

Catherine De Wolf - John Sullivan - Mingxi Zou - Trygve Wastvedt - SunMin May Hwang

85 Accessibility [%]

- 1. Sustainability Goals
- 2. Urban Design Meet the Protoblock
- 3. Walkability
- 4. Building Design
- 5. Embodied carbon
- 6. Energy Consumption Optimizing to Alternative Zero
- 7. Finance
- 8. Conclusions

85 Accessibility [%]

Cool Summer Wind

9.5
Finance

20.4 Energy [kWh/m² a]

100 Day-lit Area [%]

85Accessibility
[%]

470 Carbon [kgCO₂e/m²]

Climate = Very easy

Ambitious Goal?

20.4 Energy [kWh/m² a]

85
Accessibility
[%]

Net-Zero Neighborhood?

Net-Zero

85

95

The ultimate in sustainable neighborhoods!

20.4 Energy [kWh/m² a]

85Accessibility
[%]

Power distribution in California

http://www.caiso.com/Pages/Today's-Outlook-Details.aspx

Time of Day
This graph shows the production of various types of renewable generation across the day.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

20.4 Energy [kWh/m² a]

85 Accessibility [%]

95Comfort

Goals:

Sum of energy consumed

85
Accessibility
[%]

Goals:

1) Remove all mechanical cooling need

Sum of energy consumed

85 Accessibility [%]

Goals:

- 1) Remove all mechanical cooling need
- 2) Remove all mechanical heating need

Sum of energy consumed

85Accessibility
[%]

Goals:

- 1) Remove all mechanical cooling need
- 2) Remove all mechanical heating need
- 3) Remove all artificial lighting when the sun is up

Sum of energy consumed

85Accessibility
[%]

95 Comfort

Goals:

- 1) Remove all mechanical cooling need
- 2) Remove all mechanical heating need
- 3) Remove all artificial lighting when the sun is up
- * Ignore plug loads

Sum of energy consumed

85
Accessibility
[%]

Cool Wind (Available almost 100% of year)

20.4 Energy [kWh/m² a]

100 Pay-lit Area [%]

470 Carbon [kgCO₂e/m²]

Daylight

100 Day-lit Area [%]

85
Accessibility
[%]

470 Carbon [kgCO₂e/m²]

Sun

Occupants

Free internal gains

Equipment

Don't control people. Advise people.

20.4 Energy [kWh/m² a

100 Day-lit Area [%]

85
Accessibility
[%]

95 Comfort

People Centered

85

95

Set of thin Buildings with Solar exposure

Daysim: Maximum Building Depth

Daysim: Maximum Building Depth Fixed @ 8.0 m
(exceptions for commercial space)

CFD: Wind Driven Natural Ventilation Potential

Useful Solar Radiation Cumulative Radiation when Tambient < 18° C

Daylight Area

South_0	Average Solar Gain 700 kwh/m²
South_10	Average Solar Gain 630kwh/m²
South_20	Average Solar Gain 557 kwh/m²
South_30	Average Solar Gain 482 kwh/m²
South_40	Average Solar Gain 417kwh/m²
South_50	Average Solar Gain 359kwh/m²
South_60	Average Solar Gain 304 kwh/m²
South_70	Average Solar Gain 267 kwh/m²
South_80	Average Solar Gain 241 kwh/m²
South_90	Average Solar Gain 230kwh/m²

Walkability

UMI WALKSCORE RESULTS

- Scores Breakdown				
- Scores Breakdown				
Highest Walkscore	93	Highest Bikescore	96	
Lowest Walkscore	63	Lowest Bikescore	95	
Average Walkscore	85	Average Bikescore	95	

First Floor Commercial

First Floor Commercial

combined ventilation

wind driven ventilation

combined ventilation

Embodied carbon - Goals

- √ Maintains operational energy
- ✓ Lower carbon than existing development

Material quantities (kg/m²)

Global Warming Potential or GWP (kg CO₂ / m²)

Total Residential V3 Total Commercial V2 509 kg CO₂ / m² 265 kg CO₂ / m²

Embodied carbon - Residential

	Variant 1	Variant 2	Variant 3
Structural	Gypsum, concrete, polystyrene,	,	
	brick	Reinforced concrete	Timber, wood chips, greenboard
Exterior	Gypsum, concrete, polystyrene,	,	
	brick	Timber, wood chips	Timber, wood chips
Interior	Gypsum, brick	Timber	Timber frame, wood chips
Floor	Timber, screed cast concrete,		Linoleum, HDF, cork insulation,
	urea foam	Pretensionned concrete	concrete slab
Windows	Timber framed	Timber framed	Timber framed
GWP	1021 kg CO2/m2	942 kg CO2/m2	509 kg CO2/m2

Embodied carbon - Residential

√ Maintains operational energy

Embodied carbon - Commercial

	Variant 1	Variant 2
Roof	Asphalt, glass wool, concrete block, gypsum Concrete block, insulation, bitumen	
Exterior	Brick, XPS, conrete block, gypsum	Timber, rockwool, plaster, brick
Interior	Gypsum, brick	Greenboards
Windows	Timber framed	Timber framed
GWP	344 kg CO2/m2	265 kg CO2/m2

Embodied carbon - Commercial

✓ Maintains operational energy

	Variant 1	Variant 2
Roof	Asphalt, glass wool, concrete block	c, gypsum Concrete block, insulation, bitumen
Exterior	Brick, XPS, conrete block, gypsum	Timber, rockwool, plaster, brick
Interior	Gypsum, brick	Greenboards
Windows	Timber framed	Timber framed
GWP	344 kg CO2/m2	265 kg CO2/m2

Embodied carbon

√ Lower carbon than existing development

Existing Development

Residential 930 Kg CO₂/m²

Commercial 886 kg CO₂/m²

Residential 509 Kg CO₂/m²

Commercial 265 kg CO₂/m²

Energy Consumption

Energy Consumption - Lighting

Worst Lighting Unit?

Energy Consumption - Lighting

Daylight Area

Worst Heating Unit?

Worst Unit here!

Commercial Space

Restaurant Insufficient Solar Gain to maintain comfort

Insufficient Heating

Toperative dropping to below 12°C on Jan 25th in TMY3 year

Control Optimization Attempt

Commercial Space

Restaurant Insufficient Solar Gain to maintain comfort

Unable to solve with Shading

Even with Blinds Open 24/7 worst operative temperature ~ 14.5° C

But over 90% of spaces can meet heating demand...

Cooling with Natural ventilation

Adaptive thermal comfort standard

Jan

Residential Air Temperature

What happens in 2080?

Jan

TMY3 Air Temperature

Jan

2080 Air Temperature

Jan

2080 Adaptive Temperature

Worst Cooling Unit? (including 2080)

Residential Space

Restaurant Insufficient Solar Gain to maintain comfort

Toperative above 33.2°C in bedroom above stair even with optimal N.V. operation!

Can this be solved at an Urban Scale?

High density

>High Density: Financial District Private Station: Oregon Scientific Pro Wireless Weather Station Model # WMR100N Station ID: KCASANFR102

5 minute timestep

Started recording Jan 31, 2010

Medium density

>Mid. Density: The Mission: Even the weather is

hip - Station ID: KCASANFR79

5 minute timestep

Started recording Feb 7, 2008

Low density

>Low Density: San Francisco Golf Club Station ID: KCASANFR100 5 minute timestep Started recording Oct 28, 2009

Urban Weather Generator

Too much water/wind for current model

Parameter	BUBBLE	CAPITOUL
City diameter	0.1	0.1
Average building height	0.1	0.1
Horizontal building density	0.4	0.4
Vertical-to-horizontal urban area ratio	0.8	0.3
Horizontal vegetation density (trees)	0.1	0.1
Wall albedo	0.1	0.1
Roof albedo	0.1	0.1
Road albedo	0.1	0.1
Volumetric heat capacity of concrete/brick in walls	0.1	0.1
Volumetric heat capacity of asphalt in road	0.2	0.1
Internal heat gains	0.1	0.1
Rural vegetation fraction	0.3	0.1
Daytime mixing height	0.1	0.1
Nighttime boundary- layer height	0.1	0.1
Reference height at which the vertical profile of potential temperature is assumed uniform	0.1	0.1
Urban-breeze scaling coefficient	0.1	0.1
Latent fraction of vegetation	0.4	0.1

Sensitive Morphological Parameters

Parameter	BUBBLE	CAPITOUL
City diameter	0.1	0.1
Average building height	0.1	0.1
Horizontal building density	0.4	0.4
Vertical-to-horizontal urban area ratio	0.8	0.3
Horizontal vegetation density (trees)	0.1	0.1
Wall albedo	0.1	0.1
Roof albedo	0.1	0.1
Road albedo	0.1	0.1
Volumetric heat capacity of concrete/brick in walls	0.1	0.1
Volumetric heat capacity of asphalt in road	0.2	0.1
Internal heat gains	0.1	0.1
Rural vegetation fraction	0.3	0.1
Daytime mixing height	0.1	0.1
Nighttime boundary- layer height	0.1	0.1
Reference height at which the vertical profile of potential temperature is assumed uniform	0.1	0.1
Urban-breeze scaling coefficient	0.1	0.1
Latent fraction of vegetation	0.4	0.1

Sensitive Morphological Parameters Checked vs. Low and Med Density data

Will all Transsolar Engineers please leave the room for this part?

Low density

Medium density

Residential Space

Restaurant Insufficient Solar Gain to maintain comfort

100% Potential Cooling Demand Met

Toperative below 26°C
Adaptive Comfort in all zones in 2080 w/
extensive natural ventilation

Finance

Construction Cost: \$1,267,850,780

Annual Costs: \$26,880,000

Rate of Return: 6.3%

Construction Cost: \$2,915,839,080

Annual Costs: \$75,683,218

Rate of Return: 9.9%

AC installed: 9.5%

with passive users: 9.0%

Conclusion

- 1) Lighting load can be met with thin buildings
- 2) Cooling load can be met by mitigating the UHI effect and using optimized natural ventilation
- 3) Heating load cannot be fully met in this model even with optimized schedules but very close

*note: will be less important as global temperatures increase

4) ...

Questions?

Catherine De Wolf cdewolf@mit.edu

John Sullivan sulljoh1@gmail.com

Mingxi Zou mzou@mit.edu

Trygve Wastvedt wastvedt@mit.edu

SunMin May Hwang mayhwang@mit.edu

9.5 Finance [IRR %]

85Accessibility
[%]

95Comfort
[%]