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Abstract

Deep Convolutional Neural Networks (DCNNs) have demonstrated impressive
robustness to recognize objects under transformations (e.g. blur or noise) when
these transformations are included in the training set. A hypothesis to explain such
robustness is that DCNNs develop invariant neural representations that remain
unaltered when the image is transformed. Yet, to what extent this hypothesis holds
true is an outstanding question, as including transformations in the training set
could lead to properties different from invariance, e.g. parts of the network could
be specialized to recognize either transformed or non-transformed images. In this
paper, we analyze the conditions under which invariance emerges. To do so, we
leverage that invariant representations facilitate robustness to transformations for
object categories that are not seen transformed during training. Our results with
state-of-the-art DCNNs indicate that invariant representations strengthen as the
number of transformed categories in the training set is increased. This is much
more prominent with local transformations such as blurring and high-pass filtering,
compared to geometric transformations such as rotation and thinning, that entail
changes in the spatial arrangement of the object. Our results contribute to a better
understanding of invariant representations in deep learning, and the conditions
under which invariance spontaneously emerges.

1 Introduction

A widely-known strategy to gain robustness to image and object transformations in Deep Convolu-
tional Neural Networks (DCNNGs) is to include the transformation in the training set [6}/7,/18}22].
Geirhos et al. [[7] recently demonstrated that this strategy is not only successful in achieving robust-
ness to local transformations, such as blur and noise, but also outperforms human-level recognition
accuracy in transformed images. In a subsequent paper, Geirhos ef al. 6] show that including some
transformations in the training set that emphasize the shape of the object rather than the texture leads
to robustness to transformations beyond the ones seen during training.

Despite these recent results demonstrating effective ways of achieving robustness to transformations,
the field still lacks a good understanding of the underlying neural mechanisms that enable such
robustness. Decades of research at the intersection of Neuroscience and Computer Vision has led to
the hypothesis that neural networks may develop invariant neural representations to achieve robustness
to transformations (|18, 15H17], i.e. the internal representations may remain mostly unaltered when
the image is transformedm Yet, to what extent this hypothesis holds true is an outstanding question. It

"Note that we use the term robustness to a transformation, or simply robustness, to denote that DNN
classification accuracy does not deteriorate in transformed images. Also, we use the term invariance to a
transformation, or invariance, to indicate that the internal neural representation of the DNN is not altered by the
transformation.
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Figure 1: Experimental Paradigm and Image Transformations (a) The DNN is trained with the
transformations in the training set restricted to the seen-transformed categories. The accuracy for
transformed images is evaluated in categories that are either seen or unseen transformed. (b) We
analyze 12 image transformations from four families: color, convolutional, noise and geometric.

is possible that DCNNs develop properties different from invariance when including transformations
in the training set, e.g. parts of the network may specialize in recognizing either transformed or
non-transformed images. Answering what representations emerge in the network could reveal new
insights that help to develop more robust models.

In this paper, we investigate to what extent and under what conditions invariant representations
emerge in DCNNSs trained with transformations. To do so, we leverage the property of invariant
representations that enable robustness to object categories not transformed in the training set [15]. We
denote this form of robustness as across-category robustness, while we use the term within-category
robustness to designate robustness to categories that are seen transformed during training. Note that
since invariant representations result in across-category robustness, invariance enables reducing the
amount of training examples, as not all objects need to be seen transformed to achieve robustness.

To validate that the amount of invariance in the network drives robustness and is not epiphenomenal,
we evaluate across-category robustness by analyzing DCNNs trained such that the transformations in
the training set are restricted to a subset of categories. A series of experiments with state-of-the-art
DCNNs in FaceScrub and ImageNet reveal that invariant representations emerge as the
number of transformed categories in the training set is increased. This trend is remarkable for
local transformations, e.g. blurring and high-pass filtering, compared to geometric transformations
such as rotations and thinning. Our analysis uncovers new evidence that invariance emerges at the
individual neural level and demonstrates that it facilitates robustness to categories that the network
has not seen transformed during training. These results are a first milestone to understand the neural
representations that drive robustness to transformations.

2 Signatures of Invariant Neural Representations

In this section, we introduce our methodology for investigating to what extent invariant neural
representations drive robustness to transformations. For simplicity, we consider DCNNs trained on a
set of images with only one transformation, as well as a set of non-transformed images. This yields
robustness to the trained transformation but is unlikely to result in robustness to other transformations
that the DCNN was not trained on [7]].

A neural network is completely invariant when the activations in the DCNN are identical for the
transformed and non-transformed images. While this is ideal, it is important to note that it is not a
pre-requisite for robustness: in practice, a certain amount of invariance may emerge, even without
attaining identical neural activity, and result in robustness. This adds a difficulty in the analysis of
invariance because it is difficult to determine whether small changes in the neural activity result in
loss of robustness. Adversarial perturbations are one such example [20]. Thus, to validate that a



certain amount of invariance does indeed lead to robustness, we evaluate if that amount of invariance
results in across-category robustness. Recall that across-category robustness is a consequence of
invariant representations and hence, evaluating it jointly with the amount of invariance provides solid
evidence about the role of invariance for robustness. In the following, we first introduce the paradigm
to evaluate across-category robustness, and then, the measure of invariance to transformations.

2.1 Paradigm to Evaluate the Across-Category Robustness

To test across-category robustness we use the procedure depicted in Fig.|ll Images of the subset
of categories denoted as seen-transformed appear both transformed and non-transformed in the
training set. The remainder of the categories, denoted unseen-transformed, appear in the training
set only in their non-transformed version. Note that the sum of the number of categories in each
set is equal to the total number of categories in the dataset. The network is trained with both seen-
and unseen-transformed categories by uniformly randomizing the categories and images during each
training step. When an image of the seen-transformed set is used, it is also randomly chosen with
equal probability to appear as transformed or not transformed.

The network’s task is to predict the category of the input image. We evaluate the accuracy of the
network on transformed test images for the seen- and unseen-transformed categories separately,
which yields the within- and across-category accuracy, respectively. We train multiple networks with
different number of seen-transformed categories during training. In all the experiments, the network
predicts a category among all categories in the dataset, i.e. the possible output choices of the network
remain the same when evaluating within- and across-category accuracy. Thus, robustness among all
the networks can be compared without bias because the only change between them is the number of
seen-transformed categories during training.

Note that a possible alternative to our paradigm could be based on training the network in two
steps, i.e. first training the seen-transformed and then the unseen-transformed categories. Yet, this
has limitations to analyse invariance because lack of across-category robustness can be due to other
reasons unrelated to invariance. If the training of the unseen-transformed categories is done by fine-
tuning the network, there could be the so-called “catastrophic forgetting” of the transformation [[11].
Otherwise, without fine-tuning, the features learnt for the seen-transformed categories may not be
generalizing well to the unseen-transformed. Training both sets at the same time, as in our paradigm,
alleviates those problems.

2.2 Invariance to Transformations at the Individual Neural Level

Understanding DCNNs at the individual neural level has lead to promising results that provide granular
and simple explanations of the underlying mechanisms behind DCNN generalization [14,[23]24].
Individual neurons are commonly interpreted as feature detectors that are tuned to image features.
A neuron is active, i.e. the neuron’s output value is high, when the feature is present in the image,
otherwise the neuron is not active and the output value of the neuron is low. Neurons are tuned to
features that are not necessarily interpretable by humans [3]]. We analyse the invariance of a neuron
by evaluating the change of its activity when the image is transformed. For example, a neuron may
be tuned to detect a dog nose because it is only active in the presence of a dog nose in the image. If
the neuron is invariant, it will continue being active when the dog nose is transformed.

Only invariance in neurons that are active may help to achieve robustness to transformations. If a
neuron is inactive in both the transformed and the non-transformed images, the activity is invariant
to the transformation. Yet, this is because the feature that the neuron is tuned to is not present in
the image, which does not contribute to the network’s classification accuracy. Also, neurons whose
activity is constant across all images, i.e. neurons that are not tuned to any feature, are invariant
and do not contribute to network’s accuracy. Thus, invariance is helpful to achieve robustness
to transformations only when neurons that are activated by an image are also invariant to the
transformation.

Following these intuitions, Goodfellow et al. [[8] introduced a measure of invariance which analyzes
the activity in images that generate the top-1% of the neuron’s output value. These images are
transformed and invariance is evaluated by assessing whether the activity remains in the top-1%
or not. This metric is effective to discard the cases of invariance that are not related to robustness.
Yet, it is unclear to what degree the activity generated in a neuron by the rest of the 99% of images



that are not analysed relates to robustness. In the following, we introduce a procedure that controls
that the majority of the neural activity related to robustness is taken into account by the invariance
measurement. We first introduce the procedure to determine when a neuron is active and then, the
measure of invariance of active neurons.

Active Neurons. Let X' be the images of the test set and let x € X be one of its images. We refer to
the transformed version of the image as T'(x). For the sake of notation simplicity, we consider T'(z)
to be the transformation that is included in the training set without specifying the type transformation.
Let fk(x) be the activity of the neuron indexed by k£ when the network’s input is z € X. Note
that fk(x) can be multiplied by a factor without affecting the performance of the network, if the
post-synaptic weights are divided by that factor. Thus, the order of magnitude of fk (z) is not relevant

and we discard it by normalizing f;,(:). We define f},(2) as the normalized activity of neuron k, such
that fy(z) is equal to 1 for the image that generates the maximum activity among transformed and
not-transformed images. Note that the minimum value that f(z) can take is 0 because the neurons
use ReL.U activation [12].

We define the neuronal tuning of a neuron as the set of images that generate an activity above a thresh-
old. Let 7 be such threshold and let .4;; be the set of images that generate an output value higher than
7. Thus, Ay, represents the neuronal tuning of neuron £ as it contains the set of images that yield the
neuron active. Ay, is the following subset of X: Ay = {z € X | (fx(z) > 7) V (fu(T(z)) > 1)},
in which where V is the “logic or” operator. Note that the activity generated by both transformed and
non-transformed images is considered.

In order to determine the value of 7, we need to take into account a compromise between the following
two factors. On one hand, the value of 7 should be as high as possible such that the neuronal tuning
is specific and invariance due to lack of activity is discarded. On the other hand, 7 should be made as
low as possible in order to include in .A;, all the activity that is relevant for the network’s robustness.
To do so, we validate that the network’s robustness is not affected by ablating all neurons except the
active, given an image. Also, we validate that the network’s accuracy is at chance when all the active
neurons are ablated. These tests provide reassurance that the active neurons drives the network’s
robustness. In the experiments section, we show that neurons are active only on a small set of images
and their activity is almost the only responsible of the network’s robustness.

Measure of Invariance in Active Neurons. In order to measure the invariance of a neuron, only the
images in the set A, will be used. This is because, as previously discussed, invariance of neurons
that are not active for a given image are not related to robustness. We define hy () as the invariance
measure of neuron k given an image x € X'. We use the following expression based on the normalized
difference between the neurons’ activity of the transformed and non-transformed images:

_ | (T (=) = fr(x)
fi(T(2)) + fu(z) |

We can see by analysing Eq. (I) that hy(z) is equal to 1 when the neuron is perfectly invari-
ant, i.e. f(T(x)) = fr(x), and is equal to 0 when the neuron’s activity varies maximally, such
that f,(T'(z)) = 0 and fi(z) = 1 and vice versa. Thise invariance measure takes values between
0 and 1 depending on how much the activity of x and T'(z) varies. We define I}, as the invariance
coefficient of neuron k. I, is obtained by averaging hj(z) over the set of images that the neuron is
active, Ay, i.e. I, = ﬁ Do A, hi(z), in which # A, is the cardinality of the set .4, (the number
of images that neuron £k is active for). In the experiments we analyze the distribution of I;, among
neurons in a layer.

hi(z) =1 (D

3 Results

We evaluate robustness to 12 image transformations shown in Fig. [T| (see Supplement for details).
These are grouped in four transformation types: color (gray-scale and color rotation), geometric
(thinning and rotation), convolutional (blur, high-pass and horizontal, vertical filtering and contrast
inversion) and noise (white and salt & pepper). Our choice of transformations was motivated by
studies showing that DCNNSs are robust to them when they are included in the training set [[7]].

To ensure that our results are not dataset- or architecture-dependent, we evaluate AlexNet [[12] in the
FaceScrub dataset [13]] and ResNet-18 [9] in the ImageNet dataset [4]] (see Supplement). In ImageNet
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Figure 2: Within- and Across-Category Accuracy in FaceScrub and ImageNet. (a) Within-category
accuracy when all object categories are seen transformed for FaceScrub (left) and ImageNet (right).
(b) Within-category accuracy (top) and accros-category accuracy (bottom) in ImageNet, for different
number of transformed categories in the training set. (c) Same as (b) for FaceScrub, each family of
transformations is displayed separately.

we only evaluate four transformations (blur, high-pass filtering, white noise and salt & pepper noise)
as some of the other transformations are already present in the training set and can not be excluded
(note that in ImageNet objects appear at different orientations, sizes, contrasts and colors). We use
the loss function, regularizers, optimizer and other hyperparameter choices reported in the literature,
except for the learning rates that are tuned for each experiment (see Supplement).

3.1 Results on Across-Category Robustness

In the following, we report the accuracy of the network using the paradigm introduced in section [2.1]
For both FaceScrub and ImageNet, we report top-1 accuracy (%).

Reproducing Previous Results on Robustness to Transformations. Fig.[2a depicts the accuracy
of networks trained with each transformation and tested on all transformations. As expected, on
non-transformed images, the networks perform similarly to what is reported in the literature [9,
21| independently of which transformations being included in the training set. On transformed
images, networks are robust to the transformations included in the training but not robust to other
transformations, a finding consistent with Geirhos et al. [7]. Note that color transformations are an
exception, as all networks have some degree of robustness to them. This may be because the color
transformations are in part already included in the dataset as a consequence of different illumination
conditions. Additionally, the network trained with blur transformation is slightly robust to the noise
transformations, likely because training with blur yields large receptive fields in the first layer that
may help to filter out the noise (a finding consistent with previous studies [21]]).

Across-Category Robustness Improves as the Number of Seen-transformed Categories is In-
creased. In Fig.[2b and c, the within- and across-category accuracy are evaluated for different number
of seen-transformed categories. The within-category accuracy (in the top of the figure) and the
across-category accuracy (in the bottom) are reported. We can observe that the across-category
accuracy increases as more categories are seen transformed. This indicates that invariant neural



representations may have emerged in the network (we can not confirm this without analysing the
neural activity, as across-category robustness is a consequence of invariance but not the reverse).
Also, observe that when the network is trained with few seen-transformed categories, the robustness
for these categories can not be driven by invariance because the network is not across-category robust.
Understanding the mechanisms for robustness when there is lack of invariance is an interesting open
question that will be analyzed in future works.

Note also that the within-category accuracy decreases as more categories are seen transformed, and it
reaches the values previously reported in Fig. 2 when all categories are seen transformed. Observe
that the within-category accuracy is close to 100% when the number of seen-transformed categories
is close to 1. This suggests that the network uses the transformation as a feature to identify the
few seen-transformed categories. This can be validated with the confusion matrices between seen-
and unseen-transformed categories (see Supplemental), which show that transformed images from
unseen-transformed categories are mainly confused with seen-transformed categories.

Color, Convolutional and Noise Transformations lead to Higher Across-Category Robustness
than Geometric Transformations. The increase of the across-category accuracy with the number of
seen-transformed categories is common among transformations. Yet, Fig.[2b and c shows that the rate
at which the across-category varies is different depending on the transformation. Observe that for color
transformations, just few seen-transformed categories are sufficient to achieve a high across-category
accuracy. This may be because the network is already quite robust to color transformations even
training only with non-transformed images, as shown in Fig.[Zh. For convolutional transformations,
the increase of the across-category accuracy is not as high as for color transformations but it is
remarkable. The across-category accuracy of the noise transformations is in-par with the convolutional
in ImageNet but not in FaceScrub. Note that the within-category accuracy for noise transformations
in FaceScrub is between 10% to 20% lower than for other transformations. Thus, in FaceScrub the
amount of noise impairs both within- and across-category robustness, which suggests that the low
across-category accuracy is not a characteristic of the noise transformation but of the overall accuracy
in FaceScrub.

For geometric transformations, the across-category accuracy is lower than the rest of transformations,
specially for rotations (the increase is only of a few percent when all categories are seen transformed).
This may be because spatial re-arrangement of the object are involved in geometric transformations
but not in the rest. These re-arrangements are larger for rotations of 90 or 180 degrees than for
thinning, and rotations have much lower across-category accuracy than thinning. Also, to achieve
across-category robustness for spatial re-arrangements requires capturing the long-range dependencies
between object parts, and this has been shown to be difficult for feed-forward architectures [2/5,10}19].

Across-Category Robustness depends on the Visual Homogeneity of the Object Categories. For
convolutional and noise transformations, the across-category generalization in FaceScrub increases
linearly with respect to the number of categories seen transformed, while in ImageNet it increases
logarithmically. These difference between datasets may be because the object categories in FaceScrub
are more visually homogeneous than in ImageNet, i.e. FaceScrub only contains faces while ImageNet
is composed of a varied set of distinct objects. Thus, the visual homogeneity of the categories may
facilitate across-category generalization (assuming that robustness to transformation can be learned
just as well for any object category).

3.2 Results on Invariance to Transformations at the Individual Neural Level

Next, we evaluate the amount of invariance using the measure introduced in section [2.2]

Less than 20% of the Images Activate a Neuron. Recall that the threshold that determines if a
neurons is active, 7, is the compromise between two factors: (i) neurons are only active for few
images because they are tuned to specific patterns, i.e. 7 is as high as possible, (ii) only the activity in
active neurons matters for robustness, i.e. ablating all the inactive neurons in an image should not
drop the accuracy whereas ablating all the active neurons in an image should bring the accuracy to
chance. In practice, we implement a grid search to determine 7 by evaluating values between 0 to 1
in steps of 0.05. We select the highest 7 that leads to a drop of 1% of the accuracy when ablating
the inactive neurons. This results in 7 = 0.1 for FaceScrub and 7 = 0.05 for ImageNet. We validate
that neurons are active only for a small subset of images, i.e. the cardinality of 4y, is small for most
neurons k, and also that each image activates a subset of neurons, i.e. the cardinality of {k|z € Ay}
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of the invariance coefficient among neurons at the penultimate layer for FaceScrub and ImageNet,
respectively. Different number of seen-transformed categories are displayed and the invariance
coefficient is reported separately for seen- and unseen-transformed categories.

is small for most images x. In Fig. B we show the distributions of both cardinalities using violin
plots. Notably, between 1 to 20% of the images activate a neuron, and between 10 to 20% of the
neurons are active in an image. Thus, neurons are tuned to patterns that appear in few images and in
most images only a subset of neurons is active, which fulfills factor (i). In the Supplement, we report
the network’s accuracy obtained from ablating active and inactive neurons. We observe that when the
inactive neurons are ablated (80 — 90% of the neurons per image), the network’s accuracy decreases
less than 1% overall. When the active neurons are ablated (10 — 20% of the neurons per image), the
network’s accuracy is very low for all transformations. This low but above chance accuracy suggests
that the neural activity of the inactive neurons may play a minor but redundant role towards network’s
robustness, which approximately fulfills factor (ii).

Invariance Increases when the Number of Seen-transformed Categories Increases. Recall that
the invariance coefficient, [}, is evaluated when the neurons are active. In Fig. @) and ¢, we show
the distribution of I, among neurons in the penultimate layer for networks that are trained with or
without transformations. All transformations lead to more invariance than when the training is only
with non-transformed images. In the Supplement, we show that this invariance builds up across
layers, which is in accordance with previous works [8,[I5]].
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Figure 5: Invariance and Robustness. (a) Amount of invariance for different number of seen-
transformed categories, transformations and datasets. (b) and (c) Relationship between amount of
invariance and within- and across-category accuracy, respectively. Each dot represents a network
trained with different number of seen-transformed categories.

In order to validate that this invariance is related to robustness and is not epiphenomenal, we
investigate whether invariance drives the across-category robustness. Fig. ] shows the distribution
of I, among neurons in the penultimate layer when the number of seen-transformed categories is
increased. The distribution for the seen- and unseen-transformed categories is shown separately
(see Supplement for all transformations). We observe that the amount of invariance remarkably
increases when the number of seen-transformed categories is increased. Also, the amount invariance
for the seen- and unseen-transformed categories is nearly identical (except when the number of
seen-transformed categories is low because there is almost no invariance). Thus, invariance in the
network is not category-dependent and emerges alongside across-category robustness. This is strong
evidence that invariance drives robustness when the number of seen-transformed categories is large.

Invariance Explains the Across-Category Robustness. Next, we further analyse the relationship
between invariance and across-category robustness by scrutinizing the differences among transfor-
mations. Fig. [Bh shows the amount of invariance for all transformations and datasets as the number
of seen-transformed categories is increased. We observe that the trends of invariance follow that
of across-category robustness. To quantify whether there is a direct relationship between them, in
Fig.[5b and ¢ we depict the invariance and robustness for each network trained with a different number
of seen-transformed categories. Observe that invariance is not needed to achieve within-category
robustness (Fig.[5p), whereas the extent of across-category robustness is correlated with the amount
of invariance for all transformations (Fig.[5k). Thus, the network develops properties different from
invariance to achieve robustness but as we increase the number of seen-transformed categories the
amount of invariance increases.

4 Conclusions

We have demonstrated that increasing the number of seen-transformed categories results in an
increase of two network properties: the amount of invariance to transformations and the robustness to
transformations of unseen-transformed categories. This suggests that invariance drives robustness
to transformations depending on the number of seen-transformed categories. Furthermore, we have
shown that invariance emerges at the individual neural level, which adds to the growing body of
literature that uses individual neurons as the elemental building blocks to analyze DCNNs [[14}[23[]24].
Key open questions derived from our results that will be tackled in future works are understanding
why invariant representations emerge for some transformations, and what are the neural mechanisms
for robustness when there is a lack of invariance (e.g. for geometric transformations).
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Statement of Broader Impact

This work tackles the long studied but still obscure area of generalization in DCNNs on two fronts.
First, it analyzes the limits of robustness to transformations by examining the extensibility of
robustness to categories that are not seen transformed during training. Our results reveal weaknesses
of the generalization capability of DNNs as robustness may degrade for categories that are not seen
transformed during training. This phenomenon is severe for geometric transformations such as
rotations. This could potentially be used to trick DCNNs in real-life applications. Nevertheless,
understanding such weaknesses is necessary to build better and more robust DCNNss.

Secondly, by studying the role of invariant representations in individual neurons, this work identifies
the important relationship between invariance and robustness for categories not seen transformed dur-
ing training. By demonstrating the significance of invariant representations in driving robustness, this
paper advocates for training methods that enforce invariance in the hidden layers. The understanding
of generalization in DCNNSs is a critical area that will provide strides in the advancements of modern
computer vision and bring it closer to or beyond its rivaling human vision.
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A Datasets and Networks

Datasets. We use two datasets: FaceScrub [13]] and ImageNet [4]]. FaceScrub is a face recognition dataset
containing over 50,000 images of 388 individuals. ImageNet is an object recognition dataset with around 1.4
million images of 1000 object categories.

When increasing the number of seen-transformed categories, we use the same seen-transformed categories before
the increase and an additional set of categories randomly selected. For the smallest number of seen-transformed
categories, all them are randomly selected. This procedure facilitates comparing results between different number
of seen-transformed categories, as it minimizes the dependency of the selected seen-transformed categories.

Networks. For FaceScrub, we used a modified AlexNet [12] architecture with five convolutional layers followed
by two fully connected layers. The modifications included removal of the max-pooling layers after the first
two convolutional layers in order to preserve necessary resolution for face recognition. The rest of the network
was exactly as AlexNet (i.e. local response normalization, dropout, initialization parameters were the same as
in AlexNet). The networks were trained for a maximum of 45 epochs (sufficient for convergence in all cases)
with a learning rate of le-4 and a weight decay of Se-4 for all transformations. These values were selected via
grid search over 25 possible combinations of learning rates and weight decay, evaluated on 10% of a held-out
images of the training set (all transformations lead to the same hyperparameters). The optimization algorithm
was stochastic gradient descent with a momentum of 0.9 and a batch size of 32.

For ImageNet, we trained Resnet18s [9] using the official tensorflow implementation and with the hyperparame-
ters that come by default.

Preprocessing. All input images were standardized before the first hidden layer. This did not change the
accuracy of the network and it was particularly important to facilitate robustness to transformations without the
need of adjusting the mean and standard deviation parameters of the batch normalization to the transformation.
Before the standarization, the transformations were applied to the image, whose pixel values were between 0
and 255.

B Transformations

The transformations were applied to the dataset as an input layer in the GPU, such that the transformations were
computed at runtime with every forward pass.

For color transformation, the hue was rotated 180° in the hue space. The grayscale operation was performed
using built-in TensorFlow functions.

For blur transformation, a gaussian filter was convolved with the input image. The standard deviation of the
gaussian was selected such that the top-1 accuracy of a network trained on the untransformed FaceScrub dataset
was less 10%. To do so, we increased the standard deviation in steps of 0.5 until the accuracy was less than
10%, and then we stopped. The horizontal and vertical filters have a filter size of 3 x 3 of form [—1, 0, 1]. The
high-pass filter has a filter size of 5 x 5 of form [—1, 2,4, 2, —1] in both directions.

Noise based transformations were applied by adding white noise and salt and pepper noise to the original images.
The standard deviation of noise was selected with the same procedure as the blur transformation. For the white
noise the standard deviation was increase in steps of 25. The salt and pepper noise randomly sets half of the
pixels to either O or 255.

Geometrical transformations rotated the input images anti-clockwise with angles 90° and 180, respectively. For
thinning, the image width was reduced to its half and padded with zeros on both sides.

In ImageNet, the transformations were applied with parameters such that the top-1 accuracy was under 15%,
using the aforementioned procedure to set the parameters of the transformations.

C Additional Results

Confusion Matrices. In Fig.[] we show the confusion matrix between seen- and unseen-transformed categories.
The table reports the percentage of images of one set of categories classified as the same or another set.

Active Neurons. To validate that the activity of the active neurons, i.e. neurons with activity higher than 7,
capture all the activity relevant for the network’s robustness, we performed two types of ablation experiments:
set all activity below the threshold to zero and set all the activity above the threshold to zero. The performance
of the DCNN in these two conditions is shown in Fig.[7]

Invariance. In Fig.[8land [0] we display the invariance for the different transformations and number of categories
seen-transformed in FaceScrub and ImageNet, respectively. Fig.[I0]shows the amount of invariance at each
layer.
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Figure 6: Confusion Matrix Between Seen- and Unseen-Transformed Categories for FaceScrubs
for all Transformations at different number of Categories transformed during training. Quadrant I:
Percentage of Predictions for Unseen-Transformed Categories miss-classified as Seen-Transformed.
Quadrant II: Percentage of Predictions for Seen-Transformed Categories correctly classified as
Seen-Transformed. Quadrant III: Percentage of Predictions for Seen-Transformed Categories miss-
classified as Unseen-Transformed. Quadrant IV: Percentage of Predictions for Unseen-Transformed
Categories correctly classified as Unseen-Transformed.
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Figure 7: Accuracy of Ablating Active and Inactive Neurons. (a) and (b) Within-category accuracy
after ablating inactive (left) and active (right) neurons for FaceScrub and ImageNet, respectively.

12



Color Grayscale
1.00 1.00
So7s Sors
5 ! .
'E 0.50 ._ 0.50
E 0.25 Categories 2025 Categories
- Seen transformed = - Seen transformed
0.00 Unseen transformed 0.00 Unseen transformed
100 150 200 250 300 350 400 100 150 200 250 300 350 400
# Categories Transf. # Categories Transf.
Low pass High pass
1.00 Categories 1.00 Categories
o I Seen transformed g 0 75 I Seen transformed
g 0.75 ' mmm Unseen transformed ! I Unseen transformed
2050 2 0 50
[ m
2025 2025
0.00 0.00
150 200 250 100 150 200 250 300 350 400
# Categories Transf. # Categories Transf.
Contrast Horizontalfilter
1.00 Categories 1.00 Categories
9075 Emm Seen transformed ©0.75 Emm Seen transformed
g [ Unseen transformed g [ Unseen transformed
Los0 8050
s s
E025 2025
0.00 0.00
100 150 200 250 100 150 200 250 300 350 400
# Categories Transf. # Categories Transf.
Verticalfilter Salt pepper
1.00 Categories 1.00 Categories
o I Seen transformed M Emm Seen transformed
S 075 mmm Unseen transformed g 075 mmm uUnseen transformed
2050 2£0.50
§ $
Eo025 E025
0.00 0.00
100 150 200 250 100 150 200 250 300 350 400
# Categories Transf. # Categories Transf.
Noise Thinning
1.00 Categories 1.00 Categories
o I Seen transformed o I Seen transformed
g 075 mmm unseen transformed H 075 mmm Unseen transformed
2050 2050
g §
g025 g025
0.00 0.00
1 50 100 150 200 250 100 150 200 250 300 350 400
# Categories Transf. # Categories Transf.
Rotate90 Rotatel80
1.00 Categories 1.00 Categories
o I Seen transformed o I Seen transformed
g 075 ' mmm Unseen transformed g 075 [ Unseen transformed
2050 Los0
s s
Eo025 Eo025
0.00 0.00
150 200 250 00 150 200 250 300 350 400

# Categories Transf.

# Categories Transf.

Figure 8: Invariance for Different Number of Seen-transformed Categories. Violin plots of the
invariance coefficient among neurons at the penultimate layer for FaceScrub. Different number of
seen-transformed categories are displayed and the invariance coefficient is reported separately for
seen- and unseen-transformed categories.
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