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This manuscript contains notes for the proof of the prime number theorem that was presented
in the Fall 2021 offering of MIT’s 18.112 (de facto Complex Analysis), taught by Professor Alexei
Borodin. It also contains some classical consequences of the prime number theorem that can be
found many sources, such as A. J. Hilderbrand’s lecture notes [3].

The notes culminate in a complex-analytic proof of the prime number theorem, which is stated
below. This proof was discovered by D. J. Newman and is presented in D. Zagier’s paper [2].

As usual, these notes are by no means complete, and any error in them is on my part. If you do
find any mistakes, please let me know at chentouf@mit.edu.

1 Notation and preliminary results

If s is a complex number, let ℜ(s) denote its real part.

Definition 1 (Asymptotic Equivalence). Given two functions f, g defined on the positive reals, we
say that the two functions are asymptotically equivalent, and write f ∼ g, if

lim
x→∞

f(x)

g(x)
= 1.

Definition 2 (Big O notation). Let f, g be two functions R → R+. We say that f(x) ∈ O(g(x)) if

lim sup
x→∞

f(x)

g(x)
< ∞.

Whenever a sum or product is indexed by p, such as
∑

p
1
p , this means that the sum/product

is to be taken over all prime numbers. Similarly,
∑

p≤x means the sum is to be taken over prime
numbers less than or equal to x.

Definition 3. Define π(x) as the prime number counting function, i.e.:

π(x) =
∣∣{p ≤ x : p prime }

∣∣
Theorem 1 (Prime Number Theorem, Version 1). The asymptotic equivalence π(x) ∼ x

log x holds.

Recall the Riemann zeta function, which is defined as

ζ(s) =
∑
n≥1

1

ns

on the strip ℜ(s) > 1. As we will see later, the zeta function can then be meromorphically extended
to the complex plane, with exactly a simple pole at s = 1 of residue 1, and with trivial zeros at the
negative even integers.

Define the two auxiliary functions

Φ(s) =
∑
p

log p

ps
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and
θ(x) =

∑
p≤x

log p.

Note that the series defining Φ(s) converges absolutely uniformly in any compact subset of ℜ(s) > 1,
and hence Φ(s) is holomorphic there. Through a series of steps, we will prove the asymptotic relation
θ(x) ∼ x, which then immediately implies the prime number theorem.

Moreover, define the xi function as

ξ(s) = π−s/2Γ
(s
2

)
ζ(s)

in the half-plane ℜ(s) > 1. We recall a property of the xi function without proof.

Fact 1. The function ξ(s) has an analytic continuation into a meromorphic on the complex plane
with only simple poles at 0, 1, and

ξ(s) =
1

s− 1
− 1

s
+ F (s),

where F (s) is entire.

Corollary 1. The zeta function can then be meromorphically extended to the complex plane, with
exactly a simple pole at s = 1 of residue 1, and with trivial zeros at the negative even integers.

2 Steps towards the proof

Lemma 1. The relation ζ(s) =
∏

p

(
1− 1

ps

)−1
holds for ℜ(s) > 1.

Proof. Expand and use the Fundamental Theorem of Arithmetic to show that the LHS is the uniform

limit of the partial products
∏

p≤x

(
1− 1

ps

)−1
.

Lemma 2. The function ζ(s)− 1
s−1 extends holomorphically to an entire function.

Proof. Using Fact 1, and since πs/2

Γ(s/2) is entire, looking at the residues implies that ζ(s)− 1
s−1 extends

to an entire function.

Lemma 3. We have the relation θ(x) ∈ O(x).

Proof. If n ∈ N, then

4n = (1 + 1)2n =

2n∑
i=0

(
2n

i

)
>

(
2n

n

)
=

(2n)!

(n!)2
≥

∏
n<p≤2n

p = eθ(2n)−θ(n).

Therefore
θ(2n)− θ(n) ≤ (2 log 2)n (1)

Observe that for δ ≤ 1, we have that θ(x + δ) − θ(x) is at most log (x+ 1). This allows us to
bound θ(x) in terms of θ(⌈x⌉), and an application of the “Master Theorem” to Equation 1 implies
that θ(x) ∈ O(x).

Lemma 4. In the closed half plane ℜ(s) ≥ 1, the zeta function is nonzero and Φ(s) − 1
s−1 is

holomorphic.

Proof. Recall that ζ(s) =
∏

p

(
1− 1

ps

)−1
holds for ℜ(s) > 1. By [1, Prop. 5.3.2], we have

ζ ′(s)

ζ(s)
=
∑
p

d
ds

(
1− p−s

)−1(
1− p−s

)−1 =
∑
p

− log p

ps − 1
= −Φ(s)−

∑
p

log p

ps(ps − 1)
. (2)
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Since
∑

p
log p

ps(ps−1) converges to a holomorphic function in ℜ(s) > 1
2 , and using Corollary 1, we

have that Φ extends meromorphically unto ℜ(s) > 1
2 .

In particular, this implies that ζ(s) has no roots in ℜ(s) > 1, as otherwise the right-hand-side
would have a pole there, but Φ(s) is holomorphic in ℜ(s) > 1 by a previous observation.

Note that
Res
s=1

Φ(s) = lim
ϵ→0

εΦ(1 + ϵ) = 1.

That is, Φ(s) has a simple pole of residue 1 at s = 1, and by the analytic continuation of the
zeta function and Equation 2, this is the only pole of Φ in ℜ(s) > 1

2 . Therefore, Φ(s) − 1
s−1 has a

holomorphic extension in ℜ(s) > 1
2 .

Now assume that ζ has a zero of multiplicity µ at s = 1 + iα. Since ζ is real on the real line,
the Schwarz reflection principle implies that 1 − iα is also a root of multiplicity µ. Let ν be the
multiplicity of the root at 1± 2iα.

Similarly, using Equation 2, we see that

lim
ϵ→0

ϵΦ(1 + ϵ± iα) = µ

and that
lim
ϵ→0

ϵΦ(1 + ϵ± 2iα) = −ν.

We can therefore compute:

2∑
r=−2

(
4

2 + r

)
Φ(1 + ϵ+ riα) =

2∑
r=−2

(
4

2 + r

)∑
p

log p

p1+ϵ+riα
=
∑
p

log p

p1+ϵ

(
piα/2 + p−iα/2

)4

≥ 0.

On the other hand, expanding the following expression yields

lim
ϵ→0

ϵ

2∑
r=−2

(
4

2 + r

)
Φ(1 + ϵ+ riα)6− 8µ− 2ν.

Combining the two results yields that 6 − 8µ − 2ν ≥ 0 and hence 4µ + ν ≤ 3. Since µ, ν are
nonnegative integers (multiplicities of roots), we must have µ = 0, and so ζ(s) has no roots on the
line ℜ(s) = 1.

Theorem 2 (Analytic Theorem). Let f(t) be a bounded, locally integrable function over the non-
negative reals. Suppose that the function

g(z) =

∫ ∞

0

e−xtf(t)dt

defined on ℜ(z) > 0 extends homorphically to Re(z) ≥ 0. Then
∫∞
0

f(t)dt converges and equals g(0).

Lemma 5. The integral ∫ ∞

1

θ(x)− x

x2
dx

converges.

Proof. Note that θ(x) =
∑

p 1x≥p log p, and so if ℜ(s) > 1 then

s

∫ ∞

1

θ(x)

xs+1
dx =

∑
p

s

∫ ∞

p

dx

xs+1
log p =

∑
p

log p

ps
= Φ(s).

Making a change of variable x = et, we get that this is equal to

s

∫ ∞

0

e−stθ(et)dt.
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Applying the analytic theorem to f(t) = θ(et)e−t − 1, which is clearly locally integrable and is
bounded by Lemma 3, we get that

f(z) =

∫ ∞

0

e−zt
(
θ(et)e−t − 1

)
dt =

Φ(z + 1)

z + 1
− 1

z
.

This is holomorphic by Lemma 4 and the poles at zero cancel by comparing residues, so the analytic
theorem implies that ∫ ∞

0

(
θ(et)e−t − 1

)
dt < ∞.

Making a change of variables once again, we get that∫ ∞

1

θ(x)− x

x2
dx

converges, as required.

Lemma 6. The asymptotic equivalence θ(x) ∼ x holds.

Proof. Assume, for the sake of contradiction, that there exists some λ > 1 such that θ(x) ≥ λx for
infinitely many x. Then by Lemma 5:∫ λx

x

θ(t)− t

t2
dt ≥

∫ λx

x

λt− t

t2
dt =

∫ λ

1

λ− t

t2
dt > 0.

However, this contradicts the convergence of the integral from Lemma 5.
Similarly, we get a contradiction if we assume that there exists some λ < 1 such that θ(x) ≤ λx

for infinitely many x.

3 Proof of the PNT

Theorem 3 (Prime Number Theorem, Version 1). The asymptotic equivalence π(x) ∼ x
log x holds.

Proof. Note that

θ(x) =
∑
p≤x

log p ≤
∑
p≤x

log x = π(x) log x (3)

However, we also have that for any 0 < ϵ < 1

θ(x) =
∑
p≤x

log p ≥
∑

x1−ϵ≤p≤x

log p ≥ (1− ϵ) log x
(
π(x)− π(x1−ϵ)

)
. (4)

Combining Eq. (3) and (4), we get that for any 0 < ϵ < 1,

θ(x)

log x
≤ π(x) ≤ θ(x)

(1− ϵ) log x
+O(x1−ϵ).

Now since θ(x) ∼ x, we conclude that π(x) ∼ x
log x .

Definition 4. Let Li(x) be the logarithmic integral defined by
∫ x

2
dt

log t .

Theorem 4 (Prime Number Theorem, Version 2). The asymptotic equivalence π(x) ∼ Li(x) holds.

Proof. It suffices to prove that Li(x) ∼ x
log x . Using integration by parts:

Li(x) =

∫ x

2

dt

log t
=

x

log x
− 2

log 2
+

∫ x

2

dt

(log t)2
.
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Note that to prove Li(x) ∼ x
log x , it suffices to show that

lim
x→∞

log x

x

∫ x

2

dt

(log t)2
= 0.

Applying l’Hôpital’s rule, this is equal to

lim
x→∞

(
1

x

∫ x

2

dt

(log t)2
+

1

log x

)
= lim

x→∞

∫ x

2
dt

(log t)2

x
.

Once again, applying l’Hôpital’s rule, we get that this is equal to

lim
x→∞

1

(log x)2
= 0,

which concludes the proof.

In fact, Li(x) provides an even better approximation to π(x) than x
log x . It also turns out that

Li(x) belongs to the class O
(

x
(log x)2

)
, althought this was not required for our proof.

4 Consequences of the prime number theorem

Theorem 5. Let pn be the n-th prime number. Then the the asymptotic equivalence pn ∼ n log n
holds.

Proof. The prime number theorem implies that π(x) log x ∼ x, and hence, by properties of asymp-
totic equivalence, we have that log π(x) + log log x ∼ log x. However, limx→∞

log log x
log x = 0, and so

log π(x) ∼ log x.
By the prime number theorem, we have that

n ∼ pn
log pn

,

and so pn ∼ n log pn ∼ n log n, as required.

A longer proof that contains a recurring idea in analytic number theory is also presented.

Proof. Fix ϵ > 0. By the prime number theorem, we have that

n ∼ pn
log pn

.

In particular, for large enough n, we have that pϵn ≥ log pn and hence

p1−ϵ
n ≤ n ≤ pn.

Taking logarithms, we see that

(1− ϵ) log pn ≤ log n ≤ log pn,

and so log pn ∼ log n. Therefore, we get that pn ∼ n log n, as required.

Theorem 6. For all ϵ > 0, there exists N such that for all n ≥ N , the interval [n, (1+ ϵ)n] contains
a prime number.
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Proof. The prime number theorem, and elementary properties of asymptotic equivalence, imply that

π
(
(1 + ϵ)x

)
π(x)

∼

(1+ϵ)x

log
(
(1+ϵ)x

)
x

log x

=
(1 + ϵ) log x

log
(
(1 + ϵ)x

) ,
which by l’Hôpital’s rule, tends to 1+ ϵ. Hence, we have that limx→∞

π
(
(1+ϵ)x

)
π(x) = 1+ ϵ, and so there

exists N such that π
(
(1 + ϵ)x

)
> π(x) for all x ≥ N . This directly implies the result.

Corollary 2. Given any string of decimal digits a1 . . . ak, there exists infinitely many primes whose
decimal representation begins with a1 . . . ak.

Proof. Let M = a1 . . . ak. The decimal representation of an integer n begins with a1 . . . ak iff
10kM ≤ n < 10k(M + 1) for some k ∈ N. Applying the previous theorem, we see that the interval
[10kM, 10k(M + 1)] contains a prime for all large enough k.
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