
The Perils of

Unauthenticated Encryption:

Kerberos Version 4

Tom Yu

Sam Hartman

Ken Raeburn

Massachusetts Institute of Technology

06 February 2004



• Unauthenticated encryption in Kerberos version 4 creates a critical
vulnerability.

• We implemented highly efficient chosen-plaintext attack to
impersonate arbitrary principals

• Practical demonstration of importance of authenticating encryption

• Version 5 also differently vulnerable

• Ongoing revisions to version 5 fix these too

1



Authentication is More Important Than

Confidentiality

• Unauthenticated encryption known to be dangerous

• Forging authentic ciphertext more useful than recovering plaintext

• Becoming someone else is more useful than knowing what someone
said

2



Kerberos Vulnerabilities

• Kerberos version 4 has a critical authentication vulnerability allowing
impersonation of arbitrary principals

• Caused by multiple design errors

• First specification of Kerberos version 5 (RFC 1510) has related (less
serious) weaknesses.

• Upcoming revision to version 5 in IETF fixes even these.

• Despite improvements, obsolete version 4 remains in widespread use
— protocols live longer than anticipated

3



The Version 4 Vulnerability

• Unauthenticated encryption of security-critical information

• Can forge credentials impersonating arbitrary principals

• Encryption oracle using legitimate protocol transactions

• Very efficient attack: O(n) oracle queries to forge n block-long
ciphertext

• Successful attack may go completely unnoticed

4



Vulnerability is Symptom of Design Errors

• Designers of Kerberos version 4 failed to explicitly identify
nonmalleability requirement

• Malleability in version 4 allows our attack

• Lack of good encryption abstraction contributed to problems

• Deterministic encryption scheme allows oracle

• Version 5 encryption thwarts oracle creation

• Make cryptographic assumptions explicit

• Create good encryption abstraction

5



RFC 1510 Flaws

• RFC 1510 uses encrypted plaintext checksums

• Message authentication can be subverted by using encryption oracle

• Designers should ensure that attackers can’t subvert message
authentication by ciphertext surgery

6



Long-Lived Protocols

• Multiple application protocols built on top of Kerberos

• Deployment of security infrastructure expensive

• Resistance to change unless clear and present danger due to
expense

• Use conservative design in security protocols

• Evaluate whether apparently theoretical weaknesses indicate more
serious problems

7



Outline

• Kerberos History

• Design Shortcomings of Kerberos Version 4

• Kerberos Version 4 Protocol

• Block Encryption Oracle

• Ticket Ciphertext as Oracle

• Implementation Flaws

• Evolution of Kerberos Encryption

8



Kerberos History

9



Historical Overview

• Version 4 designed/deployed at MIT Project Athena (Miller et al.
1987; Steiner et al. 1988)

• Based on Needham-Schroeder (1978) symmetric-key

• Uses timestamps to mitigate replays (Denning 1981)

• Version 5, defined by RFC 1510

• Ongoing revision of version 5 in IETF

10



AFS leads to Widespread Deployment

• Andrew File System (AFS) developed at CMU

• AFS protocol uses Kerberos version 4

• Commerical AFS from Transarc/IBM

• Introduction of open-source version OpenAFS led to wider adoption
of Kerberos version 4

• Reluctance to update AFS to use Kerberos version 5

• Our attack prompted rapid migration

11



Prior Work

• Formal correctness analyses (Bella and Riccobene 1997; Bella and
Paulson 1998; Burrows et al. 1989)

• Deficiencies in encryption scheme (Bellovin and Merritt 1991;
Stubblebine and Gligor 1992)

• Encryption oracle attacks against other protocols (Lowe 1996)

12



Evolution of Kerberos

• RFC 1510 fixes some flaws of version 4; still has some vulnerabilities

• Ongoing work (post-RFC 1510) in IETF

– More explicit cryptographic abstraction

– Strategies similar to recent work on SSH protocol (Bellare et al.
2002)

– Fixes flaws in RFC 1510

13



Design Shortcomings of Kerberos

Version 4

14



Abstract Design Flaws

• Failure to make cryptographic assumptions explicit

• Needham-Schroeder implicitly requires nonmalleable encryption
(Dolev et al. 2000)

• Kerberos version 4 fails to provide nonmalleability

• Concept of malleability not well-developed at time of design

15



Concrete Design Flaws

• DES in nonstandard Propagating Cipher Block Chaining (PCBC)
mode

• Assumption: error propagation properties of PCBC sufficient to
scramble plaintext after manipulation

• Constant Initialization Vector (IV)

• Use of PCBC for integrity via known values at end of plaintext

• PCBC as integrity check fails spectacularly

• PCBC insufficient against encryption oracle

16



Lack of Abstraction

• Dependency between integrity and message layout indicates lack of
sufficient abstraction of encryption

• Separation of encryption and message details previously emphasized
(Bellovin and Merritt 1991)

• Security of encryption should not depend on packet layout details

17



Our Attack Nearly Discovered Earlier

• Version 4 security assumptions do not include encryption oracle

• Existing chosen-plaintext attack (Voydock and Kent 1983) against
CBC mode with fixed IV.

• Designers of version 4 were unaware

• Designers of version 5 nearly uncovered our attack on version 4
during design discussions

• Dismissed by (incorrect!) argument that first plaintext block is
randomized

• Again, indicative of insufficiently abstracted encryption

18



Kerberos Version 4 Protocol

19



Dramatis Personae

• Trusted third party: Key Distribution Center (KDC)

• Client

• Server

20



Keys and Other Elements

• Client A’s long-term key: ka

• Server B’s long-term key: kb

• Ticket: ciphertext encrypted with kb

– Identifies client

– Contains session key

• Credential: ticket and session key kab

• Ticket alone insufficient; also must prove knowledge of session key

21



Obtaining Credentials

• Two conceptual services in KDC

– Authentication Service (AS)

– Ticket Granting Service (TGS)

• The AS issues credentials encrypted using client’s long-term key ka

• The TGS acts as a special application service for obtaining additional
credentials

• Typically, client uses AS exchange to get ticket for TGS; permits
single sign-on

22



AS Exchange

Here, client requests a ticket granting ticket (TGT) for later use with the
TGS.

A → S : A,S

S → A : {kas,S,{A,S, ts,kas}ks}ka

ts KDC’s timestamp
{M}kx M encrypted with key kx

A client name
S TGS name

ka client long-term key
ks TGS long-term key

kas session key between client and TGS
{A,S, ts,kas}ks ticket

23



TGS Exchange

Here, client requests ticket for service B from the TGS.

A → S : {A,S, ts,kas}ks,{A, ta}kas,B

S → A : {kab,B,{A,B, t′s,kab}kb}kas

ta client’s timestamp
B server name

kb server long-term key
kas session key between client and TGS

{A,S, ts,kas}ks TGT
{A, ta}kas authenticator for TGS request

{A,S, t′s,kab}kb service ticket

Authenticator assures TGS that client has recent knowledge of session
key kas.

24



Using Credential

Client sends application request

A → B : {A,B, t′s,kab}kb,{A, t′a}kab

Authenticator {A, t′a}kab proves to service B that A has recent knowledge of
session key kab.

25



AS Request

A

S

B

A,
S

26



AS Reply

A

S

B

A,
S

{k as,
S,
{A

,
S,

t s,
k as}

k s}
k a

27



TGS Request

A

S

B

{A
,
S,

t′ s,
k as}

k s,
{A

,
t a}

k as,
B

28



TGS Reply

A

S

B

{A
,
S,

t′ s,
k as}

k s,
{A

,
t a}

k as,
B

{k ab
,
B,
{A

,
B,

t′
′
s
,
k ab
}k b

}k as

29



Application Request

A

S

B

{A
,
S,

t′ s,
k as}

k s,
{A

,
t a}

k as,
B

{k ab
,
B,
{A

,
B,

t′
′
s
,
k ab
}k b

}k as

{A,B, t′′s ,kab}kb,{A, t′a}kab

30



Kerberos Names

• Form of principal name has implications for attack

• Principal name is a triple

{primaryname, instance,realm}

• Usually displayed like

primaryname.instance@realm

• Normal TGS principal name

krbtgt.realm@realm

• Cross-realm TGS principal name

krbtgt.localrealm@foreignrealm

31



Cross-realm Authentication

• Local KDC checks cross-realm TGT for client principal realm
matching foreign realm; local KDC can’t normally issue ticket
certifying wrong client realm

• Implementation flaws allow for circumvention of this check

• As designed, sharing cross-realm keys only implies trust that foreign
realm trustworthy for its own principals

• Compromise of foreign realm only renders that realm’s principals
untrustworthy

• Cryptographic flaws invalidate these trust assumptions

• Cross-realm TGS requests useful for inserting known plaintext

32



TGS Request for S2

A

S1

S2

B

{A,
S1,

ts1
,
kas1

}ks1
,
{A,

ta}kas1
,
S2

33



TGS Reply for S2

A

S1

S2

B

{A,
S1,

ts1
,
kas1

}ks1
,
{A,

ta}kas1
,
S2

{kas2
,
S2,

{A,
S2,

t′s1
,
kas2

}ks2
}kas1

34



TGS Request for B

A

S1

S2

B

{A,
S1,

ts1
,
kas1

}ks1
,
{A,

ta}kas1
,
S2

{kas2
,
S2,

{A,
S2,

t′s1
,
kas2

}ks2
}kas1

{A,S2, t ′s1
,kas2}ks2,{A, t ′a}kas2,B

35



TGS Reply for B

A

S1

S2

B

{A,
S1,

ts1
,
kas1

}ks1
,
{A,

ta}kas1
,
S2

{kas2
,
S2,

{A,
S2,

t′s1
,
kas2

}ks2
}kas1

{A,S2, t ′s1
,kas2}ks2,{A, t ′a}kas2,B

{kab,B,{A,B, ts2,kab}kb}kas2

36



Application Request to B

A

S1

S2

B

{A,
S1,

ts1
,
kas1

}ks1
,
{A,

ta}kas1
,
S2

{kas2
,
S2,

{A,
S2,

t′s1
,
kas2

}ks2
}kas1

{A,S2, t ′s1
,kas2}ks2,{A, t ′a}kas2,B

{kab,B,{A,B, ts2,kab}kb}kas2{A
,B

, ts2 ,kab}kb ,{A
, t ′′a }kab

37



Block-Encryption Oracle

38



Block-Encryption Oracle

• Chosen plaintext allows block-encryption oracle in Kerberos version 4

• Oracle takes advantage of fixed or predictable IV

• Oracle uses structure of CBC or PCBC mode

39



Cipher Modes

• Cipher Block Chaining (CBC) mode

Ci+1 = k(Pi+1⊕Ci)

Pi+1 = k−1(Ci+1)⊕Ci

• Propagating Cipher Block Chaining (PCBC) mode

Ci+1 = k(Pi+1⊕Ci⊕Pi)

Pi+1 = k−1(Ci+1)⊕Ci⊕Pi

C0,C1, . . . ,Cn ciphertext blocks
P0,P1, . . . ,Pn plaintext blocks

k(x) encryption of block x with key k
k−1(x) decryption of block x with key k

x⊕ y bitwise exclusive-OR of x with y

40



CBC encrypt CBC decrypt

C0 C1

k k

P0 P1

IV ⊕ ⊕ ·· ·

P0 P1

⊕ ⊕

k−1 k−1

C0 C1

· · ·IV

Ci+1 = k(Pi+1⊕Ci) Pi+1 = k−1(Ci+1)⊕Ci

41



PCBC encrypt PCBC decrypt

C0 C1

k k

⊕ ⊕⊕ ⊕

P0 P1

· · ·IV

P0 P1

⊕ ⊕⊕ ⊕

k−1 k−1

C0 C1

· · ·IV

Ci+1 = k(Pi+1⊕Ci⊕Pi) Pi+1 = k−1(Ci+1)⊕Ci⊕Pi

42



Generalized Feedback Modes

• CBC and PCBC can be generalized as feedback modes

Ci = k(Pi⊕Fi)

Pi = k−1(Pi)⊕Fi,

• Fi is i-th feedback block; not necessarily transmitted

• CBC mode: Fi+1 = Ci

• PCBC mode: Fi+1 = Ci⊕Pi

43



Predictable Feedback Makes an Oracle

To get encryption X = k(M) of block M

• Find an Fj that will remain the same when Pj replaced with P′
j

• Choose P′
j = M⊕Fj

• Now, the new ciphertext block C′
j is the desired encryption of M

C′
j = k(P′

j ⊕Fj)

= k(M⊕Fj ⊕Fj)

= k(M) = X .

• In well-designed protocol, attacker can’t create this oracle, since Fj

should not be predictable

44



Original Plaintext

C0

k

⊕

P0

IV = F0 ⊕ F1

C1

k

⊕

P1

⊕ ·· ·

45



Chosen Plaintext

C0

k

⊕

P0

IV = F0 ⊕ F1

C′
1 = k(M)

k

⊕

P′
1

⊕

⊕ M

· · ·

46



Constructing Desired Ciphertext

To get ciphertext blocks {Xi}, whose plaintext blocks are {Mi}, for each Mi

• Use oracle to perform block encryption Xi = k(Mi⊕Φi)

• Φi is the feedback block, e.g., Φi+1 = Mi⊕Xi in PCBC mode

• Choose plaintext block P′
j = Mi⊕Φi⊕Fj

• This gives C′
j = k(Mi⊕Φi)

47



Ticket Ciphertext as Oracle

48



Kerberos Version 4 Ticket (pre-encryption)

1 byte flags namely, HOST_BYTE_ORDER
string pname client’s name
string pinstance client’s instance
string prealm client’s realm
4 bytes paddress client’s address
8 bytes session session key
1 byte life ticket lifetime
4 bytes time sec KDC timestamp
string sname service’s name
string sinstance service’s instance
≤ 7 bytes null null pad to 8 byte multiple

• flags has only one meaningful bit (HOST_BYTE_ORDER — KDC’s byte
order)

• “string” fields are NUL-terminated ASCII, max 40 chars

49



Chosing Plaintext in Ticket

• Hold one aligned block of client name constant

• Vary the following block as chosen plaintext for oracle

• First byte (flags) usually constant

• IV is constant, but unknown (it’s the key)

• Client name and instance easily controlled

50



TGS Attack Scenario

• Attacker controls realm A

• Target realm B

• Attacker knows key of TGS principal krbtgt.B@A, which has same
key as krbtgt.A@B

• Attacker creates cross-realm ticket with client principal
a234567XXXXXXXX@A

– “a234567” arbitrary and held constant

– “XXXXXXXX” is the P′
1 varied to produce desired ciphertext block

• Attacker uses cross-realm ticket to get ticket for target service

51



TGS Attack Scenario (cont’d)

Resulting initial two blocks of plaintext of ticket issued by realm B KDC are

flags a234567 XXXXXXXX

P0 P′
1

• C0 remains constant, due to constant IV and constant P0

• F1 also remains constant

• C′
1 contains desired ciphertext block when P′

1 is varied

• Choose P′
1 = Mi⊕Φi⊕F1 to get C′

1 = Xi

52



TGS Attack Scenario Limitations

• May need to choose different P0 if P′
1 needs to contain too many NUL

characters

• First ciphertext block can be problematic

– Can sniff initial ciphertext block

– Can submit initial substring of target principal, with restrictions due
to NUL characters

– Cross-protocol attack

53



Alternate Attack Scenario

• Knowledge of sufficient number of keys in target realm allows using
AS exchange as oracle

• Particularly effective if attacker can create principals in target realm

• MIT implementation allows less-privileged administrators to
create/change keys for host-based service

• Typically of form rcmd.hostname@realm

• Used for authenticating remote logins

• May need to create as few as n principals for n blocks of ciphertext

54



Alternate Attack Scenario Limitations

• Not very useful in version 4-only environment

• Few interesting client principals begin with “rcmd”

• Cross-protocol attack can work, though

• Can also get initial ciphertext block by sniffing

55



Implementation Flaws

56



Implementation flaws make certain additional attacks possible

• MIT implementation of version 4 has lax checking for cross-realm
TGT issuance, allowing “hopping” between realms, which is normally
not permitted

• MIT implementation of version 5 shares keys with its version 4
backwards-compatibility mode, allowing cross-protocol attack

57



Realm Hopping

• MIT implementation of version 4 will issue “useless” tickets that would
be rejected by the target realm’s KDC

client using TGS requested service
clienta@A krbtgt.A@A krbtgt.B@A issued
clienta@A krbtgt.B@A krbtgt.C@B issued
clienta@A krbtgt.C@B krbtgt.D@C rejected
clienta@A krbtgt.B@A krbtgt.B@B issued
clienta@A krbtgt.B@B anything@B rejected

• Normally harmless, this allows use of forged tickets for krbtgt.B@A
to run an oracle on key for krbtgt.C@B

• Recursive realm compromise possible; must forge O(cn) tickets to
compromise a realm n hops away

58



Realm Hopping (cont’d)

• Can shortcut by forging tickets of a realm administrator

• Can also use forged tickets for krbtgt.B@A to run an oracle on key
for krbtgt.B@B.

59



Cross-Protocol Attack

• Using a key for multiple cryptographic purposes can be a vulnerability

• MIT implementation of version 5 can allow KDC to issue version 4
tickets for backwards compatibility

• Same key used for version 4 and version 5 tickets for a principal

• Can use version 4 ticket oracle to forge ciphertext for version 5 ticket

60



Cross-Protocol Attack (cont’d)

• RFC 1510 uses single-DES

• Encoded plaintext of version 5 ticket prior to encryption is

confounder checksum . . . data. . . pad

• confounder is a block of random bits

• checksum is not keyed

• For checksums MD4 and MD5, IV is block of zeros

• For CRC-32 checksum, key used as IV

61



Cross-Protocol Attack (cont’d)

• Forge complete encoded plaintext of version 5 ticket, including
checksum

• Use version 4 oracle to encrypt

• CRC-32 checksum makes first block slightly tricky; can use any initial
ciphertext block whose plaintext is known, as receiver doesn’t know
what random confounder value to expect

62



Evolution of Kerberos Encryption

63



RFC 1510

• Improvement over version 4

• No more PCBC

• Confounder prevents using ciphertext as oracle

• Plaintext checksum allows use of version 4 block-encryption oracle to
forge ciphertext

• Confounder also prevents cut-and-paste attacks (Bellovin and Atkins,
private communication, 1999)

64



Ongoing Revision to Kerberos Version 5

• Repairs many flaws in RFC 1510

• Increases encryption abstraction; moves encryption specification to
separate document

• Stronger ciphers (triple-DES, AES, etc.)

• Uses HMAC for integrity checking — can’t be forged with encryption
oracle

65



Revised Ciphertext (post-RFC 1510)

• Ciphertext output

encrypt(ke,plaintext) HMAC(kc,plaintext)

• Encoded plaintext

confounder data pad

• ke: derived key exclusively for encrypting

• kc: derived key exclusively for HMAC

• Both derived via one-way function from key exchanged in protocol

66



Conclusions

• Critical vulnerabilities in Kerberos version 4 provide examples of
errors in cryptographic protocol design

• Clearly identify role of encryption in protocols

• Use good abstraction of encryption to avoid cross-dependencies
between message layout and encryption

• Avoid deterministic encryption

• Avoid using one key for multiple purposes

• Protocols live longer than expected

67


