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Abstract 
 
An evolutionarily ancient skill we possess is the ability to distinguish between food and non-food. Our 
goal here is to identify the neural correlates of visually driven ‘edible-inedible’ perceptual distinction. We 
also investigate correlates of the finer-grained likability assessment. Our stimuli depicted food or non-
food items with sub-classes of appealing or unappealing exemplars. Using data-classification techniques 
drawn from machine-learning, as well as evoked-response analyses, we sought to determine whether 
these four classes of stimuli could be distinguished based on the patterns of brain activity they elicited. 
Subjects viewed 200 images while in a MEG scanner. Our analyses yielded two successes and a 
surprising failure. The food/non-food distinction had a robust neural counterpart and emerged as early as 
85ms post-stimulus onset. The likable/non-likable distinction too was evident in the neural signals when 
food and non-food stimuli were grouped together, or when only the non-food stimuli were included in the 
analyses. However, we were unable to identify any neural correlates of this distinction when limiting the 
analyses only to food stimuli. Taken together, these positive and negative results further our 
understanding of the substrates of a set of ecologically important judgments and have clinical implications 
for conditions like eating-disorders and anhedonia. 
 
 
Background and Significance 
 
The ability to visually distinguish between food and non-food is critical for our survival. Disruption of 
this ability, as in cases of pica, an eating disorder characterized by persistent ingestion of nonnutritive 
substances (figure 1a), can have catastrophic consequences (Francois & Brenet, 2004). On a finer grain, 
we are also able to make rapid hedonic judgments about food. Given the ecological significance of these 
distinctions, identifying their neural correlates can yield important benefits. The spatial localization and 
time course of emergence of these distinctions in brain recordings can provide insights into the underlying 
processes involved in making the perceptual judgments (Thorpe,	Fize,	&	Marlot,	1996), and also serve 
as biomarkers for neurological conditions involving anomalous responses to foods and non-foods. 
 
Food selection is guided primarily by the visual, olfactory and taste systems. Past visual studies of 
hedonic perception in the context of food have focused largely on the relationship between a food’s 
caloric content and its perceived palatability. Palatability is found to be a useful cue for separating foods 
with high and low caloric contents, and also edible from non-edible items (Ohla, Toepel, le Coutre, & 
Hudry, 2012). Additional neuro-imaging studies have focused on the neural correlates in visual 
processing of food images within the context of rare syndromes such as Prader-Willi (Key & Dykens, 
2008), anorexia and bulimia (Blechert, Feige, Joos, Zeeck, & Tuschen-Caffier, 2011). More broadly, 
several studies have examined the neural correlates of aesthetic and affective preferences, but the stimuli 
they have used do not typically involve the food versus non-food distinction (Amrhein, Mühlberger, 
Pauli, & Wiedemann, 2004; Jacobs, Renken, & Cornelissen, 2012; Kawabata & Zeki, 2004; Olofsson, 
Nordin, Sequeira, & Polich, 2008; Osaka, Ikeda, Rentschler, & Osaka, 2007; Schupp, Junghöfer, Weike, 
& Hamm, 2004) and hence cannot be used to infer the neural correlates of this specific distinction. FMRI 
studies as in (van der Laan, de Ridder, Viergever, & Smeets, 2011) focus on satiety and its modulation. 
To the best of our knowledge, no electrophysiological studies thus far have compared the classes of food 
and non-food imagery while controlling for affective dimensions. Additionally, there appear to be no 
studies that focus on food images without a confound of calorie and palatability contents or attentional 
bias (Bradley et al., 2003; P. A. Gable & Harmon-Jones, 2010; P. Gable & Harmon-Jones, 2008; 
Harmon-Jones, Gable, & Price, 2011). Given this background, no firm consensus has emerged regarding 
the neural markers corresponding to the perceptual distinction between pictures of foods and non-foods. 
 



Our goal in this study is to employ computationally sophisticated pattern classification techniques to 
identify such correlates. A key question for us is whether our visual system exhibits responses to food 
stimuli that are different from non-food ones regardless of the level of pleasantness or affective valence. 
Furthermore, we examine whether the neural response differences across stimulus categories can be 
accounted for simply via systematic variations in low-level properties of an image such as color 
distributions and textural statistics.  
 
Past research on neural correlates of visual categorization has focused on identifying components in 
electrophysiological data (EEG or MEG) corresponding to object classes such as faces (Bentin, Allison, 
Puce, Perez, & McCarthy, 1996). These studies serve to contextualize our work and the methods we use. 
Specifically, although the correlates of the face/non-face distinction are generally accepted (although not 
without dissent, see Thierry, Martin, Downing, & Pegna, 2007), subtler perceptual distinctions (such as 
gender, age, familiarity) have been harder to identify in neural data. We believe that part of this difficulty 
may arise from the limitations of conventional data-analysis techniques. In particular, the evoked 
response field (ERF) type of analysis, which requires averaging of multiple temporally aligned signal 
fragments from one or a few sensors, is not well suited to picking up on distributed patterns of neural 
activity that may correspond to a perceptual judgment. A more ‘agnostic’ data classification approach 
drawn from the domain of machine learning may be better suited for this purpose. The dimension of 
like/dislike has also been examined by a few neuroimaging studies. For instance, Healey, Morgan, 
Musselman, Olino, & Forbes, 2014, have implicated activity in medial pre-frontal cortex in anhedonia in 
the social context. We have the opportunity to build on these results in two significant ways. First, we can 
explore the like/dislike dimension in a non-social setting and, second, through the use of 
electrophysiological recordings, we can obtain more precise temporal information about the onset of the 
neural distinction. 
 
We used magneto-encephalography (MEG) to record brain activity elicited in response to two categories 
of visual stimuli: images depicting foods and non-foods. Each of these categories was further subdivided 
into two equal-sized classes, differing in their hedonic valence (positive and negative). Figure 1 shows 
examples of the stimuli we used. We recorded brain activity from 306 sensors distributed across the scalp 
while subjects passively viewed all 200 of these stimuli in random order. These continuous traces were 
subsequently segmented into 1 second epochs, temporally aligned to the onset of each stimulus. The 
collection of these segmented traces was then subjected to pattern classification analyses using techniques 
drawn from the domain of machine learning, as well as to conventional evoked response field (ERF) 
analyses common in the EEG domain (Niedermeyer & Silva, 2004; Vecchiato et al., 2011). 
 

   
        (a)                                         (b)             
 
Figure 1. (a) X-ray of a 62 year old French man suffering from pica. The patient had ingested over 350 
coins, needles and necklaces (from Francois, 2004). (b) Sample stimuli used in our experiment. The top 
row shows food stimuli with the left panel comprising images that were rated as being more palatable 



relative to those on the right. The lower row shows a few non-food stimuli segregated into pleasant (left) 
and unpleasant (right) subclasses. 
 
Our pattern classification analyses used sparse logistic regression to classify raw MEG signals 
corresponding to the different image categories. The classifier was provided the first 1000 ms of all 
magnetometer signals, without any ad-hoc sensor selection. In order to determine information available 
for classification in different time epochs, we used a 10 ms sliding window over the signals, shifting this 
window 1 ms at a time. Our classifier therefore receives 10 ms worth of data from all sensors in each step. 
Furthermore, motivated by the use of resting state signals for reducing the signal noise, we used the first 
100 ms baseline (the resting state and before the start of the trigger) as an additional source of training for 
the classifier, resulting in improvements in classification performance. Details of our classification 
approach are described in the Methods section. 
 
Methods 
 
Stimuli 
Full-color images were chosen by 20 volunteers from multiple image repositories and culinary websites. 
The volunteers rated each image in terms of its hedonic valence. 50 images in each of the four classes 
(food: appetitive, food: non-appetitive, non-food: pleasant, non-food: unpleasant) that received high or 
low scores most consistently across the raters were then used to constitute the final stimulus set. Images 
were processed to all have the same mean luminance and size. Descriptions of all of the images we used 
are provided in the supplementary material. (Although they were not available when we commenced our 
study, it is worth pointing out that two sets of publicly accessible image databases have recently been 
created (Foroni et al., 2013; Blechert et al., 2014). Such databases can play an important role in providing 
a common base to be able to compare results from disparate studies.) 
 
Subjects 
14 healthy subjects including 6 men and 8 women (ages: 18-27, mean age 22) participated in this study. 
Subjects were all within normal BMI range (21-26). This healthy BMI range is in part due to constraints 
posed by the experimental equipment; our MEG machine cannot accommodate individuals weighing 
above 190 pounds. All subjects were undergraduate or graduate students. One subject was a professional 
culinary artist. All had normal or corrected-to-normal visual acuity and none had a history of neurological 
or psychiatric disorders. Subjects had consumed their last meal at least 3 hours before the experiment took 
place. Each subject gave written informed consent according to procedures approved by the 
Massachusetts Institute’s of Technology Institutional Review Board (MIT IRB). 
 
No behavioral tasks were required. Subjects were instructed simply to maintain gaze on the screen, while 
trying to minimize movements and eye blinks. After participating in the experiment, participants rated the 
images. Ratings were based on category of images (into food and non-food classes), edibility for the food 
class, and pleasantness for the non-food class. We also obtained additional ratings from individuals who 
did not undergo MEG scanning. Responses regarding the categorical labeling of images across make 
evident the fact that the classification of images into the two categories was robust and consistent across 
observers. 
 
MEG Recordings 
Recordings were made using a recumbent Elekta Magneto-encephalography scanner with 306 sensors 
(102 magnetometers and 204 gradiometers). Images were back-projected on a screen placed 5 feet in front 
of the subject. Each image was presented for 350 ms; inter-stimulus interval time varied from 1750-2500 
ms. Pre-processing included Elekta’s proprietrary artifact rejection filter, band-pass filtering between 0.5-
40Hz and z-score. Brainstorm software was used to export the preprocessed signals to MATLAB for 



further analysis using customized scripts for ERF and classification analyses. For ERF-significance 
analysis, for each subject, we selected the sensors exhibiting the maximum on the global ERF average of 
all image stimuli classes. We analyzed using the average of the absolute values of each ERF potential (ie: 
Both ERFs in and out of the cortex. We performed t-test on all subjects, for each ms, and corrected for 
multiple comparisons using False Discovery Rate (FDR). Additionally, we performed 2x2 ANOVA. 
 
Classification analyses 
We used Glmnet implementation of two-class logistic regressor (Friedman, Hastie, & Tibshirani, 2010). 
In each experiment, the classifier is trained on 10 ms worth of signal data from all MEG sensors. This 
window is then slid 1 ms at a time, producing classification performances for each time point. Note that at 
any given time point, the classifier only views the past 10ms of sensors to that time point. We divided the 
entire set of data to disjoint training and testing sets (60% and 40% respectively). In addition, we added 
100 ms of the baseline to the training set to improve noise modeling. After training the classifier on the 
training set, we tested the resulting classification model on the testing set. We performed 4 folds cross-
validation and reported the average performance. The performance of the classifier at each ms is then 
reported. For performance reporting we chose area under the curve (AUC). AUC was calculated by 
computing the area under the ROC curve created by changing the threshold of the regressor score from 
minimum to maximum (among all computed scores) and plotting true positive rate against false positive 
rate. The threshold for deciding whether the signal evoked by a particular image belongs to positive or 
negative class was found by using the ROC curve that resulted in the highest AUC and its best operating 
point. This point on the curve indicates the results in the least number of false positives and highest 
number of true positives. Reported classification accuracies are regarding this best operating point in each 
of the experiments. 
 
Results 
 
Our results showed that accuracy of classification (food versus non-food) averaged across 14 subjects was 
at chance during the first 0-70 ms, but then rose to significantly above-chance levels. The discriminating 
information became evident first in the 70-130 ms epoch and persisted until at least 200 ms after the 
stimulus onset. Sensors in the occipital area were found to have the highest feature weights for the food 
vs. non-food distinction. We found similar results for the pleasant versus unpleasant distinction (without 
regard to the food and non-food categories). After hovering near chance for the first 0-70 ms, the 
classifier performance rises to well-above chance subsequently and accuracy remains high for the next 60 
ms. However, the sensors receiving the highest weights from the classifier in this setting were right 
lateralized towards the anterior occipital and posterior temporal regions. Figures 2 summarizes the results. 
Plots at (a), (c), and (e) to (j) in figure 2 represent classifier’s performance in discriminating between the 
two classes of MEG signals. For example, in figure 2a, the classifier is discriminating the class of signals 
evoked by viewing food images vs. the class of signals evoked by viewing non-food images. Having this 
performance plot, we can derive sensors that the classifier relies on for the classification. It should be 
noted that the higher the performance of the classifier, the more reliable sensor weights given by the 
classifier. These sensors weights can be projected back to the 3D sensor space, representing the cortical 
regions that are most significantly different between the two classes of signals. For example, the sensor 
weight map in figure 2b represents weights assigned by the classifier to MEG sensors, indicating their 
importance for discrimination between signals evoked by viewing food images vs. signals evoked by 
viewing non-food images, at the time of highest classification accuracy. Similarly, figure 2d illustrates the 
respective sensors weights for discrimination between signals evoked by pleasant vs. unpleasant images. 
Finally, it is important to note that dipolar patterns presented here are not an artifact of manual selection 
of sensors since the selection is based on classifier-derived weights. 



It is interesting to note that classifier-based analysis is able to find information in the neural signals 
capable of distinguishing food from non-food, pleasant from unpleasant items, and pleasant non-foods 
from unpleasant non-foods. However, it fails at the appetizing foods versus unappetizing foods 
distinction. Apparently, our scalp based neural measurements are insufficient to pick up information that 
would allow us to distinguish between the valences of different food stimuli. This failure could 
potentially also arise from our not using a powerful enough classifier for the task. However, it is worth 
noticing that the classifier does succeed at the other distinctions, attesting to the possibility that the 
within-food distinction might be an inherently harder classification task than the other ones.	
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(b) 

(c)	
 

(d)	

(e)	 (f)	



 

(g)	
	

 

(h)	

 
(i) 

 
(j) 

	

Figure 2. Bar plots of recognition rates (averaged across 14 subjects) in different time-bins. The four 
bar-plots shown here are: (a) Classification accuracy of the food vs. non-food distinctions. Also shown 
(b) is the spatial distribution of feature weights as derived from the classifier analysis. Most of the high 
weights are concentrated in the occipital sensors. (c) Classification accuracy of the pleasant vs. 
unpleasant distinction. (d) The spatial distribution of feature weights as derived from the classifier 
analysis. Most of the high weights are concentrated in the right occipital and temporal sensors (e) 
Classification accuracy of the pleasant non-food vs. unpleasant non-food distinction. (f) Classification 
accuracy of the pleasant food vs. unpleasant food distinction. (g) Classification accuracy of the pleasant 
food vs. unpleasant non-food distinction. (h) Classification accuracy of the unpleasant food vs. pleasant 
non-food distinction. (i) Classification accuracy of the pleasant food vs. pleasant non-food distinction. (j) 
Classification accuracy of the unpleasant food vs. unpleasant non-food distinction. The inputs to the 
classifier are 1000ms of all magnetometer and gradiometer signals derived across the whole head. 

 

Guided by these classifier-based results, we sought to determine whether any components might be 
evident in conventional evoked response analyses that would be different for the food/non-food classes 
and the pleasant/unpleasant classes. One should note that the classification weights might be different 
from actual evoked responses, as the classifier may leave a highly active sensor that carries redundant 
information, for a relatively less active sensor that carries more discriminative information. 



For the first distinction (food versus non-food), we focused on the 70 to 130 ms time-bin since that is 
when classification accuracy first reached above-chance levels. Also, our ‘region of interest’ was the 
occipital area since that is where the classifier assigned the highest feature weights (figure 2b). Our 
evoked response field (ERF) analyses did indeed reveal differences between the responses elicited by the 
group of food images on the one hand and non-food images on the other. As figure 3a shows, statistically 
significant differences (p<0.05) in the evoked responses become evident within the first 100 ms after the 
onset of the stimulus. Using similar guidance from the classifier results for the pleasant versus unpleasant 
distinction, we selected right occipital sensors and found significant differences (p<0.05) in evoked 
responses at approximately 100ms post-stimulus onset (figure 3b). Although classification performances 
in figure 2 and ERF plots in figure 3 are indicating the same basic phenomenon, is important to 
differentiate between these two; while the former illustrates success rate of the classifier in discriminating 
between the two classes of signals at a particular time, the later directly illustrates the (averaged) 
differences between the two signals. Interestingly, an ANOVA revealed no statistically significant 
differences across any of the stimulus groups. This contrast between the significantly above chance 
classification performance using machine learning techniques and the seeming indistinguishability of the 
groups with conventional ERF style analyses makes an important methodological point. T-Test ERF 
analyses (complemented with ANOVAs) are limited in terms of their ability to use signal information that 
may be distributed across space and time. Classification analyses, on the other hand are not subject to 
such a constraint and are able to pick up on distinctions that may be spatio-temporally non-local. 
Furthermore, the latter approach obviates the need for preconceived notions of ROIs; the classifier can 
examine all of the sensor data 'agnostically' and determine which sensors contribute the most to 
distinguishing between classes. We believe that the results we have presented here illustrate these 
distinctions between analytical approaches and highlight the potential benefits of machine learning tools 
for mining high-dimensional human electrophysiology data. 

(a) 
 

  



(b) 

Figure 3. ERF results for two distinctions: (a) Food versus non-food, and (b) Pleasant versus unpleasant. 
The left panels display evoked responses and the right panels indicate the subset of sensors used for their 
computation.  

An interesting aspect of the results, from both the classifier as well as evoked-response analyses, is the 
rapidity with which the perceptual distinctions become evident in neural signals. Given that the latency of 
primary visual cortical response is approximately 50-60 ms (Poghosyan & Ioannides, 2007), these 
findings suggest that the food versus non-food perceptual distinction can be made within 50 ms of the 
arrival of the information in V1. (Interestingly, similarly rapid responses have been reported in the 
domain of face-odor conditioning by Junghofer and colleagues (Steinberg et al., 2012)). The observed 
rapidity of neural discrimination raises questions about the underlying mechanisms responsible for the 
distinction. Various possibilities exist. For instance, One possibility is that rapid visual analysis may be 
performed sub-cortically (LeDoux, 1996); the early distinctions we see in our data could be 
manifestations of the output of such analyses. While plausible, we consider this account unlikely given 
the subtle visual signals that need to be analyzed to make the distinctions in this study (see also Cauchoix 
& Crouzet, 2013). Alternatively, the observed responses over visual cortex may be driven by feedback 
signals from reward related areas, such as mPFC (Tzschentke, 2000). This account is not very satisfying 
because it sidesteps the issue of how the initial visual analysis for driving the reward system is 
accomplished. Our data analysis should, in principle, have revealed such processing, as a precursor to 
activation in the mPFC and then in the visual cortex. Could the rapid processing of disgust account for 
our results (e.g. Smith, 2012)? While this is potentially applicable to accounting for the like/dislike 
results, it does not explain the rapid distinction observed between the food and non-food categories. 

Another possibility is that the semantic distinction between food and non-food may in fact be based on 
some low-level image properties that can be analyzed rapidly. Two of the key perceptually salient low-
level properties are spatial frequency content and color profile. Perhaps food images occupy a different 
section of the spatial-frequency and color spaces relative to non-food images, and hence can be rapidly 
distinguished from the latter. To test this possibility, we have characterized the spatial-frequency content 
and color distributions of the four stimulus categories and subjected the characterizations (power spectra 
and color histograms) to the same kinds of classifier analyses as those that we used for the MEG data. 
Figure 4 shows the results. The classifier is unable to distinguish between the different semantic groups 
based on the frequency and color information. This suggests that the stimulus categories do not have 
systematic differences along these dimensions that would permit a trivial low-level distinction between 
them.  

In order to examine the hypothesis of low-level factors further, we investigated whether popular image-
descriptors drawn from the domain of computer vision could provide different signatures for the image 
classes we have used here. Histograms of oriented Gradients around keypoint detectors and related 
features have been amongst the most popular and powerful representational strategies for encoding spatial 
content and arrangement (Bay, Ess, Tuytelaars, & Van Gool, 2008; Csurka, Dance, Fan, Willamowski, & 
Bray, 2004; Dalal & Triggs, 2005; Lowe, 2004). We first extracted SIFT and SURF features from each 
image in our stimulus set. We then proceeded by populating the features in a Bag of Words Model 
(BOW) (Csurka et al., 2004; Van De Sande, Gevers, & Snoek, 2010)  to create a ‘visual’ dictionary that 
could hypothetically characterize the ‘lexicon’ of an image containing edible or inedible content. We then 
trained an SVM classifier based on the L1 histogram distance of these visual lexicons for the images. In 
addition to SIFT and SURF, we also tested the possible discriminative power of image edges, by testing 
classification performance on Gabor features (Daugman, 1985; Jain, Ratha, & Lakshmanan, 1997). 
Simple cells in the visual cortex of mammalian brains can be modeled by Gabor functions (Jain et al., 
1997), thus it is thought that image analysis by Gabor functions might mimic some aspects of perception 



in the human visual system. We extracted features using a Gabor bank of 8 scales x 8 directions and used 
the VLFeat implementation of SVM (Vedaldi & Fulkerson, 2008).  Classifier analysis based on these 
three sets of features was unable to distinguish between image classes based on this encoding of image 
content (figures 4 (d),(e), and (f)).  

These results suggest that rapidly emerging distinctions between different stimulus categories we have 
observed in neural signals are likely driven by a sophisticated analysis of image content, rather than by 
simple low-level features of the kind we have described above. An important open question for future 
studies concerns the ‘signal substrate’ for such semantic analyses. Of particular relevance here is past 
work showing that low spatial frequencies in an image may undergo rapid analysis and thereby generate 
hypotheses that guide and constrain the interpretation of higher spatial frequency content (Bar et al., 
2006; Ahlfors et al., 2015). In the context of our work, this points to the need for determining whether 
category distinctions can be made even with low spatial frequencies. If psychophysical tests demonstrate 
that this is possible, then coupled with results from past studies, we would have a candidate mechanism 
for explaining the rapid neural distinctions between stimulus classes.  
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Figure 4. Classification results using image 
content. Overall spatial frequency content, shown in 
(a), does not explain the observed differences. As 
illustrated in (b), classification accuracy is 
indistinguishable from chance using spectral 
content as the input. (c) Classification based on 
color distributions. (d),(e) and (f) Classification 
based on SURF, Gabor and SIFT features. All 
image classes were indistinguishable on these 
dimensions. 
 
  

Taken together, these results present a robust neural correlate of the food versus non-food distinction and 
also demonstrate how classification-based analytical techniques can complement conventional evoked 
response ones. The neuronal responses appear to encode this distinction rapidly and robustly. This poses 
an interesting challenge of explaining the genesis of the rapid discrimination. Intuitively appealing low-
level factors, such as spatial frequency content, color distributions and basic characterizations of spatial 
features, seem not to be adequate to account for the observed differences. While this does not definitively 
rule out a low-level factor as underlying the observed neural differences, it makes the hypothesis less 
likely. This leads us to favor an explanation that involves the extraction of basic semantic information 
(whether the stimulus depicts an edible or non-edible item) based on a combination of multiple low-level 
cues, none of which is independently capable of supporting the judgment. Even as we search for the 
underlying factors, the neural correlates that we have described here can prove useful for probing 
classification strategies used by the brain, their differences across sub-groups of healthy participants and 
the changes brought about by neurological conditions that manifest as anhedonia on the one extreme (that 
can in serious cases lead to a failure to thrive due to a lack of interest in food) and an eating disorder 
marked by excessive consumption and resulting obesity, on the other.  
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