used to increase
invariance, and one in which motion is used to improve discrimination. This proposal
explains the data, but requires separate mechanisms for learning invariance and sensi-
tivity. During execution of a particular task, this proposal also seemingly requires the
observer to selectively recruit distinct neural populations in a task-dependent way.
Our data do not allow us to rule this possibility out, but we continue by discussing an
interesting alternative.

We suggest that our results can be well explained by positing an underlying popula-
tion code for object appearance that uses observed motion to develop a representation
of form that is not highly local. Encoding object appearance with a highly local code
would tend to lead to a direct trade-off between generalization and selectivity. If we
imagine a single unit with a typical bell-shaped tuning curve over appearances, it is
clear that broadening this curve to generalize over more appearances simultaneously
decreases the ability to discriminate between them (figure 6a). By contrast, encoding
appearance to using a population of units can potentially support both superior
generalization and better sensitivity (Hinton et al 1986). Simulations of coarse or
distributed coding have demonstrated that extremely good resolution for c̀oordinate'
judgments can be achieved with redundant representations in which tuning curves over-
lap substantially (Jacobs 1996; Jacobs and Kosslyn 1994; Milner 1974). It is easy to
apply this idea to object-appearance encoding, and thus explain both of our results
with one mechanism. First, we assume some initial population of object-selective cells
that differ in their preferred stimulus and that initially have tuning curves that do not
overlap substantially. Second, we assume that exposure to a moving object causes
each cell to widen its tuning functions so that it responds to a wider range of object
appearances. Crucially, widening must not occur symmetrically in appearance space.
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Instead, tuning curves must widen more in the direction commensurate with stimula-
tion (along the observed axis of appearance change during our training periods, for
example), leading to some degree of overlap (figure 6b). So long as the feature space is
not too dense and the tuning functions do not become too large (Hinton et al 1986),
better generalization ability and better resolution in this space can result from the over-
lapping tuning curves present in this appearance code.

Our theoretical proposal of a population code with units tuned for particular
appearances or views is consistent with several physiological results. View-tuned neurons
have been found in primate inferotemporal cortex for familiar (Perrett et al 1992) and
novel (Logothetis et al 1995) objects. There are reports of highly view-invariant responses
for familiar objects as well, but even in these studies the majority of cells show selec-
tivity for particular appearances (Booth and Rolls 1998). Psychophysical data from
both humans and monkeys provide further evidence to support population coding for
complex objects (Fang and He 2005; Logothetis et al 1994). To our knowledge, the
effects of dynamic exposure on the tuning of view-selective cells has not been directly
examined. Though there is evidence that preceding action can affect the response of
cells specific for body posture in the macaque temporal lobe (Jellema and Perrett
2003), the immediate effects of dynamic stimulation on appearance tuning for arbitrary
objects has not been examined.

This proposal points towards some intriguing avenues for future research. For
example, coarse coding in a feature space ceases to provide gains in resolution once
the tuning curves grow too large. This suggests that there should be a point where
further generalization can occur, but sensitivity does not increase. Providing observers
with extensive exposure to dynamic objects may reveal this limiting behavior. It would
also be interesting to examine how a predictive relationship between image pairs inter-
acts with the effects of dynamic exposure we have reported here. This could be studied
in the context of objects like the human body, that are familiar to the observer in
form and characteristic motion. Alternatively, one could continue to use novel objects,
building predictive relationships into the dynamic stimulus.

5 Conclusions
We have demonstrated in two psychophysical tasks that temporal association between
images results in both increased generalization over distinct images and increased
sensitivity to the differences between those stimuli. We have suggested that these data
can be explained within the context of a population code for object appearance in

(a) (b)
`Grandmother cell' Population code
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Figure 6. Schematic view of how tuning curves might change following exposure to object motion
under two distinct processing frameworks. In each case, we posit that object motion induces
broadening of the underlying tuning function (dashed lines), in keeping with previous behavioral
work concerning temporal association in primates and humans. (a) A `grandmother cell' forces a
trade-off between generalization and sensitivity. (b) Within certain limits, a population code can
support increases in both, making it possible to interpret our results in this framework.
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which observed motion leads to increased overlap of the tuning functions along the
direction of appearance change in the relevant feature space. This proposal can
account for all of our main results with only one proposed change in neural tuning
following observed object motion. Taken together, these results provide insight into
how dynamic input can affect the representation of static form, while simultaneously
revealing an important aspect of the underlying code for object appearance. This bridge
between dynamic and static object appearance is an important first step towards under-
standing how the visual system rapidly and simultaneously learns representations to
support multiple visual tasks in the fully dynamic world.
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