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Localized operators, like Gabor wavelets and difference-of-gaussian
filters, are considered useful tools for image representation. This is due
to their ability to form a sparse code that can serve as a basis set for high-
fidelity reconstruction of natural images. However, for many visual tasks,
the more appropriate criterion of representational efficacy is recognition
rather than reconstruction. It is unclear whether simple local features
provide the stability necessary to subserve robust recognition of com-
plex objects. In this article, we search the space of two-lobed differential
operators for those that constitute a good representational code under
recognition and discrimination criteria. We find that a novel operator,
which we call the dissociated dipole, displays useful properties in this re-
gard. We describe simple computational experiments to assess the merits
of such dipoles relative to the more traditional local operators. The re-
sults suggest that nonlocal operators constitute a vocabulary that is stable
across a range of image transformations.

1 Introduction

Information theory has become a valuable tool for understanding the func-
tional significance of neural response properties. In particular, theidea thata
goal of early sensory processing may be to efficiently encode natural stimuli
has generated a large body of work describing the function of the human
visual system in terms of redundancy reduction and maximum-entropy
responses (Attneave, 1954; Barlow, 1961; Atick, 1992; Field, 1994).

In the compound eye of the fly, for example, the contrast response func-
tion of a particular class of interneuron approximates the distribution of
contrast levels found in natural scenes (Laughlin, 1981). This is the most
efficient encoding of contrast fluctuations, meaning that from the point of
view of information theory, these cells are optimally tuned to the statis-
tics of their environment. In the context of the primate visual system, it
has been proposed that the receptive fields of various cells may have the
form they do for similar reasons. Olshausen and Field (1996, 1997) and Bell
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and Sejnowski (1997) have demonstrated that the oriented edge-finding
receptive fields that are found in early visual cortex (Hubel & Wiesel,
1959) may exist because they provide an encoding of natural scenes that
maximizes information. Olshausen and Field were able to produce such
filters through enforcing sparseness constraints on their encoding while
ensuring that the representation allowed high-fidelity reconstruction of
the original scene. Bell and Sejnowski enforced the statistical indepen-
dence of the filters rather than working with an explicit sparseness cri-
terion. These two approaches are actually equivalent, as demonstrated
by Olshausen and Field. An aspect of Bell and Sejnowski’s work that
sets it apart, however, is their progression through constraints of differ-
ent strength, such as principal component analysis (orthogonal basis), ZCA
(zero-phase whitening filters), and finally independent component analysis
(statistical independence). These different constraints lead to qualitatively
different filters, such as checkerboard-like structures and center-surround
functions, resembling the preferred stimuli of cells found in some parts of
the visual pathway (V4 and the lateral geniculate nucleus, (LGN), respec-
tively).

The search for efficient codes has helped direct the efforts of researchers
interested in explaining neural response properties in the visual system and
fostered the study of ecological constraints in natural scenes (Simoncelli
& Olshausen, 2001). However, there are many other tasks that the visual
system must accomplish, for which the goal may be quite different from
high-fidelity input reconstruction. The task of recognizing complex objects
is an important case in point. A priori, we cannot assume that the same
computations that result in sparse coding would also support robust
recognition. Indeed, the resilience of human recognition performance
to image degradations suggests that image measurements underlying
recognition can survive significant reductions in reconstruction quality.
Extracting measurements that are stable against ecologically relevant
transformations of an object (lighting and pose, for example) is a constraint
that might result in qualitatively different receptive field structures from
the ones that support high-fidelity reconstruction.

In this article, we examine the nature of receptive fields that emerge
under a recognition- rather than reconstruction-based criterion. We de-
velop and illustrate our ideas primarily in the context of human faces, al-
though we expect that similar analyses can be conducted with other object
classes as well. In this analysis, we note the emergence of a novel receptive
field structure that we call the dissociated dipole. These dipoles (or “sticks”)
perform simple nonlocal luminance comparisons, allowing a region-based
representation of image structure.

We also compare the stability characteristics of various kinds of filters.
These include model neurons with receptive field structures like those
found by sparse coding constraints and sticks operators. Our goal is to
eventually gain an understanding of how object representations that are
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useful for recognition might be constructed from simple image measure-
ments.

2 Experiment 1: Searching for Simple Features in the Domain of Faces _

We begin by investigating what kinds of simple features can be used to
discriminate among frontally viewed faces. The choice of a specific example
class is primarily for ease of exposition. The ideas we develop are intended
to be more generally applicable. (We substantiate this claim in experiment 2
when we describe computational experiments with arbitrary object classes.)

Computationally, there are many methods for performing the face
discrimination task with relatively high accuracy, especially if the faces are
already well normalized for position, pose, and scale. Using nothing more
than the Euclidean distance between faces to do nearest-neighbor classifi-
cation in pixel space, one can obtain reasonably good results (~65% with
a 40-person classification task using the ORL database, compiled by AT&T
Laboratories, Cambridge, UK). Using eigenfaces, one can improve this
score somewhat by removing the contribution of higher-order eigenvectors,
effectively “denoising” the face space. Further adjustments can be made as
well, including the explicit modeling of intra- and interpersonal differences
(Moghaddam, Jebara, & Pentland, 2000) and the use of more complex clas-
sifiers. On the other side of the spectrum from these global techniques are
methods for rating facial similarity that rely on Gabor jets placed at fiducial
points on a face (Wiskott, Fellous, Kruger, & von der Malsburg, 1997).
These techniques use information at multiple spatial scales to produce a
representation built up from local analyses; they are also quite successful.

The overall performance of these systems depends on both the choice
of representation and the back-end classification strategy. Since we focus
exclusively on the former, our goal is not to produce a system for recognition
that is superior to these approaches, but rather to explore the space of
front-end feature choices. In other words, we look within a specific set of
image measurements, bilobed differential operators, to see what spatial
analyses lead to the best invariance across images of the same person. For
our purposes, a bilobed differential operator is a feature type in which weighted
luminance is first calculated over two image regions, and the final output
of the operator is the signed difference between those two average values.
In general, these two image regions need not be connected. Some examples
of these filters are shown in Figure 1.

Conceptually, the design of our experiment is as follows. We exhaustively
consider all possible bilobed differential operators (with the individual
lobes modeled as rectangles for simplicity). We evaluate the discrimination
performance of the corresponding measurements over a face database
(discriminability refers to maximizing separation between individuals and
minimizing distances within instances of the same person). By sorting the
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Figure 1: Examples of bilobed differential operators of the sort employed in
experiment 1.

large space of all operators using the criterion of discriminability, we can
determine which are likely to constitute a good vocabulary for recognition.

We note that this approach differs substantially from efforts to find
reliable features for face and object detection in cluttered backgrounds.
For example, Ullman’s work on features of intermediate complexity (IC)
(Ullman, Vidal-Naquet, & Sali, 2002) demonstrates a method for learning
class-diagnostic image fragments using mutual information. These IC
features are both very likely to be present in an image when the object is
present and unlikely to appear in the image background by chance. Other
feature learning studies have concentrated on developing generative mod-
els for object recognition (Fei-Fei, Fergus, & Perona, 2003; Fergus, Perona, &
Zisserman, 2003; Fei-Fei, Fergus, & Perona, 2004) in which various appear-
ance densities are estimated for diagnostic image fragments. This allows
recognition of an object in a cluttered scene to proceed in a Bayesian manner.

These studies are unquestionably valuable to our understanding of ob-
ject recognition. Our goals in this study are slightly different, however. First,
we are interested in discovering what features support invariance to a par-
ticular object rather than a particular object class. It is for this reason that
we do not attempt to segment the objects under consideration from a clut-
tered background. We envision segmentation proceeding via parts-based
representations such as those described above. Indeed, it has recently been
shown that simple contrast relationships can be used to detect objects in
cluttered backgrounds with good accuracy (Sinha, 2002) and that good seg-
mentation results can be obtained once one has recognized an object at the
class level (Borenstein & Ullman, 2002, 2004). While it may be possible to
learn diagnostic features of an individual that could be used for segmenta-
tion purposes, we believe that it is also plausible to consider segmentation
as a process that proceeds prior to individuation (subordinate-level clas-
sification). Second, rather than looking for complex object parts that sup-
port invariance, we commence by considering very simple features. This
means that we are not likely to find globally optimal features for individua-
tion. Instead, we aim to determine what structural properties of potentially
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low-level RFs contribute to recognition. In a sense, we are trying to under-
stand what computations between the lowest and highest levels of visual
processing lead to the impressive invariances for object transformations
displayed by our visual system.

Given that we are attempting to understand how recognition abilities are
built up from low-level features, one might ask why we do not explicitly
assume preprocessing by center-surround or wavelet filters. Indeed, others
have pursued this line of thought (Edelman, 1993; Schneiderman & Kanade,
1998; Riesenhuber & Poggio, 1999), and such an analysis could help us un-
derstand how the outputs of early visual areas (such as the LGN and V1)
serve as the basis for further computations that might support recognition.
That said, we have chosen not to adopt this strategy, so that we can re-
main completely agnostic as to what basic computations are necessary first
steps toward solving high-level problems. However, it is straightforward
to extend this work to incorporate a front-end comprising simple filters.

2.1 Stimuli. We use faces drawn from the ORL database (Samaria and
Harter, 1994) for this initial experiment. The images are all 112 x 92 pixels in
size, and there are 10 unique images of each of the 40 individuals included
in the database. We chose to work with 21 randomly chosen individuals in
the database, using the first 5 images of each person. The faces are imaged
against uniform backdrops. Therefore, the task in our experiment is not
to segregate faces from a cluttered background, but rather to individuate
them.

2.2 Preprocessing

2.2.1 Block Averaging. Relaxing locality constraints results in a very large
number of allowable square differential operators in a particular image.
To reduce the size of our search space, we first down-sample all of the
images in our database to a much smaller size of 11 x 9 pixels. Much of the
information necessary for successful classification is present at this small
size, as evidenced by the fact that the recognition performance of a simple
nearest-neighbor classifier actually increases slightly (from 65% correct at
full resolution to 70% using 8 x 8 pixel blocks) if we use these smaller
images as input.

2.2.2 Constructing Difference Vectors. Our nextstep involves changing our
recognition problem from a 21-class categorization task into a binary one.
We do this by constructing difference vectors, which comprise two classes
of intra- and interpersonal variation (Moghaddam et al., 2000). Briefly, we
subtract one image from another, and if the two images used depicted the
same individual, then that difference vector captures intrapersonal varia-
tion. If the two images were of different individuals, then that difference
vector would be one that captured interpersonal variation. Given these two



P1: KEE
3032

NECO.cls September 23, 2005 14:59

6 B. Balas and P. Sinha

sets, we look for spatial features that can distinguish between these two
types of variation in facial appearance rather than attempting to find fea-
tures that are always stable within each of 21 categories. To assemble the
difference vectors used in this experiment, we took all unique pair-wise dif-
ferences between images that depicted the same person (intrapersonal set)
and used the first image of each individual to construct a set of pair-wise
differences that matched our first set in size (interpersonal set). The faces
used to construct these difference vectors were not precisely registered. We
attempted to find features robust to the variations in facial position and
view that arise in this data set.

2.2.3 Constructing Integral Images. Now that we have two sets of low-
resolution difference vectors, we introduce one last preprocessing step de-
signed to speed up the execution of our search. Since the differential opera-
tors we are analyzing have rectangular lobes, we construct integral images
(Viola & Jones, 2001) from each of our difference vectors. Integral images
allow the fast computation of rectangular image features, reducing the pro-
cess to a series of look-ups. The value of each pixel in the integral image
created from a given stimulus represents the sum of all pixels above and to
the left of that pixel in the original picture.

2.3 Feature Ranking. In our 11 x 9 images, there are a total (1) of 2970
unique box features. Given that we are interested in all possible differential
operators, there are approximately 4.5 million spatial features (1%/2) for us
to consider. To decide which of these features were best for recognition, we
used A’ as our measure of discriminability (Green & Swets, 1966). A’ is a
nonparametric measure of discriminability calculated by finding the area
underneath an observer’s ROC (receiver-operating-characteristic) curve.
This curve is determined by plotting the number of “hits” and “false alarms”
a given observer obtains when using a particular numerical threshold to
judge the presence or absence of a signal.

In this experiment, we treat each differential operator as one observer.
The signals we wish to detect are the intrapersonal difference vectors. The
response of each operator (mean value of pixels under the white rectangle
minus mean value of pixels under the black rectangle) was calculated on
each difference vector, and then the labels associated with those vectors
(intra- versus interpersonal variation) were sorted according to that nu-
merical output. With the distribution of labeled difference vectors in hand
for a particular feature, we could proceed to calculate the value of A’. We
determined how many hits and false alarms there would be for a threshold
placed at each possible location along the continuum of observed feature
values. This allowed us to plot a discretized ROC curve for each feature.
Calculating the area underneath this curve is straightforward, yielding the
discriminability for that operator. A’ scores range from 0.5 to 1. A perfect
separation of intra- and interpersonal difference vectors would lead to an
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A’ score of 1, while a complete enmeshing of the two classes would lead to
a score of 0.5.

In one simulation, the absolute value of each feature was taken (rectified
results), and in another the original responses were unaltered (unrectified
results). In this way, we could establish how instances of each class were
distributed with respect to each spatial feature, both with and without
information concerning the direction of brightness differences.

It is important to note at this stage that there is no reason to expect that
any of the values we recover from our analysis of these spatial features
will be particularly high. In boosting procedures, it is customary to use a
cascade of relatively poor filters to construct a classifier capable of robust
performance, meaning that even with a collection of bad features, one can
obtain worthwhile results. In this experiment, we are interested only in the
relative ranking of features, though it is possible that the set of features
we obtain could be useful for recognition despite their poor abilities in
isolation. We shall explicitly consider the utility of the features discovered
here in a recognition paradigm presented in experiment 2.

2.4 Results

2.4.1 Differential Operators. The top-ranked differential operators recov-
ered from our analysis of the space of possible two-lobed box filters are
displayed in Figure 2. As we expected, the A’ measured for each individual
feature is not particularly high, with the best operator in these two sets
scoring approximately 0.71.

There are four main classes of features that dominate the top 100 differen-
tial operators. First, features resembling center-surround structures appear
in several top slots, in both the rectified and unrectified data. This is some-
what surprising, given that cells with this structure are most commonly
associated with very early visual processing implicated in low-level tasks
such as contrast enhancement, rather than higher-level tasks like recogni-
tion. Of course, the features we have recovered here are far larger in terms
of their receptive field than typical center-surround filters used for early
image processing, so perhaps these structures are useful for recognition if
scaled up to larger sizes.

The second type of feature that is very prevalent in the results is what
we will call a dissociated dipole, or stick, operator, and appears primarily
in the unrectified results. These features have a spatially disjoint structure,
meaning that they execute brightness comparisons across widely separate
parts of an image. Admittedly, the connection between these operators
and the known physiology of the primate visual system is weak. To date,
there have been no cells with this sort of dissociated receptive field structure
found in the human visual pathway, although they may exist in the auditory
and somatosensory processing streams (Young, 1984; Chapin, 1986).
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Figure 2: The top 100 ranked features for discriminating between intra- and
interpersonal difference vectors. Beneath the 10 x 10 array are representatives
of the most common features discovered.

The final two features are elongated edge and line detectors, which
dominate the results of the rectified operators. An elongated edge detector
appears in the unrectified rankings as well, but other structurally similar
features are found only in the next 100 ranked features. These structures
resemble some of the receptive fields known to exist in striate cortex, as well
as the wavelet-like operators that support sparse coding of natural scenes.

We point out that multiple copies of these features appear throughout our
rankings, which is to be expected. Small structural changes to these filters
only slightly alter their A’ score, meaning that many of the top features have
very similar forms. We do not attribute any particular importance to the fact
that the nonlocal operators that perform best appear to be comparing values
on the right edge of the image to values in the center, or to the tendency for
elongated edge detectors to appear in the center of the image. It is only the
generic structure of each operator that is important to us here.

2.4.2 Single Rectangle Features. We chose to examine differential opera-
tors in our initial analysis for several reasons. First, cells with both excitatory
and inhibitory regions are found throughout the visual system. Second, by
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Figure 3: Plots of A’ scores across the best features from each family of operators
(single versus double rectangle features, as well as rectified versus unrectified
operator values).

taking the difference in luminance between one region or another, one is
far less sensitive to uniform changes in illumination brought on by haze a
bright lighting, for example. However, given that we are using a database
of faces that is already relatively well controlled in terms of lighting and
pose, it may be the case that even simpler features can support recognition.
To examine this possibility, we conduct the same analysis described above
for differential operators on the set of all single-rectangle box features in
our images.

We find that single-rectangle features are not as useful for discriminating
between our two classes as are differential operators. The range of A’ values
for the top 100 features from each category is plotted in Figure 3, where it
is clear that both sets of differential operators provide better recognition
performance than single box filters. Even in circumstances where many of
the reasons to employ differential operators have been removed through
clever database construction (say, by disallowing fluctuations in ambient
illumination), we find that they still outperform simpler measurements.
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2.5 Discussion. In our analysis of the best differential operators for
face recognition, we have observed a new type of operator (the dissociated
dipole) that offers an alternative form of processing by which within-class
stability might be achieved for images of faces. An important question to
consider is how this operator fits within the framework of previous com-
putational models of recognition, as well as whether it has any relevance to
human vision.

The dissociated dipole is an instance of a higher-order image statistic,
a binary measurement. The notion that such statistics might be useful for
pattern recognition is not new; indeed, Julesz (1975) suggested that nee-
dle statistics could be useful for characterizing random dot textures. In the
computer vision community, nonlocal comparisons are employed in inte-
gral geometry to characterize shapes (Novikoff, 1962). The possibility that
nonlocal luminance comparisons may be useful for object and face recogni-
tion has not been thoroughly explored, however. Such an approach differs
from traditional shape-based approaches to object recognition, in that it
implicitly considers relationships between regions to be of paramount im-
portance. Our recent results (Balas & Sinha, 2003) have demonstrated that
such a nonlocal representation of faces provides for better recognition per-
formance than a strictly local one. Furthermore, Kouh and Riesenhuber
(2003) have found that to model the responses of V4 neurons to various
gratings using a hierarchical model of recognition (Riesenhuber & Poggio,
1999), it is necessary to pool responses from spatially disjoint low-level
neurons.

Before proceeding, we wish to specify more precisely the relationship
between local, nonlocal, and global image analysis. We consider local anal-
yses those in which a contiguous set of pixels (either 4- or 8-connected) is
represented in terms of a single output value. A global analysis is similar
to this, save for the amount of the image under consideration. In the limit,
a global image analysis uses all pixels in the image to construct the output
value. A local analysis might use only some small percentage of image area.
This distinction is not truly categorical. Rather, there is a spectrum between
local and global image analysis.

Likewise, a similar spectrum exists between local and nonlocal analysis.
While a local analysis considers only a set of contiguous pixels, a nonlocal
analysis breaks this condition of contiguity. In the extreme, one can imag-
ine a highly nonlocal feature composed of two pixels located at opposite
corners of an image. At the other extreme would be a highly local feature
consisting of two neighboring pixels. Of course, there are many operators
spanning these two possibilities that are neither purely local nor nonlo-
cal. Moreover, if one measures local features (like Gabor filter outputs) at
several nonoverlapping positions, is this a local or a nonlocal analysis? If
one is merely concatenating the values of each local analysis into one fea-
ture vector, then this is not a truly nonlocal computation by our definition.
If, however, the values of those local features are explicitly combined to
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Figure 4: A dipole measurement is parameterized in terms of the space con-
stant o of each lobe, the distance § between the centers of each lobe, and the
angle of orientation, 6.

produce one output value, then we would have arrived at a nonlocal anal-
ysis of the image. Nonlocal analysis of this type has traditionally received
less attention than local or global strategies of image processing.

The reason nonlocal representations of brightness have not been studied
in great detail may be due to the sheer number of generic binary statistics. In
general, the trouble with appeals to higher-order statistics for recognition
is that there is a vast space of possible measurements that are allowable
with the introduction of new parameters (in our case, the distance between
operator lobes). This combinatorial explosion makes it hard to determine
which particular measurements are actually useful within the large range
of possibilities. This is, of course, a serious problem in that the utility of
any set of proposed measurements is dependent on the ability to separate
helpful features from useless ones.

We also note that there are several computational oddities associated
with nonlocal operators. Suppose that we formulate a dissociated dipole as
a difference-of-offset-gaussians operator (a model we present in full in the
next experiment), allowing the distance between the two gaussians to be
manipulated independent of either one’s spatial constant (see Figure 4). In
so doing, we lose the ability to create steerable filters (Freeman & Adelson,
1991), meaning that to obtain dipoles at a range of orientations, we have no
other option than to use a large number of operators. This is not impossible,
but it lacks the elegance and efficiency of more traditional approaches by
which multiscale representations can be created at any orientation through
the use of a small number of basis functions.

Another important difference between local and nonlocal computations
is the distribution of operator outputs. Natural images are spatially redun-
dant, meaning that the output of most local operators is near zero (Kersten,
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1987). The result is a highly kurtotic distribution of filter outputs, indicat-
ing that a sparse representation of the image using those filters is expected.
In many cases, this is highly desirable from both metabolic and computa-
tional viewpoints. As we increase the distance between the offset gaussians
we use to model dissociated dipoles, the kurtosis of the distribution de-
creases significantly. This means that using these operators yields a coarse
(or distributed) encoding of the image under consideration. This may not be
unreasonable, especially given that distributed representations of complex
objects may help increase robustness to image degradation. However, it is
important to note that nonlocal computations depart from some conven-
tional ideas about image representation in significant ways.

Finally, given that we have discussed our findings in the context of
discovering receptive field structures that are good for recognition rather
than encoding, it is important to describe what differences we see between
those two processes. The initial stages of any visual system have to perform
transduction—transforming the input into a format amenable to further
processing. Encoding is the process by which this re-representation of the
visual input is accomplished. Recognition is the process by which labels
that reflect aspects of image content are assigned to images. The constraints
on encoding processes are twofold: the input signal should be represented
both accurately and efficiently. Given the variety of visual tasks that must
be accomplished with the same initial input, it makes sense that early vi-
sual stages would not be committed to optimizing any one of them. For
that reason, we suggest that recognition operates on a signal that is ini-
tially encoded via localized edge-like operators, but may rely on different
measurements extracted from that signal that prove more useful.

In our next experiment, we directly address the question of whether the
structures we have discovered in this analysis are useful for face and object
classification. In this next analysis, we remove many of the simplifications
necessary for an exhaustive search to be tractable in experiment 1. We also
move beyond the domain of face recognition to include multiple object
classes in our recognition task.

3 Experiment 2: Face and Object Recognition Using Local and Nonlocal
Features

In our first experiment, we noted the emergence of center-surround op-
erators and nonlocal operators under a recognition criterion for frontally
viewed faces. However, in our first experiment, many compromises were
made in order to conduct an exhaustive search through the space of pos-
sible operators. First, our images were reduced to an extremely small size
in order to limit the number of features we needed to consider. Though
faces can be recognized at very low resolutions, it is also clear that there
is interesting and useful structure at finer spatial scales. Second, we chose
to work with difference images rather than the original faces. This allowed
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Figure 5: Examples of stimuli used in experiment 2. (A) Training images of
several individuals depicted in the ORL database. (B) Training images of objects
depicted in the COIL database. Note that the COIL database contains multiple
exemplars of some object classes (such as the cars in this figure), making within-
class discrimination a necessary part of performing recognition well using this
database.

us to transform a multicategory classification task into a binary task, but
embodied the implicit assumption that a differencing operation occurs as
part of the recognition process. Third, we point out that in any consider-
ation of all possible bilobed features in an image, the number of nonlocal
features will far exceed the number of local features. Greater numbers need
not imply better performance, yet it is still possible that the abundance of
useful nonlocal operators may be a function of set size. Finally, we note
that in considering only face images, it is unclear whether the features we
discovered are useful for general recognition purposes or specific to face
matching.

In this second experiment, we attempt to address these concerns through
a recognition task that eliminates many of these difficulties. We employ
high-resolution images of both faces and various complex objects in a classi-
fication task designed to test the efficacy of center-surround, local-oriented,
and nonlocal features in an unbiased fashion.

3.1 Stimuli. For our face recognition experiment, we once again make
use of the ORL database. In this case, all 40 individuals were used, with
one image of each person serving as a training image. The images were not
preprocessed in any way and remained at full resolution (112 x 92 pixels).

To help determine if our findings hold up across a range of object cate-
gories, we also conduct this recognition experiment with images taken from
the COIL database (see Figure 5; Nayar, Nene, & Murase, 1996; Nene, Nayar,
& Murase, 1996). These images are 128 x 128 pixel images of 100 different
objects, including toy cars, foods, pharmaceutical products, and many other
diverse items. We selected these images for the wide range of surface and
structural properties represented by the objects. Also, repeated exemplars
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of a few object categories (such as cars) make both across-class and within-
class recognition necessary. Each object is depicted rotated in depth from its
original position in increments of 5 degrees. We chose the 0 degree images
of each object as training images, and used the following 9 images as test
images. The only preprocessing performed on these images was reducing
them from full color to grayscale.

3.2 Procedure. To determine the relative performance of center-
surround, local-oriented, and nonlocal features in an unbiased way, we
model all of our features as generalized difference-of-gaussian operators.
A generic bilobed operator in two-dimensional space can be modeled as
follows:

1 —(-np)! s e-p) 1 —G-n2)! 55 e-np)
2

——e 2 - (3.1)
V2 |3 V2| T2

For all of our remaining experiments, we consider only operators with
diagonal covariance matrices ¥; and X,. Further, the diagonal elements
of each matrix X shall be equal, yielding isotropic gaussian lobes. For this
simplified case, equation 3.1 can be expressed as

1 —(x—;;l 2 1 —(x—«;z)z
e ¥ _ e 2 (3.2)
V2moq V2moy

We introduce also a parameter § to represent the separation between two
lobes. This is simply the Euclidean norm of the difference between the two
means:

8=llp2— mll . (3.3)

In order to build a center-surround operator, § must be set to zero, and the
spatial constants of the center and surround should be in a ratio of 1 to 1.6 to
match the dimensions of receptive fields found in the human visual system
(Marr, 1982). To create a local-oriented operator, we shall set 61 = 02, and
set the distance § to be equal to three times the value of the spatial constant.
Finally, nonlocal operators can be created by allowing the distance § to
exceed the value 30 (once again assuming equal spatial constants for the
two lobes). Examples of all of these operators are displayed in Figure 6.

Given this simple parameterization of our three feature types, we choose
in this experiment to sample equal numbers of each kind of operator from
the full set of possible features. In this way, we may represent each of our
training images in terms of some small number of features drawn from
a specific operator family and evaluate subsequent classification perfor-
mance.
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Figure 6: Representative operators drawn from the four operator families
considered in experiment 2. Top to bottom, we display examples of center-
surround features, local oriented features, and two kinds of nonlocal features
(6 = 60,5 =90).

Four operator families were considered: center-surround features
(6 = 0), local-oriented features (§ = 307), and two kinds of nonlocal fea-
tures (8 = 60 and 90). For each operator family, we constructed 40 banks of
50 randomly positioned and oriented operators each. Twenty of these fea-
ture banks contained operators with a spatial constant of 2 pixels, and the
other 20 feature banks contained operators with a 4 pixel spatial constant.
Each bank of operators was applied to the training images to generate a fea-
ture vector consisting of 50 values. The same operators were then applied
to all test images, and the resulting feature vectors were classified using a
nearest-neighbor metric (L2 norm). This procedure was carried out on both
the ORL and the COIL databases.

3.3 Results. The number of images correctly identified for a given filter
bank was calculated for each recognition trial, allowing us to compute an
average level of classification performance from the 20 runs within each
operator family and spatial scale (see Figure 7). We find in this task that
once again, center-surround and nonlocal features offer the best recognition
performance. This result holds at both spatial scales used in this task, as well
as for both face recognition and multiclass object recognition. We also note
the small variability in recognition performance around each operator’s
mean value. Despite the random sampling of features used to constitute
our operator banks, the resulting recognition performance remained very
consistent.

Inboth cases, we note that center-surround performance slightly exceeds
that obtained using nonlocal operators. It is interesting to note, however,
that a larger separation between the lobes of a nonlocal feature results in
better recognition performance. This cannot continue indefinitely, of course,
as longer and longer separations will lead to more limitations on where op-
erators can be placed within the image. Increased accuracy with increased
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Figure 7: Recognition performance for both faces (left) and objects (right) as a
function of both the distance between operator lobes and the spatial constant
of the lobes.

nonlocality does suggest that larger distances between lobes are more use-
ful, however, and that it is not enough simply to deviate from locality.

We note that the distinct dip in performance for local-oriented features
is both consistent and puzzling. Why should it be the case that unori-
ented local features are good at recognition while oriented local features
are poor? Center-surround operators analyze almost the same pixels as a
local-oriented operator placed at the same location, so why should they
be so different in terms of their recognition performance? Moreover, how
is it that radically different operators like the dissociated dipole and the
center-surround operator should perform so similarly? In our third and
final experiment, we attempt to address these questions by breaking down
the recognition problem into distinct parts so we can learn how these oper-
ator families function in classification tasks.

Specifically, we point out that good recognition performance is made
possible when an operator possesses two distinct properties. First, an op-
erator must provide a stable response to images of objects with the same
identity. Second, the operator must respond differently to images of objects
with different identities. Neither condition is sufficient for recognition to
proceed, but both are necessary. We hypothesize that though both center-
surround operators and nonlocal operators provide useful information for
recognition, they do so in different ways. In our last experiment, we as-
sess both the stability and variability of each operator type to determine
how good recognition results are achieved with different receptive field
structures.
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4 Experiment 3: Feature Stability and Variability

In experiment 2, we determined that both center-surround and nonlocal
operators outperform local oriented features at recognition of faces and
objects. In many ways, this is quite surprising. Center-surround features
appear to share little with nonlocal operators as we have defined them, yet
their recognition performance is quite similar.

In this task, we break down the recognition process into components of
stability and variability. To perform well at recognition, a particular operator
must first be able to respond in much the same way to many different images
of the same face. This is how we define stability, and one can think of it in
terms of various identity-preserving transformations. Whether a face is
smiling or not, lit from the side or not, a useful operator for recognition
must not vary its response too widely. If this proves true, we may say that
that feature is stable with respect to the transformation being considered.

We use this notion to formulate an operational definition of stability in
terms of a set of image measurements and a particular face transformation.
Let us first assume that we possess a set of image measurements in a
filter bank, just as we did in experiment 2. This filter bank is applied to
some initial image, which shall always depict a person in frontal view
with a neutral expression. The value of each operator in our collection
can be determined and stored in a one-dimensional vector, x. This same
set of operators is then applied to a second image, depicting the same
person as the original image but with some change of expression or pose.
The values resulting from applying all operators to this new image are
then stored in a second vector, y. The two vectors x and y may then be
compared to see how drastic the changes in operator response were across
the transformation from the first image to the second. If by some luck our
operators are perfectly invariant to the current transformation, plotting x
versus y would produce a scatter plot in which all points would lie on the
line y = x. Poor invariance would be reflected in a plot in which points are
distributed randomly. For two vectors x and y (each of length 1), we may
use the value of the correlation coefficient (see equation 4.1) between them
as our quantitative measure of feature stability:

e n(Exy) — (x)(Zy) 1)

VInsx? — (Zx)2]nsy? — (Ty)?]

The second component of recognition is variability. It is not enough to be
stable to transformations; one must also be diagnostic of identity. Imagine,
for example, that one finds an image measurement that is perfectly stable
across lighting, expression, and pose transformations. It may seem that this
measurement is ideal for recognition, but let us also imagine that it turns
out to be of the same value for every face considered. This provides no
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means of distinguishing one face from another, despite the measurement’s
remarkable invariance to transformations of a single face. What is needed is
an ability to be stable within images of a single face, but vary broadly across
images of many different faces. This last attribute we shall call variability,
and we may quantify it for a particular measurement as the variance of its
response across a population of faces.

In this third experiment, we use these operational definitions of stability
and variability to determine what properties center-surround and nonlocal
operators possess that make them useful for recognition. We shall return
once again to the domain of faces, as they provide a rich set of transforma-
tions to consider, both rigid and nonrigid alterations of the face in varying
degree.

4.1 Stimuli. We use 16 faces (8 men, 8 women) from the Stirling face
database for this experiment. The faces are grayscale images of individuals
in a neutral, frontal pose accompanied by pictures of the same models
smiling and speaking while facing forward, and also in a three-quarter
pose with neutral expression. We call these transformations the SMILE,
SPEECH, and VIEW transforms, respectively. The original images were
284 x 365 pixels, and the only preprocessing step applied was to crop out
a 256 x 256 pixel region centered in the original image rectangle.

4.2 Procedure. All operators in these sets were built as difference-of-
gaussian features, exactly as described in experiment 2. Also as before,
center-surround, local oriented, and two kinds of nonlocal features were
evaluated. Because we would like to understand how both the separation of
lobes and their individual spatial extent affect performance, two scales were
employed for each kind of feature. Space constants of 4 pixels (fine scale)
and 8 pixels (coarse scale) were used. In the case of center-surround features,
the value of the space constant always refers to the size of the surround.
For each pair of images to be analyzed, we construct 120 collections of
50 operators each. These feature banks were split into 10 center-surround,
10 local, and 20 nonlocal banks (10 banks each for separations of six and
nine times the spatial constant of the lobes) at both scales mentioned above.

Once a set of operators was constructed, we applied it to each neutral,
frontal image in our data set to assemble the feature value for the starting im-
age. The same operators were then applied to each of the three transformed
images so that a value for Pearson’s R could be calculated for that set of
operators relative to each transformation. The average value of Pearson’s R
could then be taken across all 16 faces in our set. This process was repeated
for all families and scales of operator banks to assess stability.

To assess variability, operator banks were once again applied to the
neutral, frontal images once again. This time, the variance in each operator’s
output was calculated across the population of 16 faces. The results were
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Figure 8: The stability of each feature type (x-axis) as a function of both the
spatial scale of the gaussian lobes and various facial transformations.

combined and expressed in terms of the mean variance of response and its
standard deviation.

4.3 Results

4.3.1 Difference-of-Gaussian Features. Plots depicting the average values
of the correlation coefficients (averaged again over all individuals) are
presented in Figure 8. We present the measured stability of each kind of
operator across three ecologically relevant transformations: SMILE (sec-
ond image of individuals smiling), SPEECH (second image of individuals
speaking), and VIEW (second image of individuals in three-quarters pose).

These plots highlight several interesting characteristics of our operators.
First, center-surround filters at both scales appear to perform quite well
compared to the other features once again. As soon as we move the two
gaussians apart to form oriented local operators, however, a sharp dip in
stability occurs. This indicates that the two-lobed oriented edge detectors
used here provide for comparatively poor stability across all three of the
transformations we have examined here. That said, as the distance be-
tween the lobes of our operators increases further, stability of response also
increases. Nonlocality seems to increase stability across all three transfor-
mations, nearly reaching the level of center-surround stability at a coarse
scale.

Stability, however, is not the only attribute required to perform recog-
nition tasks well. As discussed earlier, a feature that is stable across face
transformations is useful only if it is not also stable across images of differ-
ent individuals. That is, a universal feature is not of any use for recognition
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Table 1: Mean =+ S.E. of Operator Variance Across Individuals.

o=4 o=28 o=16

Center-surround  122.5+ 3.7 206.6 £ 6.2 311.3 £85

Local (s = 3) 242.0£9.6 527.0 £15.0 986.9 + 26.7
Nonlocal s=6) 3788 +114 7185+17.7 1204.1+29.9
Nonlocal (s=9) 4302 +11.0 7954+19.7 1271.7+32.6

because it has no discriminative power. We present next the amount of
variability in response for each family of operators (see Table 1).
Center-surround operators appear to be the least variable across images
of different individuals, while nonlocal operators appear to vary most. All
feature types except for the center-surround filters increase in variability
as their scale increases, which seems somewhat surprising, as one might
expect more dramatic differences in individual appearance to be expressed
at a finer scale. Nonetheless, we can see from the combination of these
results and the stability results that center-surround and nonlocal operators
achieve good recognition performance through different means. Center-
surround operators are not so variable from person to person, but make
up for it with an extremely stable response to individual faces despite
significant transformations. In contrast, nonlocal operators lack the full
stability of center-surround operators, but appear to make up for it by being
much more variable in response across the population of faces. The local-
oriented features rank poorly in terms of both their stability and variability
characteristics, thus limiting their usefulness for recognition tasks.

4.4 Discussion. The results of our stability analysis of differential oper-
ators reveal two main findings. First, the same features that were discovered
to perform the best discrimination between intra- and interpersonal differ-
ence vectors in experiment 1 (large center-surround filters and nonlocal
operators) and to perform best in a simple recognition system for both faces
and objects (experiment 2) also display the greatest combination of stability
and variability when confronted with ecologically relevant face transforms.
However, the limited stability of local oriented operators suggests that they
may not provide the most useful features for handling these image trans-
forms.

5 Conclusion

We have noted the emergence of large center-surround and nonlocal op-
erators as tools for performing object recognition using simple features
and found that both of these operators provide good stability of response
across a range of different transforms. These structures differ from recep-
tive field forms known to support sparse encoding of natural scenes, yet
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seem to provide a better means of discriminating between individual ob-
jects and providing stable responses to image transforms. This suggests that
the constraints that govern information-theoretic approaches to image rep-
resentation may not necessarily be useful for developing representations
that can support the recognition of objects in images.

In the specific context of faces, do large center-surround fields or nonlocal
comparators, on their own, present a viable alternative to performing effi-
cient face recognition? At present, the answer to this question is no. Com-
plex (and truly global) features such as eigenface (Turk & Pentland, 1991)
bases provide for higher levels of recognition performance than we ex-
pect to achieve using these far simpler features. We note, however, that the
discovery of a useful vocabulary of low-level features may aid global recog-
nition techniques like eigenface-based systems. One could easily compute
PCA bases on nonlocal and center-surround measurements rather than pix-
els. The added stability of these operators may help significantly increase
recognition performance.

The larger question at stake, however, does not only concern face recog-
nition, despite its” being our domain of choice for this study. Of greater
interest than building a face recognition engine is learning how one might
obtain stability to relevant image transforms given some set of simple mea-
sures. Little is known about how one moves from highly selective, small
receptive fields in V1 to the large receptive fields in inferotemporal cortex
that demonstrate impressive invariance to stimulus manipulations within
a particular class. We have introduced here a particular measurement, the
dissociated dipole, which represents one example of a very broad space of
alternative computations by which limited amounts of invariance might be
achieved. Our proposal of nonlocal operators draws support from several
studies of human perception. Indeed, past psychophysical studies of the
long-range processing of pairs of lines suggest the existence of similarly
structured “coincidence detectors,” which enact non-local comparisons of
simple stimuli (Morgan & Regan, 1987; Kohly & Regan, 2000). Further work
exploring nonlocal processing of orientation and contrast has more recently
given rise to the idea of a “cerebral bus” shuttling information between dis-
tant points (Danilova & Mollon, 2003). These detectors could contribute
to shape representation, as demonstrated by Burbeck’s idea of encoding
shapes via medial “cores” built by integrating information across disparate
“boundariness” detectors (Burbeck & Pizer, 1995).

Our overarching goal in this work is to redirect the study of nonclassi-
cal receptive field structures toward examining the possibility that object
recognition may be governed by computations outside the realm of tradi-
tional multiscale pyramids, and subject to different constraints from those
that guide formulations of image representation based on information the-
ory. The road from V1 to IT (and, computationally speaking, from Gabors
and gaussian derivatives to eigenfaces) may contain many surprising image
processing tools.
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Even within the realm of dissociated dipoles, there are many parame-
ters to explore. For example, the two lobes need not be isotropic or be of
equal size and orientation. The lobes could easily take the form of gaussian
derivatives rather than gaussians. Given that there are many more param-
eters that could be introduced to the simple DOG framework, it is possible
that even better invariance could be achieved by introducing more degrees
of structural freedom. The point is that expanding our consideration to
nonlocal operators opens up a large space of possible filters, and systematic
exploration of this space, while difficult, may be very rewarding.
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