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Abstract

Objective: Recording low amplitude electroencephalography (EEG) signals in the face of large gradient artifacts generated by changing

functional magnetic resonance imaging (fMRI) magnetic fields continues to be a challenge. We present a new method of removing gradient

artifacts with time-varying waveforms, and evaluate it in continuous (non-interleaved) simultaneous EEG–fMRI experiments.

Methods: The current method consists of an analog filter, an EEG–fMRI timing error correction algorithm, and a temporal principal component

analysis based gradient noise removal algorithm. We conducted a phantom experiment and a visual oddball experiment to evaluate the method.

Results: The results from the phantom experiment showed that the current method reduced the number of averaged samples required to obtain

high correlation between injected and recovered signals, compared to a conventional average waveform subtraction method with adaptive noise

canceling. For the oddball experiment, the results obtained from the two methods were very similar, except that the current method resulted in a

higher P300 amplitude when the number of averaged trials was small.

Conclusions: The current method enabled us to obtain high quality EEGs in continuous simultaneous EEG–fMRI experiments.

Significance: Continuous simultaneous EEG–fMRI acquisition enables efficient use of data acquisition time and better monitoring of rare

EEG events.

q 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Simultaneous recording of electroencephalogram (EEG)

and functional magnetic resonance imaging (fMRI) has the

potential to monitor events in the brain with higher spatial and

temporal resolutions than standalone EEG or fMRI measure-

ments. However, EEG data recorded during fMRI acqui-

sitions are contaminated with large imaging artifacts,

including gradient artifacts induced by the changing magnetic

field gradients used for spatial encoding in MRI. These

gradient artifacts can be avoided by EEG-triggered fMRI

acquisition (Krakow et al., 1999; Seeck et al., 1998; Warach

et al., 1996) or by interleaved or sparse EEG–fMRI

acquisition (Baudewig et al., 2001; Goldman et al., 2000;

Sommer et al., 2003), but EEG data is lost or degraded during

fMRI scanning. Such loss of data can be an issue in some

applications of simultaneous EEG–fMRI acquisition, includ-

ing recording of spikes from epileptic patients (Lemieux et al.,

2001). Simultaneous and continuous (non-interleaved)

EEG–fMRI recording, on the other hand, requires gradient

artifact reduction algorithms such as frequency domain

processing (Garreffa et al., 2003; Hoffmann et al., 2000),

average waveform subtraction (Allen et al., 2000), and spatial

filtering (Bonmassar et al., 1999).

Although average waveform subtraction (Allen et al.,

2000) is widely used to remove the gradient artifacts (e.g.

Salek-Haddadi et al., 2002), the waveform of gradient

artifact changes over time, thereby blurring the average

waveform and decreasing the efficacy of this approach.

Changes in the sampling of the gradient artifact

waveform may be caused by (a) timing errors between

fMRI scanning and EEG sampling (Cohen et al., 2001), (b)

changes in electrode position and orientation over time,
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and (c) mechanical vibrations that are caused by, but are not

perfectly phase locked with, the switching gradient fields.

This paper focuses on a methodology to remove these time-

varying gradient artifacts.

One way to solve problem (a) above is to use a single clock

to control EEG and fMRI acquisitions using a customized

hardware (Anami et al., 2003). Another way is to record the

fMRI trigger with a high temporal resolution and make the

appropriate timing adjustment during average waveform

subtraction (Allen et al., 2000; Cohen et al., 2001). In this

paper we demonstrate an alternative approach, in which the

EEG is recorded with a relatively low sampling rate after

low-pass analog filtering, followed by timing error detection

and correction. This approach does not require special

hardware to synchronize EEG and fMRI or to record the

fMRI trigger with a high temporal resolution. However,

because timing errors are computed, there are possibilities

for errors in the estimated timing errors. Therefore we do not

claim that our solution to (a) yields a better result than using

the exact fMRI trigger timing.

Adaptive noise canceling (ANC) (Allen et al., 2000) and

spatial filtering (Bonmassar et al., 1999) have the ability to

reduce the problem caused by (b) and (c), although spatial

filtering does not reduce noises whose spatial patterns of

influence on the EEG electrodes fluctuate over time. For

instance, independent vibration of leads on an EEG cap may

give rise to such fluctuations. We present a temporal principal

component analysis (PCA) based gradient noise reduction

algorithm (temporal PCA filter hereafter) that addresses these

problems, and compares its gradient noise reduction ability

with ANC combined with average waveform subtraction.

There have been some event-related potential (ERP)

studies combining separate EEG and fMRI runs (Horovitz

et al., 2002; Opitz et al., 1999) or using interleaved

simultaneous EEG–fMRI (Kruggel et al., 2000; Liebenthal

et al., 2003; Sommer et al., 2003). Continuous simultaneous

EEG– fMRI has been successfully applied to detect

relatively high amplitude EEG signals such as ictal spikes

(Salek-Haddadi et al., 2002) and alpha waves (Anami et al.,

2003). However, there have been very few reported ERP

studies using continuous simultaneous EEG–fMRI (Bon-

massar et al., 1999), indicating the difficulty of recording

low amplitude EEG during fMRI. In this paper we report a

continuous simultaneous EEG–fMRI recording of a P300

ERP, and compare the temporal PCA filter with average

waveform subtraction followed by ANC (Allen et al., 2000)

in their abilities to recover a P300 ERP.

2. Methods

2.1. Timing error correction

Because gradient artifacts contain frequency components

higher than typical EEG sampling frequencies, slight

de-synchronization between fMRI scanning and EEG

sampling can result in a large change in the gradient artifact

waveforms (Cohen et al., 2001). Hence, the first stage of the

current gradient noise reduction method is analog low-pass

filtering before sampling, followed by timing error detection

and correction. The analog filter enables reliable timing

error detection. In the timing error detection algorithm,

sampled data is first interpolated using sync-interpolation

and segmented into fMRI slice acquisition intervals. In this

paper, each interval of data from each channel is called a

frame. Acquisition of T slices (number of head images £

number of slices per head image) results in T times M

frames where M is the number of EEG channels. In addition

to frames from all channels, T summary frames are

computed by taking the average of frames of all channels,

after correcting for polarity of gradient artifact so that

artifact waveforms of all channels have positive correlations

with that of the first channel. If there is only one channel, the

frames from that single channel are used as summary

frames. Delay time of each summary frame with respect to

the average of all summary frames is then computed. Each

non-summary frame is shifted to correct for the delay of a

summary frame corresponding to its slice and image, and

down-sampled to the original sampling rate.

2.2. Gradient artifact removal

The second part of the gradient artifact removal method

is a temporal PCA filter, which operates on each channel

independently. First, principal components (PCs) are

computed from the timing-corrected EEG signals. PCs

capture component waveforms whose amplitude variation

accounts for the largest variations of gradient waveforms.

The basic idea behind using PCA is that if the gradient

artifact waveform consists of multiple components whose

amplitudes do not co-vary with each other, they would be

captured in different PCs.

Second, activations of PCs (or PC scores) are computed,

along with the moving average and the associated standard

deviation of PC activation. Also, the mean and the standard

deviation of PC activations are computed from standalone

(in-magnet but no-scanning) EEG data.

Third, PC activations associated with gradient artifacts

are estimated using the PC activations and statistics

computed in the previous step. An estimated gradient

artifact at each frame is then computed as a sum of PCs

weighted by estimated PC activations for each frame, and is

subtracted from the original frame. Finally, an 80 Hz low-

pass filtering is applied.

If it is assumed that the number of PCs is large enough to

account for most of the variance of the signals, then using

the average PC activation regardless of the PC activation at

each frame is similar to average waveform subtraction. On

the other hand, using current activation at each frame,

allowing unlimited deviation from the mean, results in the

removal of all signals. The current algorithm estimates the

PC activation corresponding to the gradient artifact in
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a statistically optimal way, allowing some deviations from

the mean (Eqs. (2) and (3)).

2.3. Key equations

A frame and a summary frame are denoted by a vector xij

and a vector f j (i; channel number; j; serial slice number

starting from the first slice of the first image), respectively.

Each element of these vectors represents an instantaneous

voltage and is denoted by xijðkÞ (or f jðkÞ) where k is a

digitized sample number within a frame.

Delay time of slice j with respect to the average of all

slices is computed by

DTj <
Dt

N

XN

k¼1

f jðkÞ2 favðkÞ

f
0avðkÞ

ð1Þ

where Dt is the sampling interval, N is the number of

digitized samples in a frame, fav is the average vector of

the summary frames of all slices, and f
0av is the first-order

difference vector of fav; computed as f
0avð1Þ ¼ favð2Þ2

favð1Þ; f
0avðkÞ ¼ ðfavðk þ 1Þ2 favðk 2 1ÞÞ=2 for k ¼

2; 3; 4;…;N 2 1; and f
0avðNÞ ¼ favðNÞ2 favðN 2 1Þ: Then

each frame xij is shifted to correct for the delay DTj and

down-sampled to the original sampling rate. The resultant

frame is denoted by yij below.

It can be shown that an optimal subtraction of PCs can be

written as follows, assuming that the activation of PCs

found in the gradient noise and in the interested EEG signal

follow independent normal distributions

zij ¼ yij 2
XNc

k¼1

½ð1 2 aijkÞðyij·cikÞ þ aijkmijk 2 ms
ik�cik ð2Þ

In this formula, zij is a frame j of channel i after gradient

noise removal; Nc is number of PCs; cik is a k-th PC; mijk is

the moving average of the PC activation yij·cik of the EEG

signals during fMRI scanning; ms
ik is the average PC

activation ys
ij·cik (where ys

ij is a frame segmented from

standalone signal) of the whole standalone EEG signal, and

aijk is a weighting factor of PC activations computed as

follows

aijk ¼ ðss
ik=sijkÞ

2 ð3Þ

In Eq. (3), sijk is the standard deviation of the PC activation

of the EEG signals during fMRI scanning around frame j

and ss
ik is the standard deviation of the PC activation of the

whole standalone signal. As was described in words in

Section 2.2, if the PCs account for most of the variances in

the EEG signal, setting aijk to 1 in Eq. (2) results in average

waveform subtraction using moving average, whereas

setting aijk to 0 corresponds to removal of most signals.

(note: when there are large movement artifacts, we find it

empirically useful to limit the values of the PC activation so

that they vary only from [mijk;2sijk] to [mijk;þsijk]).

2.4. Cardiac artifact removal

Although the main purpose of this paper is to evaluate the

temporal PCA filter for gradient artifact removal, we also

explored the possibility that the same algorithm can be used

to remove another major error in the in-magnet EEG signal,

namely cardiac artifact (or pulse artifact, Allen et al., 1998).

Cardiac artifacts in the EEG signals are caused by small

movements associated with heartbeat and blood flow.

Cardiac artifacts can become more than 50 microvolts

(mV) in 3 Tesla (T) fMRI, making it difficult to recover

contaminated EEG waveforms without averaging a large

number of samples. We applied cardiac artifact removal to

the data acquired from the alpha wave detection experiment,

but not to the data from the oddball experiment where a

large number of trials were averaged. If we assume that the

cardiac artifact reduces with averaging as random noise

does, a 50 mV noise would be reduced to 7.5 mV with

averaging of 45 trials and to 2.6 mV with 384 trials. Thus,

cardiac artifact may account for much of the noise that are

seen in Fig. 5. Allen et al. (1998) used a variant of average

waveform subtraction, allowing the waveform to lengthen

or shorten according to heart rate fluctuations. In an alpha

wave detection experiment, we used the temporal PCA-

based noise removal algorithm to remove cardiac artifacts.

For cardiac artifact removal, ‘cardiac trigger pulses’ (a

vector with one at the onsets of heartbeats and zero

elsewhere) have to be computed. It is accomplished by the

following steps that operate on the cardiac EEG channel

after it has been processed by the temporal PCA filtering.

(1) Conditioning. Apply a 5 Hz fourth-order Butterworth

low-pass filter to the cardiac signal that was recovered

by the temporal PCA-based gradient noise removal.

(2) Standardization. Subtract moving average with a 1 s

time window and divide by standard deviation

computed with a 4 s time window.

(3) Thresholding. Find sections of contiguous points

where the standardized values are above 0.7.

(4) Finding centers. Find the centers of above-threshold

sections. Remove center points whose immediate

predecessors are less than 0.4 times the average

interval between centers.

(5) Computing average waveform. Compute an average

cardiac waveform segmented at the center points.

(6) Computing match. Compute inner product of the

average cardiac waveform and a sliding window with

the same length moving on the time series computed by

the step (2).

(7) Finding peaks. Find points where the inner products

are local maxima and above a quarter of the standard

deviation of the inner products.

The points thus selected are used as cardiac trigger pulses

to segment EEG data after gradient artifact removal into

cardiac frames, which will be processed by the temporal
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PCA-based (cardiac) artifact removal algorithm. Note that

in both gradient artifact removal and cardiac artifact

removal, frame lengths may differ from one to another. In

the actual implementation, all frames are extended to the

maximal frame length, allowing overlaps between adjacent

frames.

2.5. Experiments

The current method was tested in a phantom experi-

ment and two in vivo experiments using human subjects,

namely a visual oddball experiment and an alpha wave

detection experiment. For the phantom experiment and the

visual oddball experiment, we built an analog single

channel Chebyshev type I low-pass filter (roll off

frequency ¼ 125 Hz). We used a sampling factor of 128

for sync-interpolation for the timing error correction and a

sampling window of 50 for the moving average mijk:

The experimental system for the phantom experiment

consisted of an EEG signal emulator (PocketTrace,

Neuroscan Inc., Sterling, VA, attenuated to 15 mV peak to

peak), an EEG cap and carbon fiber cables (Neuroscan

QuickCap/MagLink), an analog low-pass filter, and an EEG

recorder (Neuroscan NuAmps, parameters: 1 kHz sampling,

32 bit DC recording, no low-pass filtering. After gradient

noise removal, a fourth-order 80 Hz low-pass Butterworth

filter was applied). Note that the built-in filters in NuAmps

are digital filters and thus are not suitable for signal

conditioning before timing correction. Typically, biological

signals of interest are below 70 Hz. For EEG recording in

the fMRI scanner, various sampling frequencies from

200 Hz (Goldman et al., 2000) to 5 kHz (Allen et al.,

2000) are used. We chose the 1 kHz sampling rate to

demonstrate that the combination of analog low-pass

filtering and timing error correction can reliably correct

timing errors in EEG signals that are collected at a moderate

sampling rate. The EEG cap was placed on a spherical

phantom in a 3 T MR imager (Magnetom Trio, Siemens

Medical Systems, Erlangen, Germany), from which the

EEG signal was collected from one channel (F7). The F7

and the ground electrodes were short-circuited at the cap to

form a loop, and a 5 kohm register was inserted serially at

the filter input to mimic the skin conductance. The fMRI

parameters were: echo-planar blood oxygen level dependent

(EPI BOLD) sequence, repetition-time (TR) ¼ 2220 milli-

seconds (ms), 30 slices per image, echo time (TE) ¼ 30 ms,

flip angle (FA) ¼ 70, 30 £ 6 mm slices, field of view

(FOV) ¼ 220 mm, matrix size ¼ 64 £ 64.

For the oddball experiment, the EEG was recorded

from linked CP3–CP4 electrodes against a linked ear

reference, and the EEG was recorded at 500 Hz. The

fMRI parameters were the same as the phantom

experiment except TR ¼ 1240 ms, TE ¼ 30 ms. The

fMRI data was analyzed using SPM99 software (Welcome

Department of Cognitive Neurology, University College,

London. http://www.fil.ion.ucl.ac.uk). Visual stimuli

consisted of frequent stimuli ‘oooooo’ and rare stimuli

‘xxxxxx’, which were generated using the shareware

software PsyScope (Department of Psychology, Carnegie

Mellon University) and projected as white letters on a

dark screen. Stimulus onset asynchrony was 1 s, stimulus

duration was 0.25 s, and the frequency of the rare stimuli

was 6.7%. Four healthy subjects (average age ¼ 38 years,

range ¼ 25–48 years, one female) participated in the

study with written consent (Yale HIC#11970).

The reasons for recording EEG from only one channel in

both the phantom and the oddball experiments were: (1) the

timing correction algorithm and the temporal PCA filtering

both operate on each channel independently with an

exception of the computation of the summary frames, and

thus can be evaluated with only one channel; and (2) so far

we had built only a one-channel analog low-pass filter. To

test the temporal PCA filtering on multiple-channel data

collected from an EEG cap, and to test the applicability of

the temporal PCA-based noise removal algorithm to cardiac

artifacts, we conducted an alpha wave detection experiment,

without the analog filter and without timing error correction.

An alpha wave is an oscillatory EEG wave at around 10 Hz

that appears when normal subjects close their eyes. Since

the phase of an alpha wave cannot be controlled, it cannot be

averaged. Hence, it is difficult to detect in the fMRI

environment without resorting to a frequency domain

analysis. Anami et al. (2003) detected alpha waves from

EEG signals whose acquisition was completely synchro-

nized with a special fMRI imaging sequence (see Section

4.2 for a discussion). In our experiment, we detected alpha

waves by the temporal PCA-based gradient artifact removal

followed by a temporal PCA-based cardiac artifact removal.

To reduce the gradient noise, we built a cap that had 19

bipolar outputs (PF1, PF2, F3, Fz, F7, F4, F8, T7, C3, Cz,

C4, T4, P7, P3, Pz, P4, P8, O1, O2). Reference electrodes

from the ear references were bifurcated into 19 carbon

wires, each of which served as a reference in a twisted pair.

The 19 twisted pairs were connected to 38 independent

channels in the NuAmps and were combined back into 19

bipolar recordings using a montage editor in the Scan

software (NeuroScan). One additional electrode was placed

on the subject’s chest to detect the heartbeat. One 48-year-

old male participated in the study after a written consent

(Yale HIC#11970). The subject opened and closed his eyes

during the fMRI scanning every 30 s, guided by a voice

command controlled by PsyScope. The fMRI and EEG

recording parameters were the same as the visual oddball

experiment.

3. Results

3.1. Phantom experiment

Fig. 1 shows the timing errors that were detected and

corrected using the timing correction algorithm described

M. Negishi et al. / Clinical Neurophysiology 115 (2004) 2181–21922184

http://www.fil.ion.ucl.ac.uk


in Section 2.1. The abscissa corresponds to frames and the

number on the ordinate shows the computed delay (if

positive) or advancement (if negative) of the waveform in

each frame compared to the averaged frame. If there are no

timing errors, the line should be horizontal with ordinate

equaling zero. It can be seen from Fig. 1 that there are two

kinds of timing errors at different timescales. At a shorter

time scale, there are zig-zag patterned lines with a period

of 30 frames. This is because the fMRI slice acquisitions

(30 per image) were not evenly distributed within an image

acquisition. That is, slice acquisition interval is slightly

shorter than an image acquisition time (or repetition time)

divided by number of slices per image (2220 ms/

30 ¼ 75 ms), and there is a small timing gap after the

acquisition of the last slice in an image and the beginning

of the next image acquisition. This could have been

predicted and adjusted during the timing error correction,

but it has been left unadjusted to show the capability of the

algorithm. At a longer scale, it can be seen that there is a

positive linear trend in the baseline of the zig-zag trend in

Fig. 1, indicating timing errors up to 10 ms/s, or 0.6 ms/min,

between the fMRI acquisition clock and EEG acquisition

clock. We also confirmed this timing shift by plotting

and visually examining the frame data through time

(not shown). Fig. 2 shows initial parts of the averaged

gradient artifact waveform at different slice positions (1, 8,

15, and 22) before and after timing correction. It can be seen

that timing error correction reduces the timing error caused

by unevenly distributed slice acquisitions in each image.

The assumption that PC activations corresponding to

gradient artifacts and interested signals follow normal

distribution (a basis of Eq. (2)) was examined by plotting

the distributions of PC activations and corresponding

normal probability plot (Fig. 3). If the points in a normal

probability plot align to form a straight line, the

distribution is close to normal. The first row shows the

distribution and normal probability plot of the first PC

activation corresponding to the gradient noise. The second

row shows the same plots for the second PC activation

corresponding to the gradient noise. The third row shows

the same plots for the first PC activation corresponding to

the injected signal. The fourth row shows the same plots

for the second PC activation corresponding to the injected

signal.

Fig. 4 shows the correlation of injected and recovered

data in the phantom experiment plotted against the number

of averaged epochs. Starting from the curve with the lowest

correlations (average subtraction with ANC), one can see

the effect of adding an analog filter, further adding timing

correction as described in Section 2.1, and finally replacing

average waveform subtraction and ANC with the temporal

PCA filtering. For this comparison, we implemented

average waveform subtraction and ANC (Allen et al.,

2000; Chen et al., 1989; Widrow et al., 1975) and applied it

to the same data. We modified the ANC method to improve

the result, as will be described in Section 4.2. As the formula

given for the weight adaptation coefficient (called m) given

in Allen et al. (2000) was not optimal for our data, we varied

m from 0.05 to 0.2 with a step of 0.01 and settled with 0.12,

which resulted in the maximum correlation between the

injected and recovered signals.

Fig. 1. Timing errors detected in unfiltered (left) and analog filtered (right)

signals from the phantom experiment. Timing errors (in ms) computed by

the algorithm presented in this paper is shown against number of frames (or

number of slice acquisitions). A partial data set consisting of 800 frames (30

frames/volume) was used for these plots.

Fig. 2. An example of the effect of timing error correction. Left: first 20 ms of averaged artifact waveforms at different slice positions within images before

timing correction. Right: the same after timing correction.
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3.2. Visual oddball experiment

The ERPs computed from the visual oddball experiment

are shown in Fig. 5. The upper half of Fig. 5 shows ERPs

computed from the results of timing error correction (as

described in Section 2.1) and the temporal PCA filtering,

whereas the lower half of Fig. 5 shows the ERPs computed

from the results of timing error correction (as described in

Section 2.1) and average waveform subtraction with ANC

(Allen et al., 2000). In both the upper and the lower halves

of Fig. 5, there are two pairs of plots, one on the right and

one on the left. Pairs on the left half are computed from 45

non-rejected trials (see below for the rejection criterion) that

were randomly selected from the full set. Pairs on the right

half are computed from all non-rejected trials. The upper

plot in each pair is computed from EEG data acquired

without analog filtering, whereas the lower plot is computed

from EEG data acquired with an analog filter.

To exclude trials with large movement artifacts, trials

whose peak-to-peak amplitudes exceeded mean peak-to-

peak amplitude plus 80% of the standard deviation of peak-

to-peak amplitudes were excluded from averaging. This

artifact rejection was determined using all of the analog

filtered EEG data that were processed by average noise

subtraction with ANC, and was applied to all other cases.

A composite fMRI map of the four subjects (Fig. 6)

showed a significant activation on the left superior temporal

gyrus (STG) (Brodmann’s area 22, corrected P , 0:05) and

the medial prefrontal gyrus (Brodmann’s area 11, corrected

P , 0:05) corresponding to oddball visual stimuli.

Information from the EEG was not utilized in obtaining

this fMRI map.

3.3. Alpha wave detection

Fig. 7 shows the result of alpha wave detection. The top

plot shows the alpha wave recorded outside the fMRI

scanner for reference. The middle plot shows the EEG

Fig. 4. Correlation of injected and recovered data in a phantom experiment

plotted against number of averaged data. Starting from the curve with the

lowest correlations (average subtraction þ adaptive noise canceling

(ANC)), one can see the effect of adding an analog filter, further adding

timing correction (described in Section 2.1), and finally replacing average

subtraction þ ANC with the temporal PCA filtering.

Fig. 3. Test of ‘normal distribution’ assumptions of PC activations (or scores). The top row shows the distribution of the first PC activation corresponding

to the gradient noise (left) and its normal probability plot (right). If the distribution is normal, the points in the normal probability plot aligns on a straight

line. The second row shows the same set of plots for the second PC activation corresponding to the gradient noise. The third row shows the same set plots

for the first PC activation corresponding to the injected signal. The third row shows the same set of plots for the second PC activation corresponding to

the injected signal.
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recorded during fMRI scanning and recovered by the

temporal PCA-based gradient noise removal, before cardiac

artifact removal. The bottom plot shows the data recovered

by a cascade of temporal PCA-based gradient artifact

removal and temporal PCA-based cardiac artifact removal.

4. Discussion

4.1. Timing error correction

Fig. 1 demonstrates that the 125 Hz low-pass filtering

prior to sampling improves the accuracy of timing error

detection. This can be seen from the fact that the width of the

zig-zag line stays constant and the longer timescale slope

forms a straight line in the plot from the analog filtered EEG,

correctly reflecting the fact that timing errors within each

brain image acquisition are the same and that the difference

between the speed of the EEG and fMRI clocks stays

constant. One cycle of a 125 Hz signal yields eight digitized

samples at 1 kHz, which provide enough points to compute

the phase of the signal. In the gradient artifact removal

method described in Allen et al. (2000), timing error is

precisely corrected using slice acquisition triggers that are

recorded with a high temporal resolution. In our timing error

detection algorithm, the delay time of each frame is

computed with respect to an averaged frame. As was

mentioned in Section 1, because timing errors are computed,

there are possibilities for errors in the estimated timing errors.

For instance, an estimation error may occur because an

averaged frame is not the same as a frame with the average

time delay. The averaged frame has a more blurred waveform

than individual frames and this can lead to slight errors in the

shift measured. However, blurring of sharp edges in the

waveforms does not cause a big problem because timing

error detection on analog filtered signals depends more on

shallow slopes in the gradient artifact waveform. It can be

Fig. 5. Average ERPs of four subjects from a visual oddball experiment. The upper half of the figure shows ERPs computed from the results of timing error

correction (as described in Section 2.1) and temporal PCA filtering, whereas the lower half of the figure shows the ERPs computed from the results of timing

error correction (as described in Section 2.1) and average waveform subtraction with adaptive noise canceling. In both the upper and the lower halves of figure,

there are two pairs of plots, one on the right and one on the left. Pairs on the left half are computed from 45 data that were randomly selected from the full set.

Pairs on the right half are computed from the full data set. The upper plot in each pair is computed from EEG data acquired without analog filtering, whereas the

lower plot is computed from EEG data acquired with an analog filter.

Fig. 6. A composite statistical parametric map of four subjects correspond-

ing to visual oddball stimuli. Non-white voxels had above threshold

(corrected P , 0:005) significance. A t value shown beside each cluster in

the bottom figure shows the minimum P value within that cluster. The right

side in the figure corresponds to the right side of the brain.
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seen from Fig. 2 that the algorithm can operate on the timing

shift between shallow slopes on the waveform and correctly

rectify timing errors due to uneven slice acquisitions within a

head image.

Instead of computing and correcting timing errors, Bénar

et al. (2003) divided frames with different delays into small

bins and then computed and subtracted average waveforms

within each bins. At least theoretically, timing error

detection and correction would result in a better result,

because there will be no quantization error of delay times.

As a summary of the evaluation of the timing error

correction algorithm described in this paper, it was

demonstrated that the algorithm was able to detect and

correct timing errors between fMRI slice acquisitions and

EEG sampling caused by uneven slice acquisition times

within one head image acquisition as well as slight clock

speed difference between the fMRI and EEG systems.

However, because the current algorithm computes timing

errors instead of measuring them, the current algorithm

cannot outperform Allen et al.’s (2000) method.

4.2. Gradient artifact removal

Before we examine the results of the temporal PCA

filtering, an assumption that was made in the formulation of

the algorithm, namely the assumption that the distributions

of PC activations corresponding to the gradient noise and

the interested signal are normal, has to be confirmed. Fig. 3

shows that assumption is largely confirmed for the first PC

(the first row for the gradient noise and the third row for

Fig. 7. Alpha wave detection. The top plot shows EEG data recorded outside the fMRI scanner. The subject closed his eyes at around 29.8 s. The middle plot

shows EEG data recorded during scanning and recovered by the temporal PCA-based gradient noise removal, but before cardiac artifact removal. The bottom

plot shows EEG after temporal PCA-based cardiac artifact removal. It can be seen that the subject closed his eyes at around 1 min and 15.8 s. Some channels

are omitted for visibility of the plots.
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the injected signal), as a majority of points in the normal

probability plots are close to a straight line. Admittedly, the

higher end of the normal probability plot in the third row

shows a deviation towards positive, indicating that the first

PC activation corresponding to the injected signal has a

longer tail. This means that the temporal PCA filter may

attenuate the strong interested signal more than it should

(because the variance due to the signal is underestimated),

but for the majority of frames its gradient error estimate is

close to statistically optimal. The correctness of the normal

distribution assumption for first PC is especially important,

as 80% of variance in the gradient artifact in the phantom

experiment is accounted for by the first component (the

second component accounts for 4%).

Next, we compare the performance of the temporal PCA

filter to that of average waveform subtraction with ANC

(Allen et al., 2000). Fig. 4 shows the effect of adding analog

filtering and timing error correction to a baseline perform-

ance measured with average waveform subtraction and

ANC alone. It also shows that the temporal PCA filter

achieved higher correlation between the injected and

recovered signals with same numbers of averaged samples,

compared to average waveform subtraction with ANC

(note: ‘a sample’ in this context refers to a section of EEG

data corresponding to one wave generated by the EEG

signal emulator, which is different from the term ‘a digitized

sample’ used in Section 2.4). It is important to measure the

quality of the output signals with different number of

averaged samples, because as long as the residual error of an

artifact reduction is uncorrelated with the interested signal,

averaging of the samples reduces the residual error

amplitude by a factor of the square root of the number of

samples. To examine the amount of noise quantitatively, let

us assume that the total variance of the recovered signal

consists of three orthogonal components: signal variance ws;

residual noise variance that cannot be removed by averaging

wn; and noise variance that reduces with averaging wg: It can

be assumed that ws and wn do not change with averaging.

The signal variance can be known from the injected signal,

and in this case it was ws ¼ 111 mV2 (squared microvolts).

From the asymptotic correlation rmax; wn can be computed

as wsð1 2 r2
maxÞ=r

2
max ¼ 9:2 mV2 for both the temporal PCA

filter and average waveform subtraction with adaptive noise

filtering (both with analog filtering and timing error

correction). From the correlation r at each measurement

points in Fig. 4, error variance that reduces with averaging

can be computed as wg ¼ wsð1 2 r2Þ=r2 2 wn: When 10

samples were averaged, wg ¼ 25:7 mV2 or 5.1 mV root

mean square (RMS) for the temporal PCA filtering and

wg ¼ 55:438 mV2; or 7.4 mV RMS for average waveform

subtraction with adaptive noise filtering.

The main goal of the temporal PCA filter is to remove

components in the signal that are not perfectly repetitive,

but are time-locked to the image acquisition. An indication

of the ability of the temporal PCA filter to remove gradient

artifacts with rapidly fluctuating waveforms was observed

when timing error correction stage was bypassed. In that

case, PCs that had not previously been seen emerged that

corresponded to small timing differences among slices

within head volumes (not shown). These PCs contained

narrow peaks reflecting differences among gradient artifact

waveforms at different slice positions within a head image

seen in Fig. 2. The temporal PCA filter relies on the

statistical characteristics of the variance of PC amplitudes in

the EEG during scanning and those without scanning. The

ability of adaptive noise cancellation (Allen et al., 2000) to

remove time-varying noise crucially depends on the weight

adaptation parameter. If the weights do not adapt, the

mechanism always predicts the same noise waveform,

computed from low-pass filtered trigger pulses. Adaptive

weights allow cancellation of time-varying noise, at some

risk of attenuating the interested signal as will be described

below.

We found that for this particular signal, addition of ANC

reduced the correlation between the injected signal and the

recovered signal over average waveform removal with

analog filtering and timing correction, regardless of the

value of the weight adaptation constant ðmÞ: We hypoth-

esized that this is because the injected signal is perfectly

periodic: a periodic signal may be easily predicted and

removed by the adaptive noise cancellation. In fact, we

found that if we use the pure injected waveform (with no

gradient noise or white noise) as the primary input, and use

the fMRI trigger as the reference signal to the ANC, then the

correlation of the output to the primary input was only 0.86.

This does not mean that the interested signal is degraded by

14% while the gradient noise is being processed by the

ANC, but it does mean that ANC can interfere with a signal

that is not synchronized with the reference signal. We found

two ways to reduce the alternation of injected signals caused

by ANC. One way was to set the bias, or the weight that

multiplies to a constant input in the adaptive noise canceller,

to zero. This reduces the tendency of the adaptive noise

canceller to remove slow changes in the primary signal by

changing the bias. Another way, which resulted in a better

correlation (0.99), was to high pass filter the estimated noise

by a fourth-order Butterworth filter with a cutoff frequency

equal to the slice acquisition frequency before it will be

subtracted from the primary signal. However, even with this

modification to the ANC, addition of ANC did not improve

the correlation between the injected and recovered signals

over average waveform removal with analog filtering and

timing correction. For all measurement points used in Fig. 4,

addition of ANC changed the correlation only within the

range from 20.015 to þ0.012.

Because processing of a perfectly periodic signal would

not provide a fair comparison between the temporal PCA

filter and average waveform removal with ANC, we

performed another experiment using a signal that is closer

in its characteristics to that used in Allen et al. (2000), namely

simulated epileptic spikes generated at random timings

(Poisson distribution with mean spike interval ¼ 2 s).
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Spikes were simulated by a Gaussian function with standard

deviation of 10 ms and a peak voltage of 150 mV, and the

signal was added to 2 min of phantom data (but without the

injected periodic signals). In this case, addition of ANC (with

the high pass filter mentioned above) to the average

waveform subtraction did improve the correlation between

simulated spikes and the recovered signal from 0.22 to 0.26.

The temporal PCA filter again outperformed the combination

of average waveform subtraction and ANC, yielding a

correlation of 0.31.

Compared to the gradient artifact removal method

presented in Allen et al. (2000), the temporal PCA filter

also has an advantage of utilizing the standalone EEG

signal. This means that the temporal filter can utilize some

apriori knowledge about the interested signal. On the other

hand, the standalone signal has to be recorded carefully so

that the amplitude and/or the frequency of interested signal

(epileptic spikes for instance) are representative under the

experimental condition. Otherwise the detection of inter-

ested signals can be positively or negatively biased. If the

standalone signal is unavailable, the algorithm still works,

by using a white noise of small amplitude as the standalone

signal for instance, although the result tends to be negatively

biased.

Gradient artifact removal based on frequency domain

analysis (Garreffa et al., 2003; Hoffmann et al., 2000) are

more effective in removing time-varying gradient artifacts

than average waveform subtraction, because they can

remove artifacts regardless of phase fluctuation. However,

for the same reason, it is possible that they will degrade the

interested signal that happen to have frequency components

that overlap with gradient noise. The temporal PCA filter

may also possibly degrade interested signals: if some

frequency component consistently occurs with random

phase, then sine and cosine components of this frequency

may be included in different PCs, thereby attenuating that

frequency component. However, at least the temporal PCA

filter takes into account the occurrence of such PC activities

in the standalone EEG, and the temporal PCA filter can also

be sensitive to the timing of the amplitude change of the

frequency component within a frame. As a thought

experiment, suppose that the gradient artifact caused by a

mechanical vibration is large at the beginning of each slice

acquisition and decays towards the end of a slice

acquisition, but the phase of the vibration is not the same

for all slices. Then two decaying sinusoidal waves with 908

difference would serve as PCs corresponding to this artifact,

and so the temporal PCA filter can remove noises with this

particular amplitude profile.

Anami et al. (2003) presented a technique called stepping

stone sampling, where the EEG is sampled at the exact

moments when the gradients are held constant for a very

short moment. Thus, the gradient artifacts are extremely

small, and because they use a specialized hardware so that

EEG and fMRI are driven by a single clock, there is no need

for timing error correction. We do not claim that

the temporal PCA filtering outperforms stepping stone

sampling. In fact, a temporal PCA filter could be used in the

place of an average waveform subtraction algorithm used in

Anami et al. (2003) after stepping stone sampling, possibly

resulting in a better result, considering that stepping stone

sampling itself does not reduce time-varying artifacts due to

mechanical vibrations.

To summarize the evaluation of the temporal PCA

filtering using the data from the phantom experiment, it was

found that the current method required less number of

samples to be averaged to obtain the same correlation

between the injected and recovered signals, compared to

average waveform subtraction with ANC. We also argued

that the current method reduces noise that are caused by, but

are not perfectly synchronized with, slice acquisitions,

partly on the basis of the characteristics of the algorithm and

partly from an observation of PCs that emerged when timing

error correction was bypassed.

4.3. Visual oddball experiment

A typical visual P300 latency peaking around 400 ms

after stimulus presentation can be seen in all plots in

Fig. 5. In both the result from the temporal PCA filtering

(the upper half of Fig. 5) and the results of average

waveform subtraction with adaptive noise filtering (the

lower half), plots that are computed from 45 trials have

higher frequency components of around 15 Hz than the

plots that are computed from the full set, suggesting that

such frequency components are reflection of noises. If

that is the case, the filtered data in all filtered–unfiltered

pairs show low noise, indicating the effect of analog-

filtering.

There was no apparent difference in waveforms obtained

by the temporal PCA filtering and by average waveform

subtraction with ANC. However, a closer look on the ERPs

computed from 45 unfiltered samples reveals that there was

a small extra peak (at 830 ms) and a very small valley (at

620 ms) in the plot computed by average waveform

subtraction with ANC compared to the plot computed by

the temporal PCA filter. Moreover, amplitudes of the P300

computed from 45 samples were higher when processed by

the temporal PCA filtering. For instance, the positive peak

voltages were 20.7 (temporal PCA filtering) versus 15.4 mV

(average waveform subtraction with ANC). Given that there

were no amplitude differences between these two methods

when all samples were used, it is unlikely that the difference

was caused by attenuation of signals by the ANC. Rather, it

suggests, although not conclusively, that the residual noise

level was lower when the temporal PCA filter is used.

Our fMRI analysis found left temporal and medial

frontal activations during the oddball experiment (Fig. 6).

As our study used data from only four subjects and our

single-channel ERP did not allow us to perform dipole

localization, it is impossible for us to tell whether these

fMRI activities truly corresponds to P300 found in our
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ERPs. However, in light of other studies, left temporal

activation may correspond to the visual oddball stimuli.

Other EEG–fMRI studies of visual oddball found right

(Kruggel et al., 2000) or bilateral (Opitz et al., 1999) STG

activations. However, Stevens et al. (2000) compared

response to auditory and visual oddball tasks and found

strongest activations in the middle temporal gyrus for

visual oddball stimuli and activations in the transverse

temporal gyrus for auditory oddball stimuli. Identification

of the exact loci of activation and their dependency on

experimental parameters requires more extensive studies.

Near infrared optical topography (OT), like fMRI, is a

non-invasive technique that measures hemodynamic

changes. Being an optical recording, NIRS does not

interfere with EEG recordings. Using simultaneous OT

and EEG recording, Kennan et al. (2002) found

supramarginal gyrus activation (Brodmann’s area 40)

corresponding to auditory oddball stimuli.

Our oddball study is only preliminary and is meant to

demonstrate the applicability of the temporal PCA filtering

to in vivo EEG data. The limitation includes number of

subjects (four) and number of EEG channels (only one

channel). In a future study, we plan to use more than 15

subjects and at least 19 electrodes, in order to compare EEG

source localization with fMRI activation maps.

4.4. Cardiac artifact removal

Fig. 7 demonstrates the ability of the temporal PCA-

based cardiac artifact removal in reducing the cardiac

artifacts. After cardiac noise removal, the artifact due to

eye-closing and the alpha rhythm following that became

apparent. However, the average peak-to-peak amplitude of

the residual noise was 25 mV before eye-closing, indicating

that further efforts including improvements to the current

cardiac artifact removal method are required to recover

lower amplitude signals.

4.5. Computational requirements

We implemented timing error correction, the temporal

PCA filtering, and temporal PCA-based cardiac artifact

removal algorithms using MATLAB (The MathWorks Inc.,

Natick, MA). In the current implementation with non-

compiled MATLAB code, to process 1 s of EEG data

sampled at 1 kHz it takes 13 ms for timing error detection,

26 ms per channel for timing error correction, 7 ms per

channel for temporal PCA filtering, 57 ms for cardiac pulse

detection, and 10 ms per channel for temporal PCA-based

cardiac artifact removal, on a 2.8 GHz Intel Xeone based

Dell Precisione desktop computer (Dell computer cor-

poration, Austin, Texas) with 512 kilobytes cache

and 4 gigabytes main memory. Note that for

temporal PCA, computation time increases only linearly

with EEG acquisition time increases, because the size of

the co-variance matrix does not change with the

acquisition time.

Our current algorithms work offline on stored EEG data.

Online removal of fMRI artifacts (e.g. Garreffa et al., 2003)

would be a desirable feature in applications such as

continuous EEG–fMRI acquisition of epileptic spikes and

sleep state monitoring during fMRI scanning. In the current

implementation, EEG data cannot be processed online

because temporal PCA requires all the EEG data before-

hand. However, there are PCA algorithms that continuously

update PC’s as more data are added (Oja, 1992; Sanger,

1989). Using such algorithms, it is possible to realize online

processing of EEG data. Moreover, unlike spatial PCA,

temporal PCA algorithm operates independently on each

channel. Therefore computation time increases only linearly

as more channels are added, and it is also possible to take

advantage of multiple processor architectures.

5. Conclusions

We have proposed an EEG–fMRI timing error correc-

tion algorithm and temporal PCA filtering, which can be

used in combination to recover EEG contaminated with

time-varying gradient artifacts. In a phantom experiment,

the temporal PCA filter required less samples to be

averaged, compared to the average waveform subtraction

method with ANC, to achieve the same correlation between

the injected and recovered signals, indicating a better

gradient noise reduction capability. Using these algorithms,

we were also able to obtain a P300 ERP in a continuous

simultaneous EEG–fMRI experiment.
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