The Perils of
Unauthenticated Encryption:
Kerberos Version 4

Tom Yu
Sam Hartman

Ken Raeburn

Massachusetts Institute of Technology

06 February 2004

Unauthenticated encryption in Kerberos version 4 creates a critical
vulnerability.

We implemented highly efficient chosen-plaintext attack to
Impersonate arbitrary principals

Practical demonstration of importance of authenticating encryption

Version 5 also differently vulnerable

Ongoing revisions to version 5 fix these too

Authentication is More Important Than

Confidentiality
e Unauthenticated encryption known to be dangerous
e Forging authentic ciphertext more useful than recovering plaintext

e Becoming someone else is more useful than knowing what someone
said

Kerberos Vulnerabilities

Kerberos version 4 has a critical authentication vulnerability allowing
Impersonation of arbitrary principals

Caused by multiple design errors

First specification of Kerberos version 5 (RFC 1510) has related (less
serious) weaknesses.

Upcoming revision to version 5 in IETF fixes even these.

Despite improvements, obsolete version 4 remains in widespread use
— protocols live longer than anticipated

The Version 4 Vulnerability
Unauthenticated encryption of security-critical information
Can forge credentials impersonating arbitrary principals
Encryption oracle using legitimate protocol transactions

Very efficient attack: O(n) oracle queries to forge n block-long
ciphertext

Successful attack may go completely unnoticed

Vulnerability is Symptom of Design Errors

Designers of Kerberos version 4 failed to explicitly identify
nonmalleability requirement

Malleability in version 4 allows our attack

Lack of good encryption abstraction contributed to problems
Deterministic encryption scheme allows oracle

Version 5 encryption thwarts oracle creation

Make cryptographic assumptions explicit

Create good encryption abstraction

RFC 1510 Flaws

e RFC 1510 uses encrypted plaintext checksums

e Message authentication can be subverted by using encryption oracle

e Designers should ensure that attackers can’t subvert message
authentication by ciphertext surgery

Long-Lived Protocols
Multiple application protocols built on top of Kerberos
Deployment of security infrastructure expensive

Resistance to change unless clear and present danger due to
expense

Use conservative design in security protocols

Evaluate whether apparently theoretical weaknesses indicate more
serious problems

Outline

Kerberos History

Design Shortcomings of Kerberos Version 4

Kerberos Version 4 Protocol

Block Encryption Oracle

Ticket Ciphertext as Oracle

Implementation Flaws

Evolution of Kerberos Encryption

Kerberos History

Historical Overview

Version 4 designed/deployed at MIT Project Athena (Miller et al.
1987; Steiner et al. 1988)

Based on Needham-Schroeder (1978) symmetric-key

Uses timestamps to mitigate replays (Denning 1981)

Version 5, defined by RFC 1510

Ongoing revision of version 5 in IETF

10

AFS leads to Widespread Deployment
Andrew File System (AFS) developed at CMU
AFS protocol uses Kerberos version 4
Commerical AFS from Transarc/IBM

Introduction of open-source version OpenAFS led to wider adoption
of Kerberos version 4

Reluctance to update AFS to use Kerberos version 5

Our attack prompted rapid migration

11

Prior Work

e Formal correctness analyses (Bella and Riccobene 1997; Bella and
Paulson 1998; Burrows et al. 1989)

e Deficiencies in encryption scheme (Bellovin and Merritt 1991,
Stubblebine and Gligor 1992)

e Encryption oracle attacks against other protocols (Lowe 1996)

12

Evolution of Kerberos

e RFC 1510 fixes some flaws of version 4: still has some vulnerabilities

e Ongoing work (post-RFC 1510) in IETF
— More explicit cryptographic abstraction

— Strategies similar to recent work on SSH protocol (Bellare et al.
2002)

— Fixes flaws in RFC 1510

13

Design Shortcomings of Kerberos
Version 4

14

Abstract Design Flaws
e Failure to make cryptographic assumptions explicit

e Needham-Schroeder implicitly requires nonmalleable encryption
(Dolev et al. 2000)

e Kerberos version 4 fails to provide nonmalleability

e Concept of malleability not well-developed at time of design

15

Concrete Design Flaws

DES in nonstandard Propagating Cipher Block Chaining (PCBC)
mode

Assumption: error propagation properties of PCBC sufficient to
scramble plaintext after manipulation

Constant Initialization Vector (1V)
Use of PCBC for integrity via known values at end of plaintext
PCBC as integrity check fails spectacularly

PCBC insufficient against encryption oracle

16

Lack of Abstraction

e Dependency between integrity and message layout indicates lack of
sufficient abstraction of encryption

e Separation of encryption and message details previously emphasized
(Bellovin and Merritt 1991)

e Security of encryption should not depend on packet layout details

17

Our Attack Nearly Discovered Earlier

Version 4 security assumptions do not include encryption oracle

Existing chosen-plaintext attack (Voydock and Kent 1983) against
CBC mode with fixed IV.

Designers of version 4 were unaware

Designers of version 5 nearly uncovered our attack on version 4
during design discussions

Dismissed by (incorrect!) argument that first plaintext block is
randomized

Again, indicative of insufficiently abstracted encryption

18

Kerberos Version 4 Protocol

19

Dramatis Personae

e Trusted third party: Key Distribution Center (KDC)

e Client

e Server

20

Keys and Other Elements
Client A’s long-term key: kg
Server B’s long-term key: kg

Ticket: ciphertext encrypted with ki
— lIdentifies client

— Contains session key
Credential: ticket and session key kg,

Ticket alone insufficient; also must prove knowledge of session key

21

Obtaining Credentials

Two conceptual services in KDC
— Authentication Service (AS)

— Ticket Granting Service (TGS)

The AS issues credentials encrypted using client’s long-term key ka

The TGS acts as a special application service for obtaining additional

credentials

Typically, client uses AS exchange to get ticket for TGS; permits
single sign-on

22

AS Exchange

Here, client requests a ticket granting ticket (TGT) for later use with the

TGS.

A—S :
S—A

{A7 S7 t37 kaS} kS

A 'S
{kaS7 S7 {A7 S7t37 kaS}kS}ka

KDC'’s timestamp

M encrypted with key ky

client name

TGS name

client long-term key

TGS long-term key

session key between client and TGS
ticket

23

TGS Exchange

Here, client requests ticket for service B from the TGS.

A—S : {A7 S>t87 kas}ks, {A7 ta}kas, B
S—A ! {kab7 B, {Av B7té7 kab}kb}kas

ta client’s timestamp
B server name
Ko server long-term key
kas session key between client and TGS
{A7 Sv tS; kas} kS TGT
{Ata}kas authenticator for TGS request
{A, St kyptky service ticket

Authenticator assures TGS that client has recent knowledge of session

key Kas.

24

Using Credential

Client sends application request

A—B: {Aa thév kab}kbv {A7 té}kab

Authenticator {A,t]}kyp proves to service B that A has recent knowledge of
session key Kqp,.

25

AS Reqguest

26

AS Reply

27

TGS Request

28

TGS Reply

29

Application Request

{A7 B, tg? Kab } Ko {A7 tél} Kab
e

30

Kerberos Names
Form of principal name has implications for attack

Principal name is a triple

{primaryname, instance, realm}

Usually displayed like

primaryname. instance@ealm

Normal TGS principal name

Kr bt gt . realm@ealm

Cross-realm TGS principal name

kr bt gt . localrealm@oreignrealm

31

Cross-realm Authentication

Local KDC checks cross-realm TGT for client principal realm
matching foreign realm; local KDC can’t normally issue ticket
certifying wrong client realm

Implementation flaws allow for circumvention of this check

As designed, sharing cross-realm keys only implies trust that foreign
realm trustworthy for its own principals

Compromise of foreign realm only renders that realm’s principals
untrustworthy

Cryptographic flaws invalidate these trust assumptions

Cross-realm TGS requests useful for inserting known plaintext

32

TGS Request for S

33

TGS Reply for S

34

TGS Request for B

35

TGS Reply for B

36

Application Request to B

37

Block-Encryption Oracle

38

Block-Encryption Oracle
e Chosen plaintext allows block-encryption oracle in Kerberos version 4
e Oracle takes advantage of fixed or predictable IV

e Oracle uses structure of CBC or PCBC mode

39

Cipher Modes

e Cipher Block Chaining (CBC) mode

Cii1 = k(R119G)
Pi1 = k1Ci1)eC

e Propagating Cipher Block Chaining (PCBC) mode

Cii1 = k(Rp1@CGeoh)
PRy = kiCi)aCaen

Co,Cq,...,Cnh ciphertext blocks
Po,Py,...,Ph plaintext blocks
k(X) encryption of block x with key k
k—1(x) decryption of block x with key k
Xady bitwise exclusive-OR of x with y

40

CBC encrypt

To Py
K K
Cir1=k(R119G

CBC decrypt

Co Cq
kil kil
0 1

41

PCBC encrypt

Po Py
V—& o—h o—
K
Co C1

PCBC decrypt

42

Generalized Feedback Modes
CBC and PCBC can be generalized as feedback modes
C = k(ReR)
R = kK'R)oR,
F is i-th feedback block; not necessarily transmitted

CBC mode: F, 1 =G

PCBC mode: F,1 =C ®PR

43

Predictable Feedback Makes an Oracle

To get encryption X = k(M) of block M

Find an Fj that will remain the same when Pj replaced with Pj’

Choose Pj’ =M@F,

Now, the new ciphertext block C? IS the desired encryption of M

C/

]

k(Pj’@Fj)
k(M Fi @ Fj)
k(M) = X.

In well-designed protocol, attacker can’t create this oracle, since F;

should not be predictable

44

Original Plaintext

Fo Py
V=F—& o—F——d o—
K K

45

Chosen Plaintext

Ry P!
V=F—& &—F——& &—
k k

46

Constructing Desired Ciphertext

To get ciphertext blocks {X;}, whose plaintext blocks are {M;}, for each M;
e Use oracle to perform block encryption X; = k(M; ® ;)
o O is the feedback block, e.g., ®;,1 = M;® X in PCBC mode
e Choose plaintext block Pj’ =M © P O F;

e This gives C| = k(M; & ®))

47

Ticket Ciphertext as Oracle

48

Kerberos Version 4 Ticket (pre-encryption)

1 byte flags
string pname
string pinstance
string prealm

4 bytes paddress
8 bytes session

1 byte life

4 bytes time_sec
string sname
string sinstance
<7 bytes null

namely, HOST BYTE ORDER
client’'s name

client’s instance

client’s realm

client’'s address

session key

ticket lifetime

KDC timestamp

service’s name

service’s instance

null pad to 8 byte multiple

e flags has only one meaningful bit (HOST _BYTE ORDER — KDC'’s byte

order)

e “string” fields are NUL-terminated ASCII, max 40 chars

49

Chosing Plaintext in Ticket
Hold one aligned block of client name constant
Vary the following block as chosen plaintext for oracle
First byte (flags) usually constant
IV is constant, but unknown (it's the key)

Client name and instance easily controlled

50

TGS Attack Scenario

Attacker controls realm A
Target realm B

Attacker knows key of TGS principal kr bt gt . B@\, which has same
key as kr bt gt . A@3

Attacker creates cross-realm ticket with client principal
a23456 7 XXXXXXXX @A

— “a234567" arbitrary and held constant

— XOXKXXXXX" IS the Pi varied to produce desired ciphertext block

Attacker uses cross-realm ticket to get ticket for target service

51

TGS Attack Scenario (cont’d)

Resulting initial two blocks of plaintext of ticket issued by realm B KDC are

flags|[a234567 | XXXXXXXX
< P >l<— P —>

e Cpremains constant, due to constant IV and constant R,

e F; also remains constant

e C] contains desired ciphertext block when Py is varied

e Choose P| = M; & ®; & Fy to get C) = X

52

TGS Attack Scenario Limitations

e May need to choose different R if P; needs to contain too many NUL
characters
e First ciphertext block can be problematic
— Can sniff initial ciphertext block

— Can submit initial substring of target principal, with restrictions due
to NUL characters

— Cross-protocol attack

53

Alternate Attack Scenario

Knowledge of sufficient number of keys in target realm allows using
AS exchange as oracle

Particularly effective if attacker can create principals in target realm

MIT implementation allows less-privileged administrators to
create/change keys for host-based service

Typically of form r cnd. hostname@ealm

Used for authenticating remote logins

May need to create as few as n principals for n blocks of ciphertext

54

Alternate Attack Scenario Limitations

Not very useful in version 4-only environment

Few interesting client principals begin with “r cnd”

Cross-protocol attack can work, though

Can also get initial ciphertext block by sniffing

55

Implementation Flaws

56

Implementation flaws make certain additional attacks possible

e MIT implementation of version 4 has lax checking for cross-realm
TGT issuance, allowing “hopping” between realms, which is normally
not permitted

e MIT implementation of version 5 shares keys with its version 4
backwards-compatibility mode, allowing cross-protocol attack

S7

Realm Hopping

e MIT implementation of version 4 will issue “useless” tickets that would
be rejected by the target realm’s KDC

client using TGS requested service
clienta@\ | krbtgt. A@GA | kr bt gt . B@GA Issued
clienta@\ | krbtgt. B@A | kr bt gt. C@AB Issued
clienta@\ | krbtgt. Ca@ | kr bt gt. D@C rejected
clienta@\ | krbtgt. B@A | kr bt gt . B@3 Issued
clienta@\ | krbtgt. B@ | anyt hi ng@3 rejected

e Normally harmless, this allows use of forged tickets for kr bt gt . B@GA
to run an oracle on key for kr bt gt . C@3

e Recursive realm compromise possible; must forge O(c") tickets to
compromise a realm n hops away

58

Realm Hopping (cont’d)
e Can shortcut by forging tickets of a realm administrator

e Can also use forged tickets for kr bt gt . B@A to run an oracle on key
for kr bt gt . B@3.

99

Cross-Protocol Attack

Using a key for multiple cryptographic purposes can be a vulnerability

MIT implementation of version 5 can allow KDC to issue version 4
tickets for backwards compatibility

Same key used for version 4 and version 5 tickets for a principal

Can use version 4 ticket oracle to forge ciphertext for version 5 ticket

60

Cross-Protocol Attack (cont'd)
RFC 1510 uses single-DES

Encoded plaintext of version 5 ticket prior to encryption is

confounder|checksum]|...data... |pad

confounder is a block of random bits

checksum is not keyed

For checksums MD4 and MD5, |V is block of zeros

For CRC-32 checksum, key used as IV

Cross-Protocol Attack (cont'd)

e Forge complete encoded plaintext of version 5 ticket, including
checksum

e Use version 4 oracle to encrypt

e CRC-32 checksum makes first block slightly tricky; can use any initial
ciphertext block whose plaintext is known, as receiver doesn’t know
what random confounder value to expect

62

Evolution of Kerberos Encryption

63

RFC 1510

Improvement over version 4

No more PCBC

Confounder prevents using ciphertext as oracle

Plaintext checksum allows use of version 4 block-encryption oracle to
forge ciphertext

Confounder also prevents cut-and-paste attacks (Bellovin and Atkins,
private communication, 1999)

64

Ongoing Revision to Kerberos Version 5
Repairs many flaws in RFC 1510

Increases encryption abstraction; moves encryption specification to
separate document

Stronger ciphers (triple-DES, AES, etc.)

Uses HMAC for integrity checking — can’t be forged with encryption
oracle

65

Revised Ciphertext (post-RFC 1510)

e Ciphertext output

encrypt(ke, plaintext)

HMAC (K, plaintext)

e Encoded plaintext

confounder

data|pad

e Ke: derived key exclusively for encrypting

e Kkc: derived key exclusively for HMAC

e Both derived via one-way function from key exchanged in protocol

66

Conclusions

Critical vulnerabilities in Kerberos version 4 provide examples of
errors in cryptographic protocol design

Clearly identify role of encryption in protocols

Use good abstraction of encryption to avoid cross-dependencies
between message layout and encryption

Avoid deterministic encryption

Avoid using one key for multiple purposes

Protocols live longer than expected

67

